1
|
Quijano Cardé EM, Soto E. A review of latency in the Alloherpesviridae family. JOURNAL OF FISH DISEASES 2024; 47:e14016. [PMID: 39244674 PMCID: PMC11560599 DOI: 10.1111/jfd.14016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/05/2024] [Accepted: 08/21/2024] [Indexed: 09/10/2024]
Abstract
The ability to impact the immune response of the host has been recognized as essential for the success of a virus during infection. A few groups of viruses can combine these immunomodulatory mechanisms with specific patterns of their own transcriptional and replication regulation to achieve persistence within the host long term. The Herpesvirales order is one of those groups and the resultant state is known as latency. Throughout the years, latency has been studied in many host-herpesvirus models to attempt to understand the complex and profound effects of this state on the host's systems, and in the hopes of deciphering a way to eliminate the latent state from survivors of the primary infection. Most studies of herpesvirus latency have been conducted on mammalian host species, but this review summarizes the data available regarding herpesviruses in fish species and their latent state. As the field of aquatic animal health research continues to advance, the elucidation of these complex mechanisms will be crucial for disease control, prevention, and treatment.
Collapse
Affiliation(s)
- Eva Marie Quijano Cardé
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California – Davis, Davis, California, United States
| | - Esteban Soto
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California – Davis, Davis, California, United States
| |
Collapse
|
2
|
Cano I, Blaker E, Hartnell D, Farbos A, Moore KA, Cobb A, Santos EM, van Aerle R. Transcriptomic Responses to Koi Herpesvirus in Isolated Blood Leukocytes from Infected Common Carp. Viruses 2024; 16:380. [PMID: 38543746 PMCID: PMC10974277 DOI: 10.3390/v16030380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/08/2024] [Accepted: 02/23/2024] [Indexed: 04/01/2024] Open
Abstract
Koi herpesvirus (KHV, CyHV-3) causes severe economic losses in carp farms. Its eradication is challenging due to the establishment of latency in blood leukocytes and other tissues. To understand the molecular mechanisms leading to KHV infection in leukocytes, common carp were bath-exposed to KHV at 17 °C. After confirming the presence of viral transcripts in blood leukocytes at ten days post infection, RNA-Seq was performed on peripheral blood leukocytes on the Illumina NovaSeq. KHV infection triggered a robust immune response mediated by pattern recognition receptors, mainly toll-like receptors (tlr2, tlr5, tlr7, and tlr13), urokinase plasminogen activator surface receptor-like, galectin proteins, and lipid mediators such as leukotriene B4 receptor 1. Enriched pathways showed increased mitochondria oxidative phosphorylation and the activation of signalling pathways such as mitogen-activated protein kinases (MAPKs) and vascular endothelial growth factor (VEGF). KHV-infected leukocytes showed low production of reactive oxygen species (ROS) and glutathione metabolism, high iron export and phagocytosis activity, and low autophagy. Macrophage polarization was deduced from the up-regulation of genes such as arginase non-hepatic 1-like, macrophage mannose receptor-1, crem, il-10, and il-13 receptors, while markers for cytotoxic T cells were observed to be down-regulated. Further work is required to characterise these leukocyte subsets and the molecular events leading to KHV latency in blood leukocytes.
Collapse
Affiliation(s)
- Irene Cano
- International Centre of Excellence for Aquatic Animal Health, Cefas Laboratory, Dorset DT4 8UB, UK; (E.B.); (D.H.); (A.C.); (R.v.A.)
- Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter EX2 4TH, UK;
| | - Ellen Blaker
- International Centre of Excellence for Aquatic Animal Health, Cefas Laboratory, Dorset DT4 8UB, UK; (E.B.); (D.H.); (A.C.); (R.v.A.)
| | - David Hartnell
- International Centre of Excellence for Aquatic Animal Health, Cefas Laboratory, Dorset DT4 8UB, UK; (E.B.); (D.H.); (A.C.); (R.v.A.)
| | - Audrey Farbos
- Biosciences, Faculty of Life and Health Sciences, University of Exeter, Exeter EX2 4TH, UK; (A.F.); (K.A.M.)
| | - Karen A. Moore
- Biosciences, Faculty of Life and Health Sciences, University of Exeter, Exeter EX2 4TH, UK; (A.F.); (K.A.M.)
| | - Adele Cobb
- International Centre of Excellence for Aquatic Animal Health, Cefas Laboratory, Dorset DT4 8UB, UK; (E.B.); (D.H.); (A.C.); (R.v.A.)
| | - Eduarda M. Santos
- Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter EX2 4TH, UK;
- Biosciences, Faculty of Life and Health Sciences, University of Exeter, Exeter EX2 4TH, UK; (A.F.); (K.A.M.)
| | - Ronny van Aerle
- International Centre of Excellence for Aquatic Animal Health, Cefas Laboratory, Dorset DT4 8UB, UK; (E.B.); (D.H.); (A.C.); (R.v.A.)
- Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter EX2 4TH, UK;
| |
Collapse
|
3
|
Matsuoka S, Petri G, Larson K, Behnke A, Wang X, Peng M, Spagnoli S, Lohr C, Milston-Clements R, Divilov K, Jin L. Evaluation of Histone Demethylase Inhibitor ML324 and Acyclovir against Cyprinid herpesvirus 3 Infection. Viruses 2023; 15:163. [PMID: 36680202 PMCID: PMC9863241 DOI: 10.3390/v15010163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Cyprinid herpesvirus 3 (CyHV-3) can cause severe disease in koi and common carp (Cyprinus carpio). Currently, no effective treatment is available against CyHV-3 infection in koi. Both LSD1 and JMJD2 are histone demethylases (HD) and are critical for immediate-early (IE) gene activation essential for lytic herpesvirus replication. OG-L002 and ML324 are newly discovered specific inhibitors of LSD1 and JMJD2, respectively. Here, HD inhibitors were compared with acyclovir (ACV) against CyHV-3 infection in vitro and in vivo. ML324, at 20-50 µM, can completely block ~1 × 103 PFU CyHV-3 replication in vitro, while OG-L002 at 20 µM and 50 µM can produce 96% and 98% inhibition, respectively. Only about 94% inhibition of ~1 × 103 PFU CyHV-3 replication was observed in cells treated with ACV at 50 µM. As expected, CyHV-3 IE gene transcription of ORF139 and ORF155 was blocked within 72 h post-infection (hpi) in the presence of 20 µM ML324. No detectable cytotoxicity was observed in KF-1 or CCB cells treated for 24 h with 1 to 50 µM ML324. A significant reduction of CyHV-3 replication was observed in ~6-month-old infected koi treated with 20 µM ML324 in an immersion bath for 3-4 h at 1-, 3-, and 5-days post-infection compared to the control and ACV treatments. Under heat stress, 50-70% of 3-4-month-old koi survived CyHV-3 infection when they were treated daily with 20 µM ML324 in an immersion bath for 3-4 h within the first 5 d post-infection (dpi), compared to 11-19% and 22-27% of koi in the control and ACV treatments, respectively. Our study demonstrates that ML324 has the potential to be used against CyHV-3 infection in koi.
