1
|
Kuo ST, Xi Z, Cong X, Yan X, Russell DH. Unveiling the Hidden: Dissecting Liraglutide Oligomerization Dual Pathways via Direct Mass Technology, Electron-Capture Dissociation, and Molecular Dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.640645. [PMID: 40093118 PMCID: PMC11908122 DOI: 10.1101/2025.02.27.640645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Peptide therapeutics have revolutionized drug design strategies, yet the inherent structural flexibility and conjugated moieties of drug molecules present challenges in discovery, rational design, and manufacturing. Liraglutide, a GLP-1 receptor agonist conjugated with palmitic acid at its lysine residue, exemplifies these challenges by forming oligomers, which may compromise efficacy through progressive formation of aggregates. Here, we incorporate native mass spectrometry platforms including electron-capture dissociation (ECD), direct mass technology (DMT), and molecular dynamics (MD) to capture the early oligomerization process of liraglutide. Our findings reveal a restricted C-terminal region upon oligomer formation, as indicated by the reduced release of z-ions in ECD analysis. Additionally, we identified the formation of higher-order oligomers (n=25-62) by DMT, primarily stabilized by hydrophilic interactions involving preformed stable oligomers (n=14). Together, these integrative mass spectrometry results delineate a dual-pathway oligomerization process for liraglutide, demonstrating the power of mass spectrometry in uncovering hidden pathways of self-association. This approach underscores the potential of mass spectrometry as a key tool in the rational design and optimization of peptide-based therapeutics.
Collapse
Affiliation(s)
- Syuan-Ting Kuo
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | - Zhenyu Xi
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | - Xiao Cong
- Boehringer Ingelheim, Ridgefield, Connecticut, 06877, USA
| | - Xin Yan
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
2
|
Kuril AK, Saravanan K, Subbappa PK. Analytical considerations for characterization of generic peptide product: A regulatory insight. Anal Biochem 2024; 694:115633. [PMID: 39089363 DOI: 10.1016/j.ab.2024.115633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/03/2024]
Abstract
The Peptide therapeutics market was evaluated to be around USD 45.67 BN in 2023 and is projected to witness massive growth at a CAGR of around 5.63 % from 2024 to 2032 (USD 80.4 BN). Generic peptides are expected to reach USD 27.1 billion by 2032 after the patent monopoly of the pioneer peptides expires, and generic peptides become accessible. The generic manufacturers are venturing into peptide-based therapeutics for the aforementioned reasons. There is an abundance of material accessible regarding the characterization of peptides, which can be quite confusing for researchers. The FDA believes that an ANDA applicant may now demonstrate that the active component in a proposed generic synthetic peptide drug product is the "same" as the active ingredient in a peptide of rDNA origin that has previously been approved. To ensure the efficacy, safety, and quality of peptide therapies during development, regulatory bodies demand comprehensive characterization utilizing several orthogonal methodologies. This article elaborates the peptide characterization by segmenting into different segments as per the critical quality attribute from identification of the peptide to the physicochemical property of the peptide therapeutics which will be required to demonstrate the sameness with reference product based on the size of the peptide chain and molecular weight of the peptides. Article insights briefly on each individual technique and the orthogonal techniques for each test were explained. The impurities requirements in the generic peptides as per the regulatory requirement were also discussed.
Collapse
Affiliation(s)
| | - K Saravanan
- Bhagwant University, Sikar Road, Ajmer, Rajasthan, India
| | | |
Collapse
|
3
|
Renawala HK, Chandrababu KB, Smith KJ, D'Addio SM, Topp EM. A Model Study to Assess Fibrillation and Product Stability to Support Peptide Drug Design. Mol Pharm 2024; 21:2223-2237. [PMID: 38552144 DOI: 10.1021/acs.molpharmaceut.3c00996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
The fibrillation of therapeutic peptides can present significant quality concerns and poses challenges for manufacturing and storage. A fundamental understanding of the mechanisms of fibrillation is critical for the rational design of fibrillation-resistant peptide drugs and can accelerate product development by guiding the selection of solution-stable candidates and formulations. The studies reported here investigated the effects of structural modifications on the fibrillation of a 29-residue peptide (PepA) and two sequence modified variants (PepB, PepC). The C-terminus of PepA was amidated, whereas both PepB and PepC retained the carboxylate, and Ser16 in PepA and PepB was substituted with a helix-stabilizing residue, α-aminoisobutyric acid (Aib), in PepC. In thermal denaturation studies by far-UV CD spectroscopy and fibrillation kinetic studies by fluorescence and turbidity measurements, PepA and PepB showed heat-induced conformational changes and were found to form fibrils, whereas PepC did not fibrillate and showed only minor changes in the CD signal. Pulsed hydrogen-deuterium exchange mass spectrometry (HDX-MS) showed a high degree of protection from HD exchange in mature PepA fibrils and its proteolytic fragments, indicating that most of the sequence had been incorporated into the fibril structure and occurred nearly simultaneously throughout the sequence. The effects of the net peptide charge and formulation pH on fibrillation kinetics were investigated. In real-time stability studies of two formulations of PepA at pH's 7.4 and 8.0, analytical methods detected significant changes in the stability of the formulations at different time points during the study, which were not observed during accelerated studies. Additionally, PepA samples were withdrawn from real-time stability and subjected to additional stress (40 °C, continuous shaking) to induce fibrillation; an approach that successfully amplified oligomers or prefibrillar species previously undetected in a thioflavin T assay. Taken together, these studies present an approach to differentiate and characterize fibrillation risk in structurally related peptides under accelerated and real-time conditions, providing a model for rapid, iterative structural design to optimize the stability of therapeutic peptides.
