1
|
Younas S, Bukhari DA, Bibi Z, Ullah A, Rehman A. Impact of multistrain probiotics on growth performance, immune response, and gut morphometry in broiler chicken Gallus gallus domesticus. Poult Sci 2025; 104:105026. [PMID: 40101512 PMCID: PMC11960641 DOI: 10.1016/j.psj.2025.105026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/20/2025] Open
Abstract
The objective of this investigation was to examine the impact of four lab-isolated probiotics Enterococcus faecium (OR563785.1), Weissella confusa (OR563786.1), Weissella cibaria (OQ543569.1), Lactiplantibacillus plantarum (OQ689085.1) in 1:1:1:1 of CFU dilution as multistrain probiotics (MSP) regarding growth performance, haemato-biochemical indices and immune function in broilers. Ninety uniformly weighed broilers were divided into five groups at random with (n = 18/group). NC: negative control (basal diet); PC: commercial probiotic, G1: MSP supplemented, G2: MSP + vaccinated, G3: (vaccinated). Blood samples were collected at 42 days of age to assess immunological, haemato-biochemical parameters, and intestinal morphometry. Compared to the group of negative control, the broiler chicks' body weight was considerably (p < 0.05) higher in MSP-treated groups (G1, G2). This study found that, as compared to the NC, there was a substantial rise (p < 0.05) in RBC and hemoglobin in the probiotic-supplemented bird group. The results indicated that cholesterol and triglyceride remarkably decreased compared to control in probiotic-treated groups. There was no discernible change in the enzyme activity of ALT, AST, and ALP across the groups (p > 0.05). The findings indicated higher levels of immunoglobulin and interleukins in the MSP group than in the control (NC). The villus's height to crypt depth ratio was higher in the MSP groups (G1, G2) in contrast with the PC group (p < 0.05). The haemagglutination inhibition test (HI) revealed that the probiotic-treated groups had greater New Castle disease virus (NDV) antibodies than the other groups. The humoral response to live NDV vaccinations may be enhanced by multistrain probiotics. These results revealed MSP significantly affected growth performance, haematobiochemical parameters, and immunity through alteration in intestinal morphology which helps in nutrient uptake.
Collapse
Affiliation(s)
- Samina Younas
- Institute of Zoology, Government College University, Lahore, Pakistan
| | | | - Zuhra Bibi
- Institute of Zoology, Government College University, Lahore, Pakistan
| | - Arif Ullah
- Institute of Zoology, Government College University, Lahore, Pakistan
| | - Abdul Rehman
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
2
|
Giles-Gómez M, Morales Huerta X, Pastelin-Palacios R, López-Macías C, Flores Montesinos MS, Astudillo-Melgar F, Escalante A. Analysis of the Probiotic Potential of Lactiplantibacillus plantarum LB1_P46 Isolated from the Mexican Fermented Pulque Beverage: A Functional and Genomic Analysis. Microorganisms 2024; 12:1652. [PMID: 39203494 PMCID: PMC11356911 DOI: 10.3390/microorganisms12081652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
The traditional Mexican fermented beverage pulque has been considered a healthy product for treating gastrointestinal disorders. Lactic acid bacteria (LAB) have been identified as one of the most abundant microbial groups during pulque fermentation. As traditional pulque is consumed directly from the fermentation vessel, the naturally associated LABs are ingested, reaching the consumer's small intestine alive, suggesting their potential probiotic capability. In this contribution, we assayed the probiotic potential of the strain of Lactiplantibacillus plantarum LB1_P46 isolated from pulque produced in Huitzilac, Morelos State, Mexico. The characterization included resistance to acid pH (3.5) and exposure to bile salts at 37 °C; the assay of the hemolytic activity and antibiotic resistance profiling; the functional traits of cholesterol reduction and β-galactosidase activity; and several cell surface properties, indicating that this LAB possesses probiotic properties comparable to other LAB. Additionally, this L. plantarum showed significance in in vitro antimicrobial activity against several Gram-negative and Gram-positive bacteria and in vivo preventive anti-infective capability against Salmonella in a BALB/c mouse model. Several functional traits and probiotic activities assayed were correlated with the corresponding enzymes encoded in the complete genome of the strain. The genome mining for bacteriocins led to the identification of several bacteriocins and a ribosomally synthesized and post-translationally modified peptide encoding for the plantaricin EF. Results indicated that L. plantarum LB1_P46 is a promising probiotic LAB for preparing functional non-dairy and dairy beverages.