Collapse
Affiliation(s)
- Shelby Matsuoka
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Gloria Petri
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Kristen Larson
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Alexandra Behnke
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Xisheng Wang
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Muhui Peng
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Sean Spagnoli
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Christiane Lohr
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Ruth Milston-Clements
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR 97331, USA
| | - Konstantin Divilov
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Newport, OR 97365, USA
| | - Ling Jin
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
4
|
Tolo IE, Bajer PG, Wolf TM, Mor SK, Phelps NBD. Investigation of Cyprinid Herpesvirus 3 (CyHV-3) Disease Periods and Factors Influencing CyHV-3 Transmission in A Low Stocking Density Infection Trial. Animals (Basel) 2021; 12:ani12010002. [PMID: 35011108 PMCID: PMC8749781 DOI: 10.3390/ani12010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/01/2022] Open
Abstract
Simple Summary Pathogens are the primary limitation to aquaculture production of fish and a major issue in consideration of the interface between cultured and wild populations of fishes worldwide. While rapid spread of fish pathogens between populations (wild or farmed) is generally anthropogenic and the result of trade, the mechanisms of transmission once a pathogen has been introduced to a fish population are not well understood. The most widespread pathogen impacting both aquaculture and wild populations of common carp (Cyprinus carpio, carp) is Cyprinid herpesvirus 3 (CyHV-3). To understand how CyHV-3 is transmitted in a population we conducted a series of infection trials, designed to determine the kinetics CyHV-3 infections, identify the contributions of direct and indirect forms of CyHV-3 transmission, and to determine the contributions of contact rate, viral load, pathogenicity, and contact type. We found that direct contact between fish was the primary mechanism of CyHV-3 transmission rather than transmission through contaminated water. Additionally, CyHV-3 transmission occurred primarily during the incubation period of CyHV-3, prior to the appearance of disease signs and disease-associated reduction in contact rate. Abstract Cyprinid herpesvirus 3 (CyHV-3) is the etiological agent of koi herpesvirus disease (KHVD) and important pathogen of aquaculture and wild populations of common carp worldwide. Understanding the relative contributions of direct and indirect transmission of CyHV-3 as well as the factors that drive CyHV-3 transmission can clarify the importance of environmental disease vectors and is valuable for informing disease modeling efforts. To study the mechanisms and factors driving CyHV-3 transmission we conducted infection trials that determined the kinetics of KHVD and the contributions of direct and indirect forms of CyHV-3 transmission, as well as the contributions of contact rate, viral load, pathogenicity and contact type. The incubation period of KHVD was 5.88 + 1.75 days and the symptomatic period was 5.31 + 0.87 days. Direct transmission was determined to be the primary mechanism of CyHV-3 transmission (OR = 25.08, 95%CI = 10.73–99.99, p = 4.29 × 10−18) and transmission primarily occurred during the incubation period of KHVD. Direct transmission decreased in the symptomatic period of disease. Transmissibility of CyHV-3 and indirect transmission increased during the symptomatic period of disease, correlating with increased viral loads. Additionally, potential virulence-transmission tradeoffs and disease avoidance behaviors relevant to CyHV-3 transmission were identified.
Collapse
Affiliation(s)
- Isaiah E. Tolo
- Minnesota Aquatic Invasive Species Research Center, University of Minnesota, St. Paul, MN 55108, USA; (I.E.T.); (P.G.B.); (S.K.M.)
- Department of Fisheries, Wildlife, and Conservation Biology, College of Food, Agriculture and Natural Resource Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | - Przemyslaw G. Bajer
- Minnesota Aquatic Invasive Species Research Center, University of Minnesota, St. Paul, MN 55108, USA; (I.E.T.); (P.G.B.); (S.K.M.)
- Department of Fisheries, Wildlife, and Conservation Biology, College of Food, Agriculture and Natural Resource Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | - Tiffany M. Wolf
- Department of Veterinary Population Medicine and Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA;
| | - Sunil K. Mor
- Minnesota Aquatic Invasive Species Research Center, University of Minnesota, St. Paul, MN 55108, USA; (I.E.T.); (P.G.B.); (S.K.M.)
- Department of Veterinary Population Medicine and Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA;
| | - Nicholas B. D. Phelps
- Minnesota Aquatic Invasive Species Research Center, University of Minnesota, St. Paul, MN 55108, USA; (I.E.T.); (P.G.B.); (S.K.M.)
- Department of Fisheries, Wildlife, and Conservation Biology, College of Food, Agriculture and Natural Resource Sciences, University of Minnesota, St. Paul, MN 55108, USA
- Correspondence:
| |
Collapse
|
5
|
Su M, Tang R, Wang H, Lu L. Suppression effect of plant-derived berberine on cyprinid herpesvirus 2 proliferation and its pharmacokinetics in Crucian carp (Carassius auratus gibelio). Antiviral Res 2020; 186:105000. [PMID: 33359191 DOI: 10.1016/j.antiviral.2020.105000] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/13/2020] [Accepted: 12/16/2020] [Indexed: 01/04/2023]
Abstract
Cyprinid herpesvirus 2 (CyHV-2), which infects silver crucian carp including goldfish (Carassius auratus auratus) and Crucian carp (Carassius auratus gibelio) with high mortality, is an emerging viral pathogen worldwide. Previous studies showed that berberine (BBR), a bioactive plant-derived alkaloid, demonstrated potential antiviral actions against many different viruses. Here, we assessed the effect of berberine hydrochloride (BBH) on the replication of CyHV-2 in vitro and in vivo. Cytotoxicity assay indicated that 5-25 μg/mL BBH was non-toxic to the RyuF-2 cells. In viral inhibition assays, real time PCR was employed to titrate the genomic copy number of progeny virus, real time RT-PCR was applied to monitor the transcriptional levels of viral genes, and Western blot analysis was performed to detect the synthetic levels of viral proteins. The results demonstrated that BBH systematically impedes the viral gene transcription and suppressed the replication of CyHV-2 in RyuF-2 cells. In animal challenge test, BBH was confirmed to protect Crucian carps from CyHV-2 infection in a dose-dependent manner, which was supported by suppressed viral replication levels, reduced viral pathogenesis and higher survival rates. Furthermore, pharmacokinetics data of BBH in Crucian carp revealed its rapid absorption (Tmax of 1.5 h), suitable plasma half-life (t1/2z/h of 7-12 h depending on oral dosage), and dose-dependent drug exposure properties following oral administration (revealed by AUC0-t values). These findings shed light on repurposing BBH to treat CyHV-2 infections in silver crucian carp.
Collapse
Affiliation(s)
- Meizhen Su
- National Pathogen Collection Center for Aquatic Animals, 201306, Shanghai, PR China
| | - Ruizhe Tang
- National Pathogen Collection Center for Aquatic Animals, 201306, Shanghai, PR China
| | - Hao Wang
- Key Laboratory of Agriculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China
| | - Liqun Lu
- National Pathogen Collection Center for Aquatic Animals, 201306, Shanghai, PR China.
| |
Collapse
|
6
|
Tang R, Lu L, Wang B, Yu J, Wang H. Identification of the Immediate-Early Genes of Cyprinid Herpesvirus 2. Viruses 2020; 12:v12090994. [PMID: 32906668 PMCID: PMC7552009 DOI: 10.3390/v12090994] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/17/2022] Open
Abstract
Cyprinid herpesvirus 2 (CyHV-2), which infects goldfish and crucian carp causing high mortality, is an emerging viral pathogen worldwide. The genome of CyHV-2 is large and comprises double-stranded DNA, including several genes similar to cyprinid herpesvirus 1, ictalurid herpesvirus-1, cyprinid herpesvirus 3, and ranid herpesvirus-1. Genes of DNA viruses are expressed in three temporal phases: immediate-early (IE), early (E), and late (L) genes. Viral IE genes initiate transcription as soon as the virus enters the host, without viral DNA replication. IE gene products enable the efficient expression of E and L genes or regulate the host to initiate virus replication. In the present study, five IE genes of CyHV-2 were identified, including open reading frame (ORF)54, ORF121, ORF141, ORF147, and ORF155. Time course analysis and reverse transcription polymerase chain reaction confirmed five IE genes, thirty-four E genes, and thirty-nine L genes. In addition, all 150 ORFs identified in the CyHV-2 genome are transcribed, and are expressed in chronological order, similar to other herpesviruses. This study is the first to identify the IE genes of CyHV-2, which will provide more information for viral molecular characterization.
Collapse
Affiliation(s)
- Ruizhe Tang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; (R.T.); (L.L.)
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture Shanghai Ocean University, Shanghai 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Liqun Lu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; (R.T.); (L.L.)
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture Shanghai Ocean University, Shanghai 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Beiyang Wang
- China Society of Fisheries, Beijing 100000, China; (B.W.); (J.Y.)
| | - Jiao Yu
- China Society of Fisheries, Beijing 100000, China; (B.W.); (J.Y.)
| | - Hao Wang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; (R.T.); (L.L.)
