1
|
Li Q, Zhong Z, Yang Y, Qi R, Du H, Zheng X. Effect of sludge-based biochar on the stabilization of Cd in soil: experimental and theoretical studies. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2025; 27:941-948. [PMID: 39865579 DOI: 10.1080/15226514.2025.2457510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Soil heavy metal contamination and sludge disposal have become globally environmental issues problems of great concern. Utilizing sludge pyrolysis to produce biochar for remediating heavy metal-contaminated soil is an effective strategy to solve these two environmental problems. In this study, municipal sewage sludge and papermaking sludge were used as feedstock to prepare co-pyrolyzed biochar, which was then applied to reduce the toxicity of Cd in soil. The results indicated that the application of co-pyrolyzed biochar significantly increased soil pH, CEC, and enzyme activity, while decreasing the content of available Cd in the soil. Following the application of 3% co-pyrolyzed biochar, the proportion of acid-soluble Cd in the soil decreased to below 46%, as the biochar facilitated the conversion of leachable acid-soluble Cd to stable oxidizable and residual forms through precipitation and complexation. The DFT computational results indicate that the aromatics in co-pyrolyzed biochar can adsorb Cd ions through cation-π interactions, while carboxyl, hydroxyl, aldehyde, and amide groups can provide more electrons for the adsorption of Cd ions, resulting in stronger adsorption capacities. The study findings provide a feasible solution for the resourceful treatment of sludge and the remediation of heavy metal-contaminated soil.
Collapse
Affiliation(s)
- Qian Li
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, China
| | - Zhaoping Zhong
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, China
| | - Yuxuan Yang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, China
| | - Renzhi Qi
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, China
| | - Haoran Du
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, China
| | - Xiang Zheng
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, China
| |
Collapse
|
2
|
He T, Luo Z, Jin B. Hydrothermal synthesized kaolin group lamellar/spongy aluminosilicates for enhanced lead vapor capture. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135509. [PMID: 39167927 DOI: 10.1016/j.jhazmat.2024.135509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
Developing high-temperature-resistant adsorbents with superior porous properties is crucial for safely disposing of heavy metal-containing solid waste via pyrolysis. We synthesized aluminosilicates hydrothermally and observed that acidic conditions, especially HCl (pH=2.6), favored sponge-like mineral (NC2.6) formation with a specific surface area of 500.31 m²/g and pore volume of 0.986 cm³ /g, while alkaline conditions (pH=12.0) promoted spherical particle growth. NC2.6 exhibited higher adsorption capacity compared to kaolinite and halloysite in the PbCl2 vapor adsorption, reaching a maximum of 137.68 mg/g at 700 ℃ (75.91 % stable). We examined the effect of CO2 and H2O on adsorption efficiency and explored the mechanisms using DFT and GCMC simulations. From GCMC results, CO2 negatively impacted PbCl2 adsorption due to competitive adsorption, while H2O increased adsorption content (144.24 mg/g at 700 ℃) by converting PbCl2 into oxides. DFT revealed the presence of CO2 enhanced the adsorption stability of PbCl2 via the formation of covalent bonds between O in CO2 and Pb, and active O on the aluminosilicate surface. H2O increased PbCl2 adsorption energy, as O in H2O occupied an active Al that originally formed a covalent bond with Cl, while the H formed a weak hydrogen bond with this Cl.
Collapse
Affiliation(s)
- Tengfei He
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, Jiangsu 210096, China
| | - Zifeng Luo
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, Jiangsu 210096, China
| | - Baosheng Jin
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, Jiangsu 210096, China.
| |
Collapse
|
3
|
Yang Y, Zhong Z, Jin B, Zhang B, Du H, Li Q, Zheng X, Qi R, Ren P. Stabilization of heavy metals in solid waste and sludge pyrolysis by intercalation-exfoliation modified vermiculite. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120747. [PMID: 38537473 DOI: 10.1016/j.jenvman.2024.120747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/02/2024] [Accepted: 03/20/2024] [Indexed: 04/07/2024]
Abstract
Increasing amounts of solid waste and sludge have created many environmental management problems. Pyrolysis can effectively reduce the volume of solid waste and sludge, but there is still the problem of heavy metal contamination, which limits the application of pyrolysis in environmental management. The intercalated-exfoliated modified vermiculite (IEMV) by intercalators of sodium dodecylbenzene sulfonate, hexadecyltrimethylammonium bromide and octadecyltrimethylammonium bromide were used to control the release of Cd, Cr, Cu, Zn and Pb during pyrolysis process of sludge or solid waste. The retention of heavy metals in sludge was generally better than that in solid waste. The IEMV by octadecyltrimethylammonium bromide as the intercalator calcined 800 °C (STAB-800) was the best additive for heavy metal retention, and the retention of Cr, Cu and Zn was significantly better than that of Pb and Cd. Cr, Cu, Zn and Pb were at low risk, while Cd had considerable risk under certain circumstances. New models were proposed to comprehensively evaluate the results of the risk and forms of heavy metals, and the increasing temperature was beneficial in reducing the hazards of heavy metals by the addition of STAB-800. The reaction mechanism of heavy metals with vermiculite was revealed by simulation of reaction sites, Fukui Function and Frontier Molecular Orbital. Thermal activation-intercalated-exfoliated modified vermiculite (T-IEMV) is more reactive and had more active sites for heavy metals. Mg atoms and outermost O atoms are the main atoms for T-IEMV to react with heavy metals. The Cr, Cu and Zn have better adsorption capacity by T-IEMV than Pb and Cd. This study provides a new insight into managing solid waste and sludge and controlling heavy metal environmental pollution.
Collapse
Affiliation(s)
- Yuxuan Yang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Zhaoping Zhong
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China.
| | - Baosheng Jin
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Bo Zhang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Haoran Du
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Qian Li
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Xiang Zheng
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Renzhi Qi
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Pengkun Ren
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| |
Collapse
|