Collapse
Affiliation(s)
- Martha Giles-Gómez
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (M.G.-G.); (X.M.H.)
| | - Ximena Morales Huerta
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (M.G.-G.); (X.M.H.)
| | - Rodolfo Pastelin-Palacios
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (M.G.-G.); (X.M.H.)
| | - Constantino López-Macías
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades del Centro Médico Nacional “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Cuauhtémoc, Ciudad de México 06720, Mexico
| | - Mayrene Sarai Flores Montesinos
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico; (M.S.F.M.)
| | - Fernando Astudillo-Melgar
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico; (M.S.F.M.)
| | - Adelfo Escalante
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico; (M.S.F.M.)
| |
Collapse
|
3
|
Dikbaş N, Orman YC, Alım Ş, Uçar S, Tülek A. Evaluating Enterococcus faecium9 N-2 as a probiotic candidate from traditional village white cheese. Food Sci Nutr 2024; 12:1847-1856. [PMID: 38455208 PMCID: PMC10916548 DOI: 10.1002/fsn3.3878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 03/09/2024] Open
Abstract
In this study, various functional and probiotic attributes of the Enterococcus faecium 9 N-2 strain isolated from village-style white cheese were characterized, while also assessing its safety. To achieve this, we conducted an in vitro analysis of several key probiotic properties exhibited by the 9 N-2 strain. Notably, this strain demonstrated robust resilience to low pH, high bile salt concentrations, lysozyme, pepsin, pancreatin, and phenol. Furthermore, this strain displayed exceptional auto-aggregation capabilities and moderate co-aggregation tendencies when interacting with Escherichia coli. The cell-free supernatant derived from strain 9 N-2 exhibited significant antimicrobial activity against the tested pathogens. The strain exhibited resistance to gentamicin, meropenem, and bacitracin, while remaining susceptible to vancomycin and various other antibiotics. Furthermore, it was found that E. faecium 9 N-2 possessed the capacity to produce the phytase enzyme. When all the results of this study are evaluated, it is thought that 9 N-2 strain has superior probiotic properties, and therefore it can be used as probiotic in food, medicine, and animal feed in the future. In addition, further in vivo tests should be performed to fully understand its effects and mechanisms of action and to confirm its safety and probiotic effects. Further research and clinical trials are also needed to identify new strains with potential probiotic properties.
Collapse
Affiliation(s)
- Neslihan Dikbaş
- Department of Agricultural Biotechnology, Agricultural FacultyAtaturk UniversityErzurumTurkey
| | - Yusuf Can Orman
- Department of Agricultural Biotechnology, Agricultural FacultyAtaturk UniversityErzurumTurkey
| | - Şeyma Alım
- Department of Agricultural Biotechnology, Agricultural FacultyAtaturk UniversityErzurumTurkey
| | - Sevda Uçar
- Department of Herbal Production and Technologies, Faculty of Agricultural Sciences and TechnologySivas Science and Technology UniversitySivasTurkey
| | - Ahmet Tülek
- Department of Bioengineering and SciencesIğdır UniversityIğdırTurkey
| |
Collapse
|
4
|
Kho K, Kadar AD, Bani MD, Pramanda IT, Martin L, Chrisdianto M, Pratama F, Devanthi PVP. The Potential of Pediococcus acidilactici Cell-Free Supernatant as a Preservative in Food Packaging Materials. Foods 2024; 13:644. [PMID: 38472756 DOI: 10.3390/foods13050644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 03/14/2024] Open
Abstract
This study delves into the production and antimicrobial characteristics of cell-free supernatants from Pediococcus acidilactici (CFSs-Pa). Antimicrobial activity was initially observed in CFS-Pa harvested after 12 h of incubation and increased up to the late stationary phase at 48 h. The increase in antimicrobial activity did not align with total protein content, pointing to other factors linked to the accumulation of organic acids, particularly lactic acid. The SDS-PAGE analysis also indicated that the expected proteinaceous compound (pediocin) was not observed in CFS-Pa. Further investigations suggested that the antimicrobial properties of CFS-Pa were exclusively due to organic acids. The MIC values confirmed potent antimicrobial activity, particularly at a 10% dilution of CFS-Pa in MRS broth. The time-kill assays demonstrated bactericidal activity against EHEC, Listeria monocytogenes, and Staphylococcus aureus by 12 h, 18 h, and 24 h using a 10% dilution of CFS-Pa. Additionally, CFS-Pa exhibited dose-dependent antioxidant activity, requiring a 70% (v/v) concentration to inhibit DPPH scavenging activity by 50%. All the experimental results suggested potential applications of CFS-Pa in food preservation. An attempt to incorporate CFS-Pa into bacterial cellulose (BC) for edible food packaging demonstrated promising antimicrobial results, particularly against L. monocytogenes and S. aureus, with room for optimization.