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Correspondence: ; Tel.: +86-021-6190-0453
| |
Collapse
|
7
|
Gotesman M, Menanteau-Ledouble S, Saleh M, Bergmann SM, El-Matbouli M. A new age in AquaMedicine: unconventional approach in studying aquatic diseases. BMC Vet Res 2018; 14:178. [PMID: 29879957 PMCID: PMC5992843 DOI: 10.1186/s12917-018-1501-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/24/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Marine and aquaculture industries are important sectors of the food production and global trade. Unfortunately, the fish food industry is challenged with a plethora of infectious pathogens. The freshwater and marine fish communities are rapidly incorporating novel and most up to date techniques for detection, characterization and treatment strategies. Rapid detection of infectious diseases is important in preventing large disease outbreaks. MAIN TEXT One hundred forty-six articles including reviews papers were analyzed and their conclusions evaluated in the present paper. This allowed us to describe the most recent development research regarding the control of diseases in the aquatic environment as well as promising avenues that may result in beneficial developments. For the characterization of diseases, traditional sequencing and histological based methods have been augmented with transcriptional and proteomic studies. Recent studies have demonstrated that transcriptional based approaches using qPCR are often synergistic to expression based studies that rely on proteomic-based techniques to better understand pathogen-host interactions. Preventative therapies that rely on prophylactics such as vaccination with protein antigens or attenuated viruses are not always feasible and therefore, the development of therapies based on small nucleotide based medicine is on the horizon. Of those, RNAi or CRISPR/Cas- based therapies show great promise in combating various types of diseases caused by viral and parasitic agents that effect aquatic and fish medicine. CONCLUSIONS In our modern times, when the marine industry has become so vital for feed and economic stability, even the most extreme alternative treatment strategies such as the use of small molecules or even the use of disease to control invasive species populations should be considered.
Collapse
Affiliation(s)
- Michael Gotesman
- Department of Biology, New York City College of Technology of the City University of New York, Brooklyn, New York, USA
| | - Simon Menanteau-Ledouble
- Clinical Division of Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Mona Saleh
- Clinical Division of Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Sven M Bergmann
- Institute of Infectology, Friedrich-Loffler-Institut (FLI), Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria.
| |
Collapse
|
8
|
Reichert M, Bergmann SM, Hwang J, Buchholz R, Lindenberger C. Antiviral activity of exopolysaccharides from Arthrospira platensis against koi herpesvirus. JOURNAL OF FISH DISEASES 2017; 40:1441-1450. [PMID: 28422294 DOI: 10.1111/jfd.12618] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 06/07/2023]
Abstract
Although koi herpesvirus (KHV) has a history of causing severe economic losses in common carp and koi farms, there are still no treatments available on the market. Thus, the aim of this study was to test exopolysaccharides (EPS) for its antiviral activity against KHV, by monitoring inhibition and cytotoxic effects in common carp brain cells. These substances can be easily extracted from extracellular algae supernatant and were identified as groups of sulphated polysaccharides. In order to reach this aim, Arthrospira platensis, which is well known for its antiviral activity of intra- and extracellular compounds towards mammalian herpesviruses, was investigated as standard organism and compared to commercial antiviral drug, ganciclovir, which inhibits the viral DNA polymerization. The antiviral activity of polysaccharides of A. platensis against KHV was confirmed in vitro using qualitative assessment of KHV life cycle genes, and it was found by RT-PCR that EPS, applied at a concentration of >18 μg mL-1 and a multiplicity of infection (MOI) of 0.45 of KHV, suppressed the viral replication in common carp brain (CCB) cells even after 22 days post-infection, entirely. Further, this study presents first data indicating an enormous potential using polysaccharides as an additive for aquacultures to lower or hinder the spread of the KHV and koi herpesvirus disease (KHVD) in future.
Collapse
Affiliation(s)
- M Reichert
- Friedrich-Alexander Universität Erlangen-Nürnberg, Busan, Korea
| | - S M Bergmann
- Friedrich-Loeffler-Institut (FLI), Greifswald-Insel Riems, Germany
| | - J Hwang
- National Fisheries Research and Development Institute (NFRDI), Busan, Korea
| | - R Buchholz
- Friedrich-Alexander Universität Erlangen-Nürnberg, Busan, Korea
| | - C Lindenberger
- Friedrich-Alexander Universität Erlangen-Nürnberg, Busan, Korea
| |
Collapse
|
9
|
Monaghan SJ, Bergmann SM, Thompson KD, Brown L, Herath T, Del-Pozo J, Adams A. Ultrastructural analysis of sequential cyprinid herpesvirus 3 morphogenesis in vitro. JOURNAL OF FISH DISEASES 2017; 40:1041-1054. [PMID: 28025825 DOI: 10.1111/jfd.12580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/12/2016] [Accepted: 10/13/2016] [Indexed: 06/06/2023]
Abstract
Cyprinid herpesvirus 3 (CyHV-3) is an alloherpesvirus, and it is the aetiological agent of koi herpesvirus disease. Although the complex morphogenic stages of the replication cycle of CyHV-3 were shown to resemble that of other members of the Herpesvirales, detailed analysis of the sequence and timing of these events was not definitively determined. This study describes these features through a time course using cyprinid cell cultures (KF-1 and CCB) infected with CyHV-3 (KHV isolate, H361) and analysed by transmission electron microscopy. Rapid viral entry was noted, with high levels of intracellular virus within 1-4 h post-infection (hpi). Intranuclear capsid assembly, paracrystalline array formation and primary envelopment of capsids occurred within 4 hpi. Between 1 and 3 days post-infection (dpi), intracytoplasmic secondary envelopment occurred, as well as budding of infectious virions at the plasma membrane. At 5-7 dpi, the cytoplasm contained cytopathic vacuoles, enveloped virions within vesicles, and abundant non-enveloped capsids; also there was frequent nuclear deformation. Several morphological features are suggestive of inefficient viral assembly, with production of non-infectious particles, particularly in KF-1 cells. The timing of this alloherpesvirus morphogenesis is similar to other members of the Herpesvirales, but there may be possible implications of using different cell lines for CyHV-3 propagation.
Collapse
Affiliation(s)
- S J Monaghan
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, UK
| | - S M Bergmann
- Friedrich-Loeffler-Institut, Greifswald, Insel-Riems, Germany
| | - K D Thompson
- Moredun Research Institute, Pentlands Science Park, Midlothian, UK
| | - L Brown
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, UK
| | - T Herath
- Department of Animal Production, Welfare and Veterinary Sciences, Harper Adams University, Newport, UK
| | - J Del-Pozo
- The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - A Adams
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, UK
| |
Collapse
|
10
|
Cabon J, Louboutin L, Castric J, Bergmann S, Bovo G, Matras M, Haenen O, Olesen NJ, Morin T. Validation of a serum neutralization test for detection of antibodies specific to cyprinid herpesvirus 3 in infected common and koi carp (Cyprinus carpio). JOURNAL OF FISH DISEASES 2017; 40:687-701. [PMID: 27716953 DOI: 10.1111/jfd.12550] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/13/2016] [Accepted: 07/18/2016] [Indexed: 05/18/2023]
Abstract
Cyprinid herpesvirus 3 (CyHV-3) is the aetiological agent of a serious infective, notifiable disease affecting common carp and varieties. In survivors, infection is generally characterized by a subclinical latency phase with restricted viral replication. The CyHV-3 genome is difficult to detect in such carrier fish that represent a potential source of dissemination if viral reactivation occurs. In this study, the analytical and diagnostic performance of an alternative serum neutralization (SN) method based on the detection of CyHV-3-specific antibodies was assessed using 151 serum or plasma samples from healthy and naturally or experimentally CyHV-3-infected carp. French CyHV-3 isolate 07/108b was neutralized efficiently by sera from carp infected with European, American and Taiwanese CyHV-3 isolates, but no neutralization was observed using sera specific to other aquatic herpesviruses. Diagnostic sensitivity, diagnostic specificity and repeatability of 95.9%, 99.0% and 99.3%, respectively, were obtained, as well as a compliance rate of 89.9% in reproducibility testing. Neutralizing antibodies were steadily detected in infected carp subjected to restrictive or permissive temperature variations over more than 25 months post-infection. The results suggest that this non-lethal diagnostic test could be used in the future to improve the epidemiological surveillance and control of CyHV-3 disease.