Collapse
Affiliation(s)
- Harshil K Renawala
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Karthik B Chandrababu
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Katelyn J Smith
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Suzanne M D'Addio
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Elizabeth M Topp
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
- Davidson School of Chemical Engineering, College of Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- National Institute for Bioprocessing Research and Training, Belfield, Blackrock, Co. Dublin A94 X099, Ireland
| |
Collapse
|
4
|
Chaturvedi S, Bawake S, Sharma N. Recent advancements in disulfide bridge characterization: Insights from mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9713. [PMID: 38361473 DOI: 10.1002/rcm.9713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/13/2024] [Accepted: 01/14/2024] [Indexed: 02/17/2024]
Abstract
RATIONALE Disulfide bridges (DSB) play an important role in stabilizing three-dimensional structures of biopharmaceuticals, single purified proteins, and various cyclic peptide drugs that contain disulfide in their structures. Incorrect cross-linking known as DSB scrambling results in misfolded structures that can be inactive, immunogenic, and susceptible to aggregation. Very few articles have been published on the experimental annotation of DSBs in proteins and cyclic peptide drugs. Accurate characterization of the disulfide bond is essential for understanding protein confirmation. METHODS Characterizing DSBs using mass spectrometry (MS) involves the chemical and enzymatic digestion of samples to obtain smaller peptide fragments, in both reduced and nonreduced forms. Subsequently, these samples are analyzed using MS to locate the DSB, either through interpretation or by employing various software tools. RESULTS The main challenge in DSB analysis methods using sample preparation is to obtain a sample solution in which nonnative DSBs are not formed due to high pH, temperature, and presence of free sulfhydryl groups. Formation of nonnative DSBs can lead to erroneous annotation of disulfide bond. Sample preparation techniques, fragmentation methods for DSB analysis, and contemporary approaches for DSB mapping using this fragmentation were discussed. CONCLUSIONS This review presents the latest advancement in MS-based characterization; also a critical perspective is presented for further annotation of DSBs using MS, primarily for single purified proteins or peptides that are densely connected and rich in cysteine. Despite significant breakthroughs resulting from advancements in MS, the analysis of disulfide bonds is not straightforward; it necessitates expertise in sample preparation and interpretation.
Collapse
Affiliation(s)
- Sachin Chaturvedi
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (Ministry of Chemicals and Fertilizers, Government of India), NIPER Ahmedabad Opposite Air force Station Palaj, Gandhinagar, Gujarat, India
| | - Sanket Bawake
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (Ministry of Chemicals and Fertilizers, Government of India), NIPER Ahmedabad Opposite Air force Station Palaj, Gandhinagar, Gujarat, India
| | - Nitish Sharma
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (Ministry of Chemicals and Fertilizers, Government of India), NIPER Ahmedabad Opposite Air force Station Palaj, Gandhinagar, Gujarat, India
| |
Collapse
|
5
|
Přáda Brichtová E, Krupová M, Bouř P, Lindo V, Gomes Dos Santos A, Jackson SE. Glucagon-like peptide 1 aggregates into low-molecular-weight oligomers off-pathway to fibrillation. Biophys J 2023; 122:2475-2488. [PMID: 37138517 PMCID: PMC10323027 DOI: 10.1016/j.bpj.2023.04.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/04/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023] Open
Abstract
The physical stability of peptide-based drugs is of great interest to the pharmaceutical industry. Glucagon-like peptide 1 (GLP-1) is a 31-amino acid peptide hormone, the analogs of which are frequently used in the treatment of type 2 diabetes. We investigated the physical stability of GLP-1 and its C-terminal amide derivative, GLP-1-Am, both of which aggregate into amyloid fibrils. While off-pathway oligomers have been proposed to explain the unusual aggregation kinetics observed previously for GLP-1 under specific conditions, these oligomers have not been studied in any detail. Such states are important as they may represent potential sources of cytotoxicity and immunogenicity. Here, we identified and isolated stable, low-molecular-weight oligomers of GLP-1 and GLP-1-Am, using size-exclusion chromatography. Under the conditions studied, isolated oligomers were shown to be resistant to fibrillation or dissociation. These oligomers contain between two and five polypeptide chains and they have a highly disordered structure as indicated by a variety of spectroscopic techniques. They are highly stable with respect to time, temperature, or agitation despite their noncovalent character, which was established using liquid chromatography-mass spectrometry and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These results provide evidence of stable, low-molecular-weight oligomers that are formed by an off-pathway mechanism which competes with amyloid fibril formation.