Collapse
Affiliation(s)
- Katherine Kho
- Department of Biotechnology, Faculty of Life Sciences, Indonesia International Institute for Life Sciences, Pulomas Barat Kavling 88, Jakarta 13210, Indonesia
| | - Adinda Darwanti Kadar
- Department of Biotechnology, Faculty of Life Sciences, Indonesia International Institute for Life Sciences, Pulomas Barat Kavling 88, Jakarta 13210, Indonesia
| | - Mario Donald Bani
- Department of Biotechnology, Faculty of Life Sciences, Indonesia International Institute for Life Sciences, Pulomas Barat Kavling 88, Jakarta 13210, Indonesia
| | - Ihsan Tria Pramanda
- Department of Biotechnology, Faculty of Life Sciences, Indonesia International Institute for Life Sciences, Pulomas Barat Kavling 88, Jakarta 13210, Indonesia
| | - Leon Martin
- Department of Biotechnology, Faculty of Life Sciences, Indonesia International Institute for Life Sciences, Pulomas Barat Kavling 88, Jakarta 13210, Indonesia
| | - Matthew Chrisdianto
- Department of Biotechnology, Faculty of Life Sciences, Indonesia International Institute for Life Sciences, Pulomas Barat Kavling 88, Jakarta 13210, Indonesia
| | - Ferren Pratama
- Department of Biotechnology, Faculty of Life Sciences, Indonesia International Institute for Life Sciences, Pulomas Barat Kavling 88, Jakarta 13210, Indonesia
| | - Putu Virgina Partha Devanthi
- Department of Biotechnology, Faculty of Life Sciences, Indonesia International Institute for Life Sciences, Pulomas Barat Kavling 88, Jakarta 13210, Indonesia
| |
Collapse
|
5
|
Li J, Peng F, Huang H, Xu X, Guan Q, Xie M, Xiong T. Characterization, mechanism and in vivo validation of Helicobacter pylori antagonism by probiotics screened from infants' feces and oral cavity. Food Funct 2024; 15:1170-1190. [PMID: 38206113 DOI: 10.1039/d3fo04592g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Helicobacter pylori (H. pylori) infection is a major cause of chronic gastritis, intestinal metaplasia, and gastric carcinoma. Antibiotics, the conventional regimen for eliminating H. pylori, cause severe bacterial resistance, gut dysbiosis and hepatic insufficiency. Here, fifty lactic acid bacteria (LAB) were initially screened out of 266 strains obtained from infants' feces and oral cavity. The antagonistic properties of these 50 strains against H. pylori were investigated. Based on eight metrics combined with principal component analysis, three LAB with probiotic function and excellent anti-H. pylori capacity were affirmed. Combining dynamics test, metabolite assays, adhesion assays, co-cultivation experiments, and SEM and TEM observations, LAB were found to antagonize H. pylori by causing coccoid conversion and intercellular adhesion. Furthermore, it was found that LAB antagonized H. pylori by four pathways, i.e., production of anti-H. pylori substances, inhibition of H. pylori colonization, enhancement of the gastric mucosal barrier, and anti-inflammatory effect. In addition, animal model experiments verified that the final screened superior strain L. salivarius NCUH062003 had anti-H. pylori activity in vivo. LAB also reduced IL-8 secretion, ultimately alleviating the inflammatory response of gastric mucosa. Whole genome sequencing (WGS) data showed that the