Collapse
Affiliation(s)
- J Cabon
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané Laboratory, Viral Fish Pathology Unit, Université Bretagne Loire, Plouzané, France
| | - L Louboutin
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané Laboratory, Viral Fish Pathology Unit, Université Bretagne Loire, Plouzané, France
| | - J Castric
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané Laboratory, Viral Fish Pathology Unit, Université Bretagne Loire, Plouzané, France
| | - S Bergmann
- Friedrich Loeffler Institut (FLI), Insel Riems, Institute of Infectiology, Greifswald, Germany
| | - G Bovo
- Fish Virology Department, Istituto Zooprofilattico Sperimentale delle Venezie (IZS-Ve), Legnaro, Padova, Italy
| | - M Matras
- Department of Fish Diseases, National Veterinary Research Institute (NVRI) in Pulawy, Pulawy, Poland
| | - O Haenen
- Central Veterinary Institute (CVI) of WUR, NRL for Fish, Shellfish and Crustacean Diseases, Lelystad, The Netherlands
| | - N J Olesen
- Technical University of Denmark (DTU), National Veterinary Institute, Frederiksberg C, Denmark
| | - T Morin
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané Laboratory, Viral Fish Pathology Unit, Université Bretagne Loire, Plouzané, France
| |
Collapse
|
11
|
Neave MJ, Sunarto A, McColl KA. Transcriptomic analysis of common carp anterior kidney during Cyprinid herpesvirus 3 infection: Immunoglobulin repertoire and homologue functional divergence. Sci Rep 2017; 7:41531. [PMID: 28148967 PMCID: PMC5288646 DOI: 10.1038/srep41531] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/20/2016] [Indexed: 12/11/2022] Open
Abstract
Cyprinid herpesvirus 3 (CyHV-3) infects koi and common carp and causes widespread mortalities. While the virus is a significant concern for aquaculture operations in many countries, in Australia the virus may be a useful biocontrol agent for pest carp. However, carp immune responses to CyHV-3, and the molecular mechanisms underpinning resistance, are not well understood. Here we used RNA-Seq on carp during different phases of CyHV-3 infection to detect the gene expression dynamics of both host and virus simultaneously. During acute CyHV-3 infection, the carp host modified the expression of genes involved in various immune systems and detoxification pathways. Moreover, the activated pathways were skewed toward humoral immune responses, which may have been influenced by the virus itself. Many immune-related genes were duplicated in the carp genome, and often these were expressed differently across the infection phases. Of particular interest were two interleukin-10 homologues that were not expressed synchronously, suggesting neo- or sub-functionalization. The carp immunoglobulin repertoire significantly diversified during active CyHV-3 infection, which was followed by the selection of high-affinity B-cells. This is indicative of a developing adaptive immune response, and is the first attempt to use RNA-Seq to understand this process in fish during a viral infection.
Collapse
Affiliation(s)
- Matthew J. Neave
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, VIC 3220, Australia
| | - Agus Sunarto
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, VIC 3220, Australia
- AMAFRAD Centre for Fisheries Research and Development, Fish Health Research Laboratory, Jakarta 12540, Indonesia
| | - Kenneth A. McColl
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, VIC 3220, Australia
| |
Collapse
|
12
|
Identification and expression analysis of cellular and viral microRNAs in CyHV3-infected KCF-1 cells. Gene 2016; 592:154-163. [PMID: 27476971 DOI: 10.1016/j.gene.2016.07.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/22/2016] [Accepted: 07/26/2016] [Indexed: 11/22/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs with approximately 22 nucleotides (nt) that are encoded by a diverse range of metazoan eukaryotes, plants and viruses. CyHV-3 (cyprinid herpesvirus-3) is a member of the Alloherpesviridae virus family and has caused severe economic losses for the common carp and koi carp fishery industries. In this study, a total of 15,987,652 clean reads were generated from a cDNA library of CyHV-3-infected KCF-1 (koi caudal fin) cells using high-throughput sequencing technology. Following annotation and secondary structure prediction, 28 miRNAs were identified as novel candidate miRNAs encoded by common carp (Cyprinus carpio), and seven miRNAs were shown to be encoded by CyHV-3. Next, 19 host miRNAs and seven viral miRNAs were validated by stem-loop real-time PCR. Northern blot analysis confirmed the presence of 14 host miRNAs and five CyHV-3-encoded novel miRNAs. The results of this study expand the knowledge of common carp and CyHV-3 microRNAs and provide a useful theoretical foundation for further study of CyHV-3.
Collapse
|
13
|
Wang H, Xu L, Lu L. Detection of cyprinid herpesvirus 2 in peripheral blood cells of silver crucian carp, Carassius auratus gibelio (Bloch), suggests its potential in viral diagnosis. JOURNAL OF FISH DISEASES 2016; 39:155-162. [PMID: 25630360 DOI: 10.1111/jfd.12340] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/05/2014] [Accepted: 11/18/2014] [Indexed: 06/04/2023]
Abstract
Epidemics caused by cyprinid herpesvirus 2 (CyHV-2) in domestic cyprinid species have been reported in both European and Asian countries. Although the mechanisms remain unknown, acute CyHV-2 infections generally result in high mortality, and the surviving carps become chronic carriers displaying no external clinical signs. In this study, in situ hybridization analysis showed that CyHV-2 tended to infect peripheral blood cells during either acute or chronic infections in silver crucian carp, Carassius auratus gibelio (Bloch). Laboratory challenge experiments coupled with real-time PCR quantification assays further indicated that steady-state levels of the viral genomic copy number in fish serum exhibited a typical 'one-step' growth curve post-viral challenge. Transcriptional expression of open reading frames (ORF) 121, which was selected due to its highest transcriptional levels in almost all tested tissues, was monitored to represent the replication kinetics of CyHV-2 in peripheral blood cells. Similar kinetic curve of active viral gene transcription in blood cells was obtained as that of serum viral load, indicating that CyHV-2 replicated in peripheral blood cells as well as in other well-characterized tissues. This study should pave the way for designing non-invasive and cost-effective serum diagnostic methods for quick detection of CyHV-2 infection.
Collapse
Affiliation(s)
- H Wang
- National Pathogen Collection Center for Aquatic Animals, Key Laboratory of Aquatic Genetic Resources of Ministry of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Lj Xu
- National Pathogen Collection Center for Aquatic Animals, Key Laboratory of Aquatic Genetic Resources of Ministry of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Lq Lu
- National Pathogen Collection Center for Aquatic Animals, Key Laboratory of Aquatic Genetic Resources of Ministry of Aquaculture, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
14
|
Monaghan SJ, Thompson KD, Bron JE, Bergmann SM, Jung TS, Aoki T, Muir KF, Dauber M, Reiche S, Chee D, Chong SM, Chen J, Adams A. Expression of immunogenic structural proteins of cyprinid herpesvirus 3 in vitro assessed using immunofluorescence. Vet Res 2016; 47:8. [PMID: 26742989 PMCID: PMC4705813 DOI: 10.1186/s13567-015-0297-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/10/2015] [Indexed: 12/21/2022] Open
Abstract
Cyprinid herpesvirus 3 (CyHV-3), also called koi herpesvirus (KHV), is the aetiological agent of a fatal disease in carp and koi (Cyprinus carpio L.), referred to as koi herpesvirus disease. The virus contains at least 40 structural proteins, of which few have been characterised with respect to their immunogenicity. Indirect immunofluorescence assays (IFAs) using two epitope-specific monoclonal antibodies (MAbs) were used to examine the expression kinetics of two potentially immunogenic and diagnostically relevant viral antigens, an envelope glycoprotein and a capsid-associated protein. The rate of expression of these antigens was determined following a time-course of infection in two CyHV-3 susceptible cell lines. The results were quantified using an IFA, performed in microtitre plates, and image analysis was used to analyse confocal micrographs, enabling measurement of differential virus-associated fluorescence and nucleus-associated fluorescence from stacks of captured scans. An 8-tenfold increase in capsid-associated protein expression was observed during the first 5 days post-infection compared to a ≤ 2-fold increase in glycoprotein expression. A dominant protein of ~100 kDa reacted with the capsid-associated MAb (20F10) in western blot analysis. This band was also recognised by sera obtained from carp infected with CyHV-3, indicating that this capsid-associated protein is produced in abundance during infection in vitro and is immunogenic to carp. Mass spectrometry carried out on this protein identified it as a previously uncharacterised product of open reading frame 84. This abundantly expressed and immunogenic capsid-associated antigen may be a useful candidate for KHV serological diagnostics.