Collapse
Affiliation(s)
- Eva Přáda Brichtová
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Monika Krupová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Prague 6, Czech Republic; Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, Tromsø, Norway
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Prague 6, Czech Republic
| | - Viv Lindo
- AstraZeneca, Cambridge, United Kingdom
| | | | - Sophie E Jackson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
6
|
Gajula SNR, Khairnar AS, Jock P, Kumari N, Pratima K, Munjal V, Kalan P, Sonti R. LC-MS/MS: A sensitive and selective analytical technique to detect COVID-19 protein biomarkers in the early disease stage. Expert Rev Proteomics 2023; 20:5-18. [PMID: 36919634 DOI: 10.1080/14789450.2023.2191845] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
INTRODUCTION The COVID-19 outbreak has put enormous pressure on the scientific community to detect infection rapidly, identify the status of disease severity, and provide an immediate vaccine/drug for the treatment. Relying on immunoassay and a real-time reverse transcription polymerase chain reaction (rRT-PCR) led to many false-negative and false-positive reports. Therefore, detecting biomarkers is an alternative and reliable approach for determining the infection, its severity, and disease progression. Recent advances in liquid chromatography and mass spectrometry (LC-MS/MS) enable the protein biomarkers even at low concentrations, thus facilitating clinicians to monitor the treatment in hospitals. AREAS COVERED This review highlights the role of LC-MS/MS in identifying protein biomarkers and discusses the clinically significant protein biomarkers such as Serum amyloid A, Interleukin-6, C-Reactive Protein, Lactate dehydrogenase, D-dimer, cardiac troponin, ferritin, Alanine transaminase, Aspartate transaminase, gelsolin and galectin-3-binding protein in COVID-19, and their analysis by LC-MS/MS in the early stage. EXPERT OPINION Clinical doctors monitor significant biomarkers to understand, stratify, and treat patients according to disease severity. Knowledge of clinically significant COVID-19 protein biomarkers is critical not only for COVID-19 caused by the coronavirus but also to prepare us for future pandemics of other diseases in detecting by LC-MS/MS at the early stages.
Collapse
Affiliation(s)
- Siva Nageswara Rao Gajula
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, India
| | - Ankita Sahebrao Khairnar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, India
| | - Pallavi Jock
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, India
| | - Nikita Kumari
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, India
| | - Kendre Pratima
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, India
| | - Vijay Munjal
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, India
| | - Pavan Kalan
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, India
| | - Rajesh Sonti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, India
| |
Collapse
|
7
|
Fine J, Wijewardhane PR, Mohideen SDB, Smith K, Bothe JR, Krishnamachari Y, Andrews A, Liu Y, Chopra G. Learning Relationships Between Chemical and Physical Stability for Peptide Drug Development. Pharm Res 2023; 40:701-710. [PMID: 36797504 DOI: 10.1007/s11095-023-03475-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/16/2023] [Indexed: 02/18/2023]
Abstract
PURPOSE OR OBJECTIVE Chemical and physical stabilities are two key features considered in pharmaceutical development. Chemical stability is typically reported as a combination of potency and degradation product. Moreover, fluorescent reporter Thioflavin-T is commonly used to measure physical stability. Executing stability studies is a lengthy process and requires extensive resources. To reduce the resources and shorten the process for stability studies during the development of a drug product, we introduce a machine learning-based model for predicting the chemical stability over time using both formulation conditions as well as aggregation curves. METHODS In this work, we develop the relationships between the formulation, stability timepoint, and the chemical stability measurements and evaluated the performance on a random test set. We have developed a multilayer perceptron (MLP) for total degradation prediction and a random forest (RF) model for potency. RESULTS The coefficient of determination (R2) of 0.945 and a mean absolute error (MAE) of 0.421 were achieved on the test set when using MLP for total degradation. Similarly, we achieved a R2 of 0.908 and MAE of 1.435 when predicting potency using the RF model. When physical stability measurements are included into the MLP model, the MAE of predicting TD decreases to 0.148. Using a similar strategy for potency prediction, the MAE decreases to 0.705 for the RF model. CONCLUSIONS We conclude two important points: first, chemical stability can be modeled using machine learning techniques and second there is a relationship between the physical stability of a peptide and its chemical stability.
Collapse
Affiliation(s)
- Jonathan Fine
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
- Analytical Research & Development, MRL, Merck & Co., Inc., Rahway, NJ, USA
| | | | | | - Katelyn Smith
- Analytical Research & Development, MRL, Merck & Co., Inc., Rahway, NJ, USA
| | - Jameson R Bothe
- Analytical Research & Development, MRL, Merck & Co., Inc., Rahway, NJ, USA
| | - Yogita Krishnamachari
- Sterile and Specialty Products, Pharmaceutical Sciences, MRL, Merck & Co., Inc., Rahway, NJ, USA
| | - Alexandra Andrews
- Analytical Research & Development, MRL, Merck & Co., Inc., Rahway, NJ, USA
| | - Yong Liu
- Tango Therapeutics, Boston, MA, USA
| | - Gaurav Chopra
- Department of Chemistry, Purdue University, West Lafayette, IN, USA.