Collapse
Affiliation(s)
- Sean J Monaghan
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| | - Kim D Thompson
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK. .,Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, EH26 0PZ, UK.
| | - James E Bron
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| | - Sven M Bergmann
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Infectology, Greifswald, Insel-Riems, Germany.
| | - Tae S Jung
- Laboratory of Aquatic Animal Diseases, Institute of Animal Science, College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongnam, South Korea.
| | - Takashi Aoki
- Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, 513, Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan.
| | - K Fiona Muir
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| | - Malte Dauber
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Infectology, Greifswald, Insel-Riems, Germany.
| | - Sven Reiche
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Infectology, Greifswald, Insel-Riems, Germany.
| | - Diana Chee
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK. .,Aquatic Animal Health Section, Animal Health Laboratory Department, Laboratories Group, Agri-Food and Veterinary Authority of Singapore, Singapore, Singapore.
| | - Shin M Chong
- Aquatic Animal Health Section, Animal Health Laboratory Department, Laboratories Group, Agri-Food and Veterinary Authority of Singapore, Singapore, Singapore.
| | - Jing Chen
- Virology Section, Animal Health Laboratory Department, Laboratories Group, Agri-Food and Veterinary Authority of Singapore, Singapore, Singapore.
| | - Alexandra Adams
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| |
Collapse
|
15
|
Yi Y, Qi H, Yuan J, Wang R, Weng S, He J, Dong C. Functional characterization of viral tumor necrosis factor receptors encoded by cyprinid herpesvirus 3 (CyHV3) genome. FISH & SHELLFISH IMMUNOLOGY 2015; 45:757-770. [PMID: 26052019 DOI: 10.1016/j.fsi.2015.05.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 05/15/2015] [Accepted: 05/28/2015] [Indexed: 06/04/2023]
Abstract
Cyprinid herpesvirus 3 (CyHV3) is a large double-stranded DNA virus of Alloherpesviridae family in the order Herpesvirales. It causes significant morbidity and mortality in common carp and its ornamental koi variety, and threatens the aquaculture industries worldwide. Mimicry of cytokines and cytokine receptors is a particular strategy for large DNA viruses in modulating the host immune response. Here, we report the identification and characterization of two novel viral homologues of tumor necrosis factor receptor (TNFR) encoded by CyHV3-ORF4 and -ORF12, respectively. CyHV3-ORF4 was identified as a homologue of HVEM and CyHV3-ORF12 as a homologue of TNFRSF1. Overexpression of ORF4 and ORF12 in zebrafish embryos results in embryonic lethality, morphological defects and increased apoptosis. Although we failed to identify any interaction between the two vTNFRs and their potential ligands in zebrafish TNF superfamily by yeast two-hybrid system, the expression of some genes in TNF superfamily or TNFR superfamily were mis-regulated in ORF4 or ORF12-overexpressing embryos, especially the death receptor zHDR and its cognate ligand DL1b. Further studies showed that the apoptosis induced by the both CyHV3 vTNFRs is mainly activated through the intrinsic apoptotic pathway and requires the crosstalk between the intrinsic and extrinsic apoptotic pathway. Additionally, using RT-qPCR and Western blot assays, the expression patterns of the both vTNFRs were also analyzed during CyHV3 productive infection. Collectively, this is the first functional study of two unique vTNFRs encoded by a herpesvirus infecting non-mammalian vertebrates, which may provide novel insights into viral immune regulation mechanism and the pathogenesis of CyHV3 infection.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Carps
- Cell Line
- Female
- Fish Diseases/genetics
- Fish Diseases/metabolism
- Fish Diseases/virology
- Gene Expression Regulation
- Herpesviridae/genetics
- Herpesviridae/physiology
- Herpesviridae Infections/genetics
- Herpesviridae Infections/metabolism
- Herpesviridae Infections/veterinary
- Herpesviridae Infections/virology
- Male
- Open Reading Frames
- Receptors, Tumor Necrosis Factor, Member 14/chemistry
- Receptors, Tumor Necrosis Factor, Member 14/genetics
- Receptors, Tumor Necrosis Factor, Member 14/metabolism
- Receptors, Tumor Necrosis Factor, Type I/chemistry
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Sequence Alignment/veterinary
- Viral Proteins/chemistry
- Viral Proteins/genetics
- Viral Proteins/metabolism
- Zebrafish
Collapse
Affiliation(s)
- Yang Yi
- MOE Key Laboratory of Aquatic Food Safety/State Key Laboratory for Bio-control, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Hemei Qi
- MOE Key Laboratory of Aquatic Food Safety/State Key Laboratory for Bio-control, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Jimin Yuan
- MOE Key Laboratory of Aquatic Food Safety/State Key Laboratory for Bio-control, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Rui Wang
- MOE Key Laboratory of Aquatic Food Safety/State Key Laboratory for Bio-control, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Shaoping Weng
- MOE Key Laboratory of Aquatic Food Safety/State Key Laboratory for Bio-control, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Jianguo He
- MOE Key Laboratory of Aquatic Food Safety/State Key Laboratory for Bio-control, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, People's Republic of China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, People's Republic of China
| | - Chuanfu Dong
- MOE Key Laboratory of Aquatic Food Safety/State Key Laboratory for Bio-control, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, People's Republic of China.
| |
Collapse
|
16
|
Ma YP, Liu ZX, Hao L, Ma JY, Liang ZL, Li YG, Ke H. Analysing codon usage bias of cyprinid herpesvirus 3 and adaptation of this virus to the hosts. JOURNAL OF FISH DISEASES 2015; 38:665-673. [PMID: 25491502 DOI: 10.1111/jfd.12316] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 08/31/2014] [Accepted: 09/04/2014] [Indexed: 06/04/2023]
Abstract
The codon usage patterns of open reading frames (ORFs) in cyprinid herpesvirus 3 (CyHV-3) have been investigated in this study. The high correlation between GC12 % and GC3 % suggests that mutational pressure rather than natural selection is the main factor that determines the codon usage and base component in the CyHV-3, while mutational pressure effect results from the high correlation between GC3 % and the first principal axis of principle component analysis (Axis 1) on the relative synonymous codon usage (RSCU) value of the viral functional genes. However, the interaction between the absolute codon usage bias and GC3 % suggests that other selections take part in the formation of codon usage, except for the mutational pressure. It is noted that the similarity degree of codon usage between the CyHV-3 and goldfish, Carassius auratus (L.), is higher than that between the virus and common carp, Cyprinus carpio L., suggesting that the goldfish plays a more important role than the common carp in codon usage pattern of the CyHV-3. The study of codon usage in CyHV-3 can provide some evidence about the molecular evolution of the virus. It can also enrich our understanding about the relationship between the CyHV-3 and its hosts by analysing their codon usage patterns.