- Department of Computer Science (by courtesy), Purdue University, West Lafayette, NJ, USA.
| |
Collapse
|
8
|
Pei J, Gao X, Pan D, Hua Y, He J, Liu Z, Dang Y. Advances in the stability challenges of bioactive peptides and improvement strategies. Curr Res Food Sci 2022; 5:2162-2170. [PMID: 36387592 PMCID: PMC9664347 DOI: 10.1016/j.crfs.2022.10.031] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 11/08/2022] Open
Abstract
Bioactive peptides are widely used in functional foods due to their remarkable efficacy, selectivity, and low toxicity. However, commercially produced bioactive peptides lack quality stability between batches. Furthermore, the efficacies of bioactive peptides cannot be guaranteed in vivo due to gastrointestinal digestion and rapid plasma, liver, and kidney metabolism. The problem of poor stability has restricted the development of peptides. Bioactive peptide stability assessments use different stability assays, so the results of different studies are not always comparable. This review summarizes the quality stability challenges in the enzymatic hydrolysis production of bioactive peptides and the metabolism stability challenges after oral administration. Future directions on the strategies for improving their stability are provided. It was proposed that we use fingerprinting as a quality control measure using qualitative and quantitative characteristic functional peptide sequences. The chemical modification and encapsulation of bioactive peptides in microcapsules and liposomes are widely used to improve the digestive and metabolic stability of bioactive peptides. Additionally, the establishment of a universal stability test and a unified index would greatly improve uniformity and comparability in research into bioactive peptides. In summary, the reliable evaluation of stability is an essential component of peptide characterization, and these ideas may facilitate further development and utilization of bioactive peptides. Stability challenges encountered by bioactive peptides were summarized. Strategies to improve the stability of bioactive peptides were provided. A universal stability test and unified index would improve uniformity and comparability in research into bioactive peptides. It was proposed that we use a method of traditional Chinese medicine fingerprinting as a quality control measure.
Collapse
Affiliation(s)
- Jingyan Pei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of AgroProducts, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Xinchang Gao
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Corresponding author.
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of AgroProducts, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, 330022, Jiangxi, China
| | - Ying Hua
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Jun He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of AgroProducts, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Zhu Liu
- Zhejiang Institute for Food and Drug Control, Hangzhou, 310052, Zhejiang, China
- Corresponding author.
| | - Yali Dang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of AgroProducts, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
- Corresponding author. School of Food and Pharmaceutical Science, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
9
|
Lunasin as a Promising Plant-Derived Peptide for Cancer Therapy. Int J Mol Sci 2022; 23:ijms23179548. [PMID: 36076946 PMCID: PMC9455814 DOI: 10.3390/ijms23179548] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer has become one of the main public health problems worldwide, demanding the development of new therapeutic agents that can help reduce mortality. Lunasin is a soybean peptide that has emerged as an attractive option because its preventive and therapeutic actions against cancer. In this review, we evaluated available research on lunasin’s structure and mechanism of action, which should be useful for the development of lunasin-based therapeutic products. We described data on its primary, secondary, tertiary, and possible quaternary structure, susceptibility to post-translational modifications, and structural stability. These characteristics are important for understanding drug activity and characterizing lunasin products. We also provided an overview of research on lunasin pharmacokinetics and safety. Studies examining lunasin’s mechanisms of action against cancer were reviewed, highlighting reported activities, and known molecular partners. Finally, we briefly discussed commercially available lunasin products and potential combination therapeutics.
Collapse
|
10
|
Larsen JB, Taebnia N, Dolatshahi-Pirouz A, Eriksen AZ, Hjørringgaard C, Kristensen K, Larsen NW, Larsen NB, Marie R, Mündler AK, Parhamifar L, Urquhart AJ, Weller A, Mortensen KI, Flyvbjerg H, Andresen TL. Imaging therapeutic peptide transport across intestinal barriers. RSC Chem Biol 2021; 2:1115-1143. [PMID: 34458827 PMCID: PMC8341777 DOI: 10.1039/d1cb00024a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/09/2021] [Indexed: 12/14/2022] Open
Abstract
Oral delivery is a highly preferred method for drug administration due to high patient compliance. However, oral administration is intrinsically challenging for pharmacologically interesting drug classes, in particular pharmaceutical peptides, due to the biological barriers associated with the gastrointestinal tract. In this review, we start by summarizing the pharmacological performance of several clinically relevant orally administrated therapeutic peptides, highlighting their low bioavailabilities. Thus, there is a strong need to increase the transport of peptide drugs across the intestinal barrier to realize future treatment needs and further development in the field. Currently, progress is hampered by a lack of understanding of transport mechanisms that govern intestinal absorption and transport of peptide drugs, including the effects of the permeability enhancers commonly used to mediate uptake. We describe how, for the past decades, mechanistic insights have predominantly been gained using functional assays with end-point read-out capabilities, which only allow indirect study of peptide transport mechanisms. We then focus on fluorescence imaging that, on the other hand, provides opportunities to directly visualize and thus follow peptide transport at high spatiotemporal resolution. Consequently, it may provide new and detailed mechanistic understanding of the interplay between the physicochemical properties of peptides and cellular processes; an interplay that determines the efficiency of transport. We review current methodology and state of the art in the field of fluorescence imaging to study intestinal barrier transport of peptides, and provide a comprehensive overview of the imaging-compatible in vitro, ex vivo, and in vivo platforms that currently are being developed to accelerate this emerging field of research.