Collapse
Affiliation(s)
- Y P Ma
- Guangdong Public Laboratory of Veterinary Public Health, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Z X Liu
- Guangdong Public Laboratory of Veterinary Public Health, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - L Hao
- Guangdong Public Laboratory of Veterinary Public Health, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - J Y Ma
- Guangdong Public Laboratory of Veterinary Public Health, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Z L Liang
- Guangdong Public Laboratory of Veterinary Public Health, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Y G Li
- South China Agricultural University, Guangzhou, China
| | - H Ke
- Guangdong Public Laboratory of Veterinary Public Health, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
17
|
Monaghan SJ, Thompson KD, Adams A, Kempter J, Bergmann SM. Examination of the early infection stages of koi herpesvirus (KHV) in experimentally infected carp, Cyprinus carpio L. using in situ hybridization. JOURNAL OF FISH DISEASES 2015; 38:477-489. [PMID: 24925228 DOI: 10.1111/jfd.12260] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/20/2014] [Accepted: 03/20/2014] [Indexed: 06/03/2023]
Abstract
Koi herpesvirus (KHV) causes a highly infectious disease afflicting common carp and koi, Cyprinus carpio L. Various molecular and antibody-based detection methods have been used to elucidate the rapid attachment and dissemination of the virus throughout carp tissues, facilitating ongoing development of effective diagnostic approaches. In situ hybridization (ISH) was used here to determine the target tissues of KHV during very early infection, after infecting carp with a highly virulent KHV isolate. Analysis of paraffin-embedded tissues (i.e. gills, skin, spleen, kidney, gut, liver and brain) during the first 8 h and following 10 days post-infection (hpi; dpi) revealed positive signals in skin mucus, gills and gut sections after only 1 hpi. Respiratory epithelial cells were positive as early as 2 hpi. Viral DNA was also detected within blood vessels of various tissues early in the infection. Notable increases in signal abundance were observed in the gills and kidney between 5 and 10 dpi, and viral DNA was detected in all tissues except brain. This study suggests that the gills and gut play an important role in the early pathogenesis of this Alloherpesvirus, in addition to skin, and demonstrates ISH as a useful diagnostic tool for confirmation of acutely infected carp.
Collapse
Affiliation(s)
- S J Monaghan
- Aquatic Vaccine Unit, School of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling, Scotland
| | | | | | | | | |
Collapse
|
18
|
Donohoe OH, Henshilwood K, Way K, Hakimjavadi R, Stone DM, Walls D. Identification and Characterization of Cyprinid Herpesvirus-3 (CyHV-3) Encoded MicroRNAs. PLoS One 2015; 10:e0125434. [PMID: 25928140 PMCID: PMC4416013 DOI: 10.1371/journal.pone.0125434] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/17/2015] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs involved in post-transcriptional gene regulation. Some viruses encode their own miRNAs and these are increasingly being recognized as important modulators of viral and host gene expression. Cyprinid herpesvirus 3 (CyHV-3) is a highly pathogenic agent that causes acute mass mortalities in carp (Cyprinus carpio carpio) and koi (Cyprinus carpio koi) worldwide. Here, bioinformatic analyses of the CyHV-3 genome suggested the presence of non-conserved precursor miRNA (pre-miRNA) genes. Deep sequencing of small RNA fractions prepared from in vitro CyHV-3 infections led to the identification of potential miRNAs and miRNA–offset RNAs (moRNAs) derived from some bioinformatically predicted pre-miRNAs. DNA microarray hybridization analysis, Northern blotting and stem-loop RT-qPCR were then used to definitively confirm that CyHV-3 expresses two pre-miRNAs during infection in vitro. The evidence also suggested the presence of an additional four high-probability and two putative viral pre-miRNAs. MiRNAs from the two confirmed pre-miRNAs were also detected in gill tissue from CyHV-3-infected carp. We also present evidence that one confirmed miRNA can regulate the expression of a putative CyHV-3-encoded dUTPase. Candidate homologues of some CyHV-3 pre-miRNAs were identified in CyHV-1 and CyHV-2. This is the first report of miRNA and moRNA genes encoded by members of the Alloherpesviridae family, a group distantly related to the Herpesviridae family. The discovery of these novel CyHV-3 genes may help further our understanding of the biology of this economically important virus and their encoded miRNAs may have potential as biomarkers for the diagnosis of latent CyHV-3.
Collapse
Affiliation(s)
- Owen H. Donohoe
- Marine Institute, Rinville, Oranmore, Co. Galway, Ireland
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| | | | - Keith Way
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Weymouth, Dorset, the United Kingdom
| | - Roya Hakimjavadi
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| | - David M. Stone
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Weymouth, Dorset, the United Kingdom
| | - Dermot Walls
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
- * E-mail:
| |
Collapse
|
19
|
Boutier M, Ronsmans M, Rakus K, Jazowiecka-Rakus J, Vancsok C, Morvan L, Peñaranda MMD, Stone DM, Way K, van Beurden SJ, Davison AJ, Vanderplasschen A. Cyprinid Herpesvirus 3: An Archetype of Fish Alloherpesviruses. Adv Virus Res 2015; 93:161-256. [PMID: 26111587 DOI: 10.1016/bs.aivir.2015.03.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The order Herpesvirales encompasses viruses that share structural, genetic, and biological properties. However, members of this order infect hosts ranging from molluscs to humans. It is currently divided into three phylogenetically related families. The Alloherpesviridae family contains viruses infecting fish and amphibians. There are 12 alloherpesviruses described to date, 10 of which infect fish. Over the last decade, cyprinid herpesvirus 3 (CyHV-3) infecting common and koi carp has emerged as the archetype of fish alloherpesviruses. Since its first description in the late 1990s, this virus has induced important economic losses in common and koi carp worldwide. It has also had negative environmental implications by affecting wild carp populations. These negative impacts and the importance of the host species have stimulated studies aimed at developing diagnostic and prophylactic tools. Unexpectedly, the data generated by these applied studies have stimulated interest in CyHV-3 as a model for fundamental research. This review intends to provide a complete overview of the knowledge currently available on CyHV-3.
Collapse
Affiliation(s)
- Maxime Boutier
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Maygane Ronsmans
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Krzysztof Rakus
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Joanna Jazowiecka-Rakus
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Catherine Vancsok
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Léa Morvan
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Ma Michelle D Peñaranda
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - David M Stone
- The Centre for Environment, Fisheries and Aquaculture Science, Weymouth Laboratory, Weymouth, Dorset, United Kingdom
| | - Keith Way
- The Centre for Environment, Fisheries and Aquaculture Science, Weymouth Laboratory, Weymouth, Dorset, United Kingdom
| | - Steven J van Beurden
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Andrew J Davison
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Alain Vanderplasschen
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium.
| |
Collapse
|
20
|
Kawato Y, Yuasa K, Shimahara Y, Oseko N. Detection and application of circular (concatemeric) DNA as an indicator of koi herpesvirus infection. DISEASES OF AQUATIC ORGANISMS 2014; 112:37-44. [PMID: 25392041 DOI: 10.3354/dao02785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Herpesviruses form a long continuous DNA molecule, or head-to-tail concatemer, as a replicating intermediate in the host. In this study, we developed a DNA-specific PCR assay for detecting the infection stage of koi herpesvirus (KHV) based on the presence of this 'endless' DNA. The 295 kbp double-stranded DNA KHV genome consists of a 251 kbp unique long region and two 22 kbp direct repeats (DRL and DRR) at each genome terminus. We designed a new primer set (DR primer set) based on the DR region spanning the presumed circular or concatemeric junction. Using the DR primer set, a PCR product was obtained from KHV-infected common carp brain (CCB) cells, but not from the virus-infected cell culture supernatant, implying that the PCR assay could detect intracellular virus in the host. The synthesis of a presumptive circular or concatemeric genome in virus-infected CCB cells was examined in a time-course experiment together with viral mRNA of the terminase gene, copy numbers of the viral genome, and infectious viral titer. The mRNA was first detected in the cells at 6 h post-inoculation (hpi), and the copy number of viral genome in the cells started to increase at 12 hpi. Subsequently, circular or concatemeric DNA was detected in the cells at 18 hpi, and progeny virus was detected in the cell culture supernatant at 24 hpi. These findings suggest that detection of the circular or concatemeric KHV genome with the developed PCR method can be used to determine the stage of KHV infection.