Collapse
Affiliation(s)
- Jannik Bruun Larsen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Nayere Taebnia
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Alireza Dolatshahi-Pirouz
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Anne Zebitz Eriksen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Claudia Hjørringgaard
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Kasper Kristensen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Nanna Wichmann Larsen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Niels Bent Larsen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Rodolphe Marie
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Ann-Kathrin Mündler
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Ladan Parhamifar
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Andrew James Urquhart
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Arjen Weller
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Kim I Mortensen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Henrik Flyvbjerg
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Thomas Lars Andresen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| |
Collapse
|
11
|
Lian Z, Wang N, Tian Y, Huang L. Characterization of Synthetic Peptide Therapeutics Using Liquid Chromatography-Mass Spectrometry: Challenges, Solutions, Pitfalls, and Future Perspectives. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1852-1860. [PMID: 34110145 DOI: 10.1021/jasms.0c00479] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Synthetic peptides represent an important and expanding class of therapeutics. Despite having a relatively small size as compared to monoclonal antibodies and other proteins, synthetic peptides are subject to many complex structural modifications originating from the starting materials, manufacturing process, and storage conditions. Although mass spectrometry has been increasingly used to characterize impurities of synthetic peptides, systematic review of this field is scarce. In this paper, an overview of the impurities in synthetic peptide therapeutics is provided in the context of how the knowledge from detailed characterization of the impurities using liquid chromatography-mass spectrometry (LC-MS) can be used to develop the manufacturing process and control strategy for synthetic peptide therapeutics following the critical quality attribute (CQA)-driven and risk-based approach. The thresholds for identifying and controlling the impurities are discussed based on currently available regulatory guidance. Specific LC-MS techniques for identification of various types of impurities based on their structural characteristics are discussed with the focus on structural isomers and stereoisomers (i.e., peptide epimers). Absolute and relative quantitation methods for the peptide impurities are critiqued. Potential pitfalls in characterization of synthetic peptide therapeutics using LC-MS are discussed. Finally, a systematic LC-MS workflow for characterizing the impurities in synthetic peptide therapeutics is proposed, and future perspectives on applying emerging LC-MS techniques to address the remaining challenges in the development of synthetic peptide therapeutics are presented.
Collapse
Affiliation(s)
- Zhirui Lian
- Bioproducts Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Ning Wang
- Bioproducts Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Yuwei Tian
- Bioproducts Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Lihua Huang
- Bioproducts Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| |
Collapse
|
12
|
Renawala HK, Chandrababu KB, Topp EM. Fibrillation of Human Calcitonin and Its Analogs: Effects of Phosphorylation and Disulfide Reduction. Biophys J 2020; 120:86-100. [PMID: 33220304 DOI: 10.1016/j.bpj.2020.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/24/2020] [Accepted: 11/10/2020] [Indexed: 11/16/2022] Open
Abstract
Some therapeutic peptides self-assemble in solution to form ordered, insoluble, β-sheet-rich amyloid fibrils. This physical instability can result in reduced potency, cause immunogenic side effects, and limit options for formulation. Understanding the mechanisms of fibrillation is key to developing rational mitigation strategies. Here, amide hydrogen-deuterium exchange with mass spectrometric analysis (HDX-MS) coupled with proteolytic digestion was used to identify the early stage interactions leading to fibrillation of human calcitonin (hCT), a peptide hormone important in calcium metabolism. hCT fibrillation kinetics was sigmoidal, with lag, growth, and plateau phases as shown by thioflavin T and turbidity measurements. HDX-MS of fibrillating hCT (pH 7.4; 25°C) suggested early involvement of the N-terminal (1-11) and central (12-19) fragments in interactions during the lag phase, whereas C-terminal fragments (20-32 and 26-32) showed limited involvement during this period. The residue-level information was used to develop phosphorylated hCT analogs that showed modified fibrillation that depended on phosphorylation site. Phosphorylation in the central region resulted in complete inhibition of fibrillation for the phospho-Thr-13 hCT analog, whereas phosphorylation in the N-terminal and C-terminal regions inhibited but did not prevent fibrillation. Reduction of the Cys1-Cys7 disulfide bond resulted in faster fibrillation with involvement of different hCT residues as indicated by pulsed HDX-MS. Together, the results demonstrate that small structural changes have significant effects on hCT fibrillation and that understanding these effects can inform the rational development of fibrillation-resistant hCT analogs.
Collapse
Affiliation(s)
- Harshil K Renawala
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana
| | - Karthik B Chandrababu
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana
| | - Elizabeth M Topp
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana; National Institute for Bioprocessing Research and Training, Dublin, Ireland.
| |
Collapse
|
13
|
Antimicrobial Excipient-Induced Reversible Association of Therapeutic Peptides in Parenteral Formulations. J Pharm Sci 2020; 110:850-859. [PMID: 32980392 DOI: 10.1016/j.xphs.2020.09.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 08/28/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023]
Abstract
New classes of therapeutic peptides are being developed to prosecute biological targets which have been inaccessible to other modalities. Higher potency and longer half-life peptides have given rise to multiuse injectable formulations that enable convenient, low volume, and self-administered dosing; however, inclusion of antimicrobial preservatives to meet bactericidal requirements can impact other attributes of peptide formulations. Peptide-preservative interactions influencing solution-phase self-association of a non-insulin, linear, palmitoylated 31 amino acid peptide and two structurally similar peptides were assessed via turbidity, intrinsic fluorescence shifts and quenching, isothermal titration calorimetry, and 1H NMR. Meta-cresol and phenol specifically interact with the peptide, result in increased hydrophobicity near the tryptophan residue, and induce conformational changes, while benzyl alcohol does not impact tryptophan fluorescence, demonstrate any interaction enthalpy, or induce conformational changes. These same trends did not hold true for the other palmitoylated peptides evaluated, reinforcing the impacts of unique peptide sequences. Importantly, the presence of benzyl alcohol does increase the physical stability and solubility of the linear, 31 amino acid peptide under salt stress. We report new insights into the physical interactions of peptides with antimicrobial excipients, demonstrating a reversible association phenomenon and highlighting practical implications for formulation design and excipient selection.
Collapse
|
14
|
Cavaco M, Pérez-Peinado C, Valle J, Silva RDM, Correia JDG, Andreu D, Castanho MARB, Neves V. To What Extent Do Fluorophores Bias the Biological Activity of Peptides? A Practical Approach Using Membrane-Active Peptides as Models. Front Bioeng Biotechnol 2020; 8:552035. [PMID: 33015016 PMCID: PMC7509492 DOI: 10.3389/fbioe.2020.552035] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/18/2020] [Indexed: 12/25/2022] Open
Abstract
The characterization of biologically active peptides relies heavily on the study of their efficacy, toxicity, mechanism of action, cellular uptake, or intracellular location, using both in vitro and in vivo studies. These studies frequently depend on the use of fluorescence-based techniques. Since most peptides are not intrinsically fluorescent, they are conjugated to a fluorophore. The conjugation may interfere with peptide properties, thus biasing the results. The selection of the most suitable fluorophore is highly relevant. Here, a comprehensive study with blood-brain barrier (BBB) peptide shuttles (PepH3 and PepNeg) and antimicrobial peptides (AMPs) (vCPP2319 and Ctn[15-34]), tested as anticancer peptides (ACPs), having different fluorophores, namely 5(6)-carboxyfluorescein (CF), rhodamine B (RhB), quasar 570 (Q570), or tide fluor 3 (TF3) attached is presented. The goal is the evaluation of the impact of the selected fluorophores on peptide performance, applying routinely used techniques to assess cytotoxicity/toxicity, secondary structure, BBB translocation, and cellular internalization. Our results show that some fluorophores significantly modulate peptide activity when compared with unlabeled peptides, being more noticeable in hydrophobic and charged fluorophores. This study highlights the need for a careful experimental design for fluorescently labeled molecules, such as peptides.
Collapse
Affiliation(s)
- Marco Cavaco
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Proteomics and Protein Chemistry Unit, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Clara Pérez-Peinado
- Proteomics and Protein Chemistry Unit, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Javier Valle
- Proteomics and Protein Chemistry Unit, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Rúben D. M. Silva
- Centro de Ciências e Tecnologias Nucleares and Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - João D. G. Correia
- Centro de Ciências e Tecnologias Nucleares and Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - David Andreu
- Proteomics and Protein Chemistry Unit, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Miguel A. R. B. Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Vera Neves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
15
|
Walsh PL, Lena J, Drake J, Lavrich D. Determining the Sources of Variance in the Preparation of Analytical Standards for Chromatographic Analysis of a Lyophilized Peptide Drug Substance by Nested ANOVA Statistical Analysis. AAPS PharmSciTech 2020; 21:70. [PMID: 31953771 DOI: 10.1208/s12249-020-1623-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/07/2020] [Indexed: 11/30/2022] Open
Abstract
Synthetic peptides used as therapeutic medicines is continuing to grow as an area of focus within the pharmaceutical industry due to specificity and potency. As such, quality control areas need to continue to advance their capabilities to ensure that appropriate analyses are being performed, and that the data generated are both accurate and precise. One area which poses a significant challenge compared with traditional small molecule drug products is having a highly robust, low variability method of quantifying the assay of the active substance. As many peptide therapeutics are formulated as liquid drug products for injection and preparation procedures to make these samples amenable to traditional chromatographic analysis are inherently low variability (i.e., a simple dilution), potential sources of variance derived from the preparation of the analytical standards used to quantify the assay of the product must be investigated. Here, a fully nested ANOVA experimental design was utilized to examine this process. Such a design allowed for multiple variables to be interrogated as well as the potential interplay of such differences. It was determined that sonication of the standards contributed the most variance, while the balance used and scale on which the standard preparation procedure was performed also contributed significantly. Finally, different procedures for introducing the material into a coulometric Karl Fischer (KF) titration device to quantify the water content of the drug substance were compared and showed that indirect quantification by anhydrous methanol extraction is a significantly more variable method than using an Oven KF autosampler.