Collapse
Affiliation(s)
- Yasuhiko Kawato
- National Research Institute of Aquaculture, Fisheries Research Agency, Minamiise, Mie 516-0193, Japan
| | | | | | | |
Collapse
|
21
|
Kattlun J, Menanteau-Ledouble S, El-Matbouli M. Non-structural protein pORF 12 of cyprinid herpesvirus 3 is recognized by the immune system of the common carp Cyprinus carpio. DISEASES OF AQUATIC ORGANISMS 2014; 111:269-73. [PMID: 25320039 DOI: 10.3354/dao02793] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cyprinid herpesvirus 3 is an important pathogen and the causative agent of koi herpesvirus disease, which has been associated with mass mortalities in koi and common carp Cyprinus carpio. Currently, the only available commercial vaccine is an attenuated version of the virus. This has led to concerns about its risk to reversion to virulence. Furthermore, the vaccine is currently only available in Israel and the United States. In order to investigate the antigenic profile of the virus, western blot was performed using infected cell culture supernatant and sera from carp that had survived exposure to the virus. Only one antigen could be detected, and mass spectrometry analysis identified the corresponding protein as ORF 12, a putative secreted tumour necrosis factor receptor homologue. In other herpesviruses, such proteins have been associated with the viral infectious process in a number of ways, including the entry into the host cell and the inhibition of apoptosis in infected cells. The reason why only one antigen could be detected during this study is unknown.
Collapse
Affiliation(s)
- Julia Kattlun
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | | | | |
Collapse
|
22
|
Yi Y, Zhang H, Lee X, Weng S, He J, Dong C. Extracellular virion proteins of two Chinese CyHV-3/KHV isolates, and identification of two novel envelope proteins. Virus Res 2014; 191:108-16. [DOI: 10.1016/j.virusres.2014.07.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/28/2014] [Accepted: 07/29/2014] [Indexed: 12/01/2022]
|
23
|
Gotesman M, Abd-Elfattah A, Kattlun J, Soliman H, El-Matbouli M. Investigating the interactions of Cyprinid herpesvirus-3 with host proteins in goldfish Carassius auratus. JOURNAL OF FISH DISEASES 2014; 37:835-41. [PMID: 23998394 DOI: 10.1111/jfd.12172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/23/2013] [Accepted: 07/26/2013] [Indexed: 05/18/2023]
Affiliation(s)
- M Gotesman
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | | | | | | | | |
Collapse
|
24
|
Sunarto A, McColl KA, Crane MSJ, Schat KA, Slobedman B, Barnes AC, Walker PJ. Characteristics of cyprinid herpesvirus 3 in different phases of infection: Implications for disease transmission and control. Virus Res 2014; 188:45-53. [DOI: 10.1016/j.virusres.2014.03.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 03/24/2014] [Accepted: 03/24/2014] [Indexed: 10/25/2022]
|
25
|
Gotesman M, Soliman H, Besch R, El-Matbouli M. In vitro inhibition of Cyprinid herpesvirus-3 replication by RNAi. J Virol Methods 2014; 206:63-6. [PMID: 24893110 PMCID: PMC4106878 DOI: 10.1016/j.jviromet.2014.05.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 05/20/2014] [Accepted: 05/23/2014] [Indexed: 11/13/2022]
Abstract
Cyprinid herpesvirus-3 causes high mortality rates in common and koi carp. siRNAs were designed to target thymidine kinase and DNA polymerase genes in vitro. siRNA targeting DNA polymerase gene was most effective at reducing viral release. The inhibition of viral replication by the siRNAs was quantitated by qPCR.
Cyprinid herpesvirus-3 (CyHV-3) is an etiological agent of a notifiable disease that causes high mortality rates affecting both the common and koi carp Cyprinus carpio L. There is no current treatment strategy to save CyHV-3 infected fish. RNA mediated interference (RNAi) is an emerging strategy used for understanding gene function and is a promising method in developing novel therapeutics and antiviral medications. For this study, the possibility of activating the RNAi pathway by the use of small interfering (si)RNAs was tested to inhibit in vitro viral replication of CyHV-3 in common carp brain (CCB) cells. The siRNAs were designed to target either thymidine kinase (TK) or DNA polymerase (DP) genes, which both code for transcripts involved in DNA replication. The inhibition of viral replication caused by the siRNAs was measured by a reporter gene, termed ORF81. Treatment with siRNA targeting either TK or DP genes reduced the release of viral particles from infected CCB cells. However, siRNA targeting DP was most effective at reducing viral release as measured by qPCR.
Collapse
Affiliation(s)
- Michael Gotesman
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Hatem Soliman
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria; Fish Medicine and Management, Faculty of Veterinary Medicine, University of Assiut, 71515 Assiut, Egypt
| | - Robert Besch
- Clinic and Policlinic for Dermatology and Allergology, Department of Dermatology, Ludwig-Maximilian University, Munich, Germany
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
26
|
Uchii K, Minamoto T, Honjo MN, Kawabata Z. Seasonal reactivation enablesCyprinid herpesvirus 3to persist in a wild host population. FEMS Microbiol Ecol 2013; 87:536-42. [DOI: 10.1111/1574-6941.12242] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 08/29/2013] [Accepted: 10/22/2013] [Indexed: 12/01/2022] Open
Affiliation(s)
- Kimiko Uchii
- Department of General Systems Studies; The University of Tokyo; Meguro Tokyo Japan
- Research Institute for Humanity and Nature; Kita Kyoto Japan
| | - Toshifumi Minamoto
- Research Institute for Humanity and Nature; Kita Kyoto Japan
- Graduate School of Human Development and Environment; Kobe University; Nada Kobe Japan
| | - Mie N. Honjo
- Research Institute for Humanity and Nature; Kita Kyoto Japan
| | | |
Collapse
|
27
|
Ouyang P, Rakus K, van Beurden SJ, Westphal AH, Davison AJ, Gatherer D, Vanderplasschen AF. IL-10 encoded by viruses: a remarkable example of independent acquisition of a cellular gene by viruses and its subsequent evolution in the viral genome. J Gen Virol 2013; 95:245-262. [PMID: 24225498 DOI: 10.1099/vir.0.058966-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Many viruses have evolved strategies to deregulate the host immune system. These strategies include mechanisms to subvert or recruit the host cytokine network. IL-10 is a pleiotropic cytokine that has both immunostimulatory and immunosuppressive properties. However, its key features relate mainly to its capacity to exert potent immunosuppressive effects. Several viruses have been shown to upregulate the expression of cellular IL-10 (cIL-10) with, in some cases, enhancement of infection by suppression of immune functions. Other viruses encode functional orthologues of cIL-10, called viral IL-10s (vIL-10s). The present review is devoted to these virokines. To date, vIL-10 orthologues have been reported for 12 members of the family Herpesviridae, two members of the family Alloherpesviridae and seven members of the family Poxviridae. Study of vIL-10s demonstrated several interesting aspects on the origin and the evolution of these viral genes, e.g. the existence of multiple (potentially up to nine) independent gene acquisition events at different times during evolution, viral gene acquisition resulting from recombination with cellular genomic DNA or cDNA derived from cellular mRNA and the evolution of cellular sequence in the viral genome to restrict the biological activities of the viral orthologues to those beneficial for the virus life cycle. Here, various aspects of the vIL-10s described to date are reviewed, including their genetic organization, protein structure, origin, evolution, biological properties and potential in applied research.
Collapse
Affiliation(s)
- Ping Ouyang
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Krzysztof Rakus
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Steven J van Beurden
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Adrie H Westphal
- Laboratory of Biochemistry, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen UR, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | - Andrew J Davison
- MRC-University of Glasgow Centre for Virus Research, 8 Church Street, Glasgow G11 5JR, UK
| | - Derek Gatherer
- Division of Biomedical & Life Sciences, Lancaster University, Lancaster LA1 4YQ, UK.,MRC-University of Glasgow Centre for Virus Research, 8 Church Street, Glasgow G11 5JR, UK
| | - Alain F Vanderplasschen
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
28
|
Rakus K, Ouyang P, Boutier M, Ronsmans M, Reschner A, Vancsok C, Jazowiecka-Rakus J, Vanderplasschen A. Cyprinid herpesvirus 3: an interesting virus for applied and fundamental research. Vet Res 2013; 44:85. [PMID: 24073814 PMCID: PMC3850573 DOI: 10.1186/1297-9716-44-85] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 09/03/2013] [Indexed: 12/28/2022] Open
Abstract
Cyprinid herpesvirus 3 (CyHV-3), a member of the family Alloherpesviridae is the causative agent of a lethal, highly contagious and notifiable disease in common and koi carp. The economic importance of common and koi carp industries together with the rapid spread of CyHV-3 worldwide, explain why this virus became soon after its isolation in the 1990s a subject of applied research. In addition to its economic importance, an increasing number of fundamental studies demonstrated that CyHV-3 is an original and interesting subject for fundamental research. In this review, we summarized recent advances in CyHV-3 research with a special interest for studies related to host-virus interactions.
Collapse
Affiliation(s)
- Krzysztof Rakus
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, Liège, B-4000, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Gotesman M, Kattlun J, Bergmann SM, El-Matbouli M. CyHV-3: the third cyprinid herpesvirus. DISEASES OF AQUATIC ORGANISMS 2013; 105:163-74. [PMID: 23872859 PMCID: PMC3961040 DOI: 10.3354/dao02614] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Common carp (including ornamental koi carp) Cyprinus carpio L. are ecologically and economically important freshwater fish in Europe and Asia. C. carpio have recently been endangered by a third cyprinid herpesvirus, known as cyprinid herpesvirus-3 (CyHV-3), the etiological agent of koi herpesvirus disease (KHVD), which causes significant morbidity and mortality in koi and common carp. Clinical and pathological signs include epidermal abrasions, excess mucus production, necrosis of gill and internal organs, and lethargy. KHVD has decimated major carp populations in Israel, Indonesia, Taiwan, Japan, Germany, Canada, and the USA, and has been listed as a notifiable disease in Germany since 2005, and by the World Organisation for Animal Health since 2007. KHVD is exacerbated in aquaculture because of the relatively high host stocking density, and CyHV-3 may be concentrated by filter-feeding aquatic organisms. CyHV-3 is taxonomically grouped within the family Alloherpesviridae, can be propagated in a number of cell lines, and is active at a temperature range of 15 to 28°C. Three isolates originating from Japan (KHV-J), USA (KHV-U), and Israel (KHV-I) have been sequenced. CyHV-3 has a 295 kb genome with 156 unique open reading frames and replicates in the cell nucleus, and mature viral particles are 170 to 200 nm in diameter. CyHV-3 can be detected by multiple PCR-based methods and by enzyme-linked immunosorbent assay. Several modes of immunization have been developed for KHVD; however, fish immunized with either vaccine or wild-type virus may become carriers for CyHV-3. There is no current treatment for KHVD.
Collapse
Affiliation(s)
- Michael Gotesman
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Julia Kattlun
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Sven M. Bergmann
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Infectology, Greifswald-Insel Riems, Germany
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
- Corresponding author.
| |
Collapse
|
30
|
Ouyang P, Rakus K, Boutier M, Reschner A, Leroy B, Ronsmans M, Fournier G, Scohy S, Costes B, Wattiez R, Vanderplasschen A. The IL-10 homologue encoded by cyprinid herpesvirus 3 is essential neither for viral replication in vitro nor for virulence in vivo. Vet Res 2013; 44:53. [PMID: 23865540 PMCID: PMC3750702 DOI: 10.1186/1297-9716-44-53] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 06/10/2013] [Indexed: 01/09/2023] Open
Abstract
Cyprinid herpesvirus 3 (CyHV-3), a member of the family Alloherpesviridae, is the causative agent of a lethal disease in common and koi carp. CyHV-3 ORF134 encodes an interleukin-10 (IL-10) homologue. The present study was devoted to this ORF. Transcriptomic analyses revealed that ORF134 is expressed as a spliced gene belonging to the early-late class. Proteomic analyses of CyHV-3 infected cell supernatant demonstrated that the ORF134 expression product is one of the most abundant proteins of the CyHV-3 secretome. To investigate the role of ORF134 in viral replication in vitro and in virulence in vivo, a deleted strain and a derived revertant strain were produced using BAC cloning technologies. The recombinant ORF134 deleted strain replicated in vitro comparably to the parental and the revertant strains. Infection of fish by immersion in water containing the virus induced comparable CyHV-3 disease for the three virus genotypes tested (wild type, deleted and revertant). Quantification of viral DNA by real time TaqMan PCR (in the gills and the kidney) and analysis of carp cytokine expression (in the spleen) by RT-qPCR at different times post-infection did not revealed any significant difference between the groups of fish infected with the three virus genotypes. Similarly, histological examination of the gills and the kidney of infected fish revealed no significant differences between fish infected with ORF134 deleted virus versus fish infected with the control parental or revertant strains. All together, the results of the present study demonstrate that the IL-10 homologue encoded by CyHV-3 is essential neither for viral replication in vitro nor for virulence in common carp.
Collapse
Affiliation(s)
- Ping Ouyang
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases (B43b), Faculty of Veterinary Medicine, University of Liège, Liège, B-4000, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Zalpha domains are a subfamily of the winged helix-turn-helix domains sharing the unique ability to recognize CpG repeats in the left-handed Z-DNA conformation. In vertebrates, domains of this family are found exclusively in proteins that detect foreign nucleic acids and activate components of the antiviral interferon response. Moreover, poxviruses encode the Zalpha domain-containing protein E3L, a well-studied and potent inhibitor of interferon response. Here we describe a herpesvirus Zalpha-domain-containing protein (ORF112) from cyprinid herpesvirus 3. We demonstrate that ORF112 also binds CpG repeats in the left-handed conformation, and moreover, its structure at 1.75 Å reveals the Zalpha fold found in ADAR1, DAI, PKZ, and E3L. Unlike other Zalpha domains, however, ORF112 forms a dimer through a unique domain-swapping mechanism. Thus, ORF112 may be considered a new member of the Z-domain family having DNA binding properties similar to those of the poxvirus E3L inhibitor of interferon response.
Collapse
|
32
|
Hanson L, Dishon A, Kotler M. Herpesviruses that infect fish. Viruses 2011; 3:2160-91. [PMID: 22163339 PMCID: PMC3230846 DOI: 10.3390/v3112160] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 10/15/2011] [Accepted: 10/22/2011] [Indexed: 11/25/2022] Open
Abstract
Herpesviruses are host specific pathogens that are widespread among vertebrates. Genome sequence data demonstrate that most herpesviruses of fish and amphibians are grouped together (family Alloherpesviridae) and are distantly related to herpesviruses of reptiles, birds and mammals (family Herpesviridae). Yet, many of the biological processes of members of the order Herpesvirales are similar. Among the conserved characteristics are the virion structure, replication process, the ability to establish long term latency and the manipulation of the host immune response. Many of the similar processes may be due to convergent evolution. This overview of identified herpesviruses of fish discusses the diseases that alloherpesviruses cause, the biology of these viruses and the host-pathogen interactions. Much of our knowledge on the biology of Alloherpesvirdae is derived from research with two species: Ictalurid herpesvirus 1 (channel catfish virus) and Cyprinid herpesvirus 3 (koi herpesvirus).
Collapse
Affiliation(s)
- Larry Hanson
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Starkville, MS 39759, USA
| | - Arnon Dishon
- KoVax Ltd., P.O. Box 45212, Bynet Build., Har Hotzvim Inds. Pk., Jerusalem 97444, Israel; E-Mail:
| | - Moshe Kotler
- Department of Pathology, Hadassah Medical School, the Hebrew University, Jerusalem 91120, Israel; E-Mail:
- The Lautenberg Center for General and Tumor Immunology, Hadassah Medical School, the Hebrew University, Jerusalem 91120, Israel
| |
Collapse
|