Collapse
|
16
|
Zhao E, St-Jean F, Robinson SJ, Sirois LE, Pellett J, Al-Sayah MA. Identification of an acetonitrile addition impurity formed during peptide disulfide bond reduction using dithiothreitol and Tris(2-carboxyethyl)phosphine. J Pharm Biomed Anal 2019; 174:518-524. [DOI: 10.1016/j.jpba.2019.06.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 02/06/2023]
|
17
|
Hirano A, Iwashita K, Ura T, Sakuraba S, Shiraki K, Arakawa T, Kameda T. The binding affinity of uncharged aromatic solutes for negatively charged resins is enhanced by cations via cation–π interactions: The case of sodium ion and arginine. J Chromatogr A 2019; 1595:97-107. [DOI: 10.1016/j.chroma.2019.02.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 01/01/2023]
|
18
|
Bothe JR, Andrews A, Smith KJ, Joyce LA, Krishnamachari Y, Kashi S. Peptide Oligomerization Memory Effects and Their Impact on the Physical Stability of the GLP-1 Agonist Liraglutide. Mol Pharm 2019; 16:2153-2161. [DOI: 10.1021/acs.molpharmaceut.9b00106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Evers A, Pfeiffer-Marek S, Bossart M, Heubel C, Stock U, Tiwari G, Gebauer B, Elshorst B, Pfenninger A, Lukasczyk U, Hessler G, Kamm W, Wagner M. Peptide Optimization at the Drug Discovery-Development Interface: Tailoring of Physicochemical Properties Toward Specific Formulation Requirements. J Pharm Sci 2019; 108:1404-1414. [DOI: 10.1016/j.xphs.2018.11.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 11/27/2018] [Indexed: 12/31/2022]
|
20
|
Zhang J, Mao X, Xu W. Fibril Nucleation Kinetics of a Pharmaceutical Peptide: The Role of Conformation Stability, Formulation Factors, and Temperature Effect. Mol Pharm 2018; 15:5591-5601. [PMID: 30350639 DOI: 10.1021/acs.molpharmaceut.8b00769] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Peptide aggregation, such as the formation of fibrils, could pose a significant challenge for the stability of parenteral peptide drugs. To ensure a robust peptide formulation, a thorough understanding of aggregation kinetics and the development of appropriate accelerated testing conditions are necessary. The present research investigated factors that impact the fibrillation kinetics of a helical 29mer pharmaceutical peptide (peptide A) and attempts to correlate results of accelerated kinetic studies with real time kinetics. Conformational flexibility of the peptide and its potential impact on aggregation kinetics were thoroughly evaluated. Three orthogonal approaches to evaluate aggregation kinetics were assessed, thioflavin T fluorescence, turbidity, and soluble peptide concentration. The results from the methods demonstrated that peptide A showed nucleated polymerization kinetics. The lag time of the fibrillation process depends heavily on pH, ionic strength, temperature, agitation, and substrate interface. The temperature-dependent fibril nucleation kinetics follow Arrhenius behavior, despite a helical fold in the peptide structure. This finding suggests a potential opportunity to leverage accelerated testing conditions to project the long-term performance at storage temperatures. The present study provides both fundamental understanding and practical approaches to mitigate the aggregation risk for pharmaceutical peptides with a strong tendency to form fibrils.
Collapse
Affiliation(s)
- Jingtao Zhang
- Department of Pharmaceutical Sciences, MRL , Merck & Co., Inc. , West Point , Pennsylvania 19486 , United States
| | - Xinpei Mao
- Department of Pharmaceutical Sciences, MRL , Merck & Co., Inc. , West Point , Pennsylvania 19486 , United States
| | - Wei Xu
- Department of Pharmaceutical Sciences, MRL , Merck & Co., Inc. , West Point , Pennsylvania 19486 , United States
| |
Collapse
|
21
|
Trifonov L, Afri M, Palczewski K, Korshin EE, Gruzman A. An Expedient Synthesis of CMF-019: (S)-5-Methyl-3-{1-(pentan-3-yl)-2- (thiophen-2-ylmethyl)-1H-benzo[d]imidazole-5-carboxamido}hexanoic Acid, a Potent Apelin Receptor (APJ) Agonist. Med Chem 2018; 14:688-694. [PMID: 29651942 DOI: 10.2174/1573406414666180412154952] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND Apelin receptor (APJ) is a G protein-coupled receptor (GPCR) activated by the endogenous peptide apelin. The apelin-APJ system has emerged as an important regulator of cardiovascular homeostasis. Recently, a potent benzimidazole-derived apelin peptidomimetic, CMF-019, was patented but without a comprehensive description of its synthesis and a complete spectroscopic characterization of the intermediates. OBJECTIVE Here, a detailed preparation of CMF-019 through a modified and improved synthetic pathway is described. METHOD In particular, the benzimidazole ring in 7 was tailored by the condensation of methyl 3- amino-4-(pentan-3-ylamino)benzoate (4) with (thiophene-2-yl)acetimidate salt 6. Saponification of 7 and the subsequent condensation of the free acid 8 with the corresponding enantiopure β-amino acid methyl ester generated methyl (S)-5-methyl-3-{1-(pentan-3-yl)-2-(thiophen-2-ylmethyl)-1Hbenzo[ d]imidazole-5-carboxamido}hexanoate (9). Hydrolysis of the latter with KOH in THF/water, followed by HPLC-purification, afforded the desired product, CMF-019 (potassium salt) 10. RESULTS & CONCLUSION The approach reported herein enables preparation of 10 at a total yield of 12% over seven linear steps. Additionally, it does not require applying expensive designated microwave reactors and high-pressure hydrogenators. Thus, the elaborate synthesis provides a latent availability of potent agonist 10 for further exploring the physiologically essential apelin-APJ system.
Collapse
Affiliation(s)
- Lena Trifonov
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Michal Afri
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106-4965, United States
| | - Edward E Korshin
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Arie Gruzman
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| |
Collapse
|
22
|
Rastogi S, Shukla S, Kalaivani M, Singh GN. Peptide-based therapeutics: quality specifications, regulatory considerations, and prospects. Drug Discov Today 2018; 24:148-162. [PMID: 30296551 DOI: 10.1016/j.drudis.2018.10.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/17/2018] [Accepted: 10/01/2018] [Indexed: 01/17/2023]
Abstract
Exquisite selectivity, remarkable efficacy, and minimal toxicity are key attributes inherently assigned to peptides, resulting in increased research interest from the pharmaceutical industry in peptide-based therapeutics (PbTs). Pharmacopoeias develop authoritative standards for PbT by providing standard specifications and test methods. Nevertheless, a lack of harmonization in test procedures adopted for PbT in the latest editions of Pharmacopoeias has been observed. Adoption of a harmonized monograph could increase further the interest of the global pharmaceutical industry in PbTs. Here, we provide an overview of pharmacopoeial methodologies and specifications commonly observed in PbT monographs and highlight the main differences among the pharmacopoeias in terms of the active pharmaceutical ingredients that they focus on. We also address the prospects for PbTs to mature as a new therapeutic niche.
Collapse
Affiliation(s)
- Shruti Rastogi
- Analytical Research & Development, Indian Pharmacopoeia Commission, Ministry of Health & Family Welfare, Government of India, Sector-23, Raj Nagar, Ghaziabad 201002, UP, India
| | - Shatrunajay Shukla
- Medical Devices & Materiovigilance, Indian Pharmacopoeia Commission, Ministry of Health & Family Welfare, Government of India, Sector-23, Raj Nagar, Ghaziabad 201002, UP, India.
| | - M Kalaivani
- Biologics, Indian Pharmacopoeia Commission, Ministry of Health & Family Welfare, Govt. of India, Sector-23, Raj Nagar, Ghaziabad 201002, UP, India
| | - Gyanendra Nath Singh
- Analytical Research & Development, Indian Pharmacopoeia Commission, Ministry of Health & Family Welfare, Government of India, Sector-23, Raj Nagar, Ghaziabad 201002, UP, India; Medical Devices & Materiovigilance, Indian Pharmacopoeia Commission, Ministry of Health & Family Welfare, Government of India, Sector-23, Raj Nagar, Ghaziabad 201002, UP, India; Biologics, Indian Pharmacopoeia Commission, Ministry of Health & Family Welfare, Govt. of India, Sector-23, Raj Nagar, Ghaziabad 201002, UP, India; Indian Pharmacopoeia Commission, Ministry of Health & Family Welfare, Government of India, Sector-23, Raj Nagar, Ghaziabad 201002, UP, India
| |
Collapse
|
23
|
Briggs KT, Taraban MB, Yu YB. Water proton NMR detection of amide hydrolysis and diglycine dimerization. Chem Commun (Camb) 2018; 54:7003-7006. [PMID: 29850691 DOI: 10.1039/c8cc03935f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The transverse relaxation rate of water protons R2(1H2O) is found to be sensitive to amide hydrolysis and diglycine dimerization. The results demonstrate the feasibility of using R2(1H2O) as a diagnostic tool to detect chemical changes in aqueous solutions. Potential applications include drug product formulation and inspection.
Collapse
Affiliation(s)
- Katharine T Briggs
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
24
|
Taraban MB, DePaz RA, Lobo B, Yu YB. Water Proton NMR: A Tool for Protein Aggregation Characterization. Anal Chem 2017; 89:5494-5502. [DOI: 10.1021/acs.analchem.7b00464] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Marc B. Taraban
- Department
of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | - Roberto A. DePaz
- Formulation
Sciences, MedImmune, One MedImmune Way, Gaithersburg, Maryland 20878, United States
| | - Brian Lobo
- Formulation
Sciences, MedImmune, One MedImmune Way, Gaithersburg, Maryland 20878, United States
| | - Y. Bruce Yu
- Department
of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| |
Collapse
|
25
|
An efficient liquid chromatography-high resolution mass spectrometry approach for the optimization of the metabolic stability of therapeutic peptides. Anal Bioanal Chem 2017; 409:2685-2696. [DOI: 10.1007/s00216-017-0213-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/09/2017] [Accepted: 01/16/2017] [Indexed: 11/25/2022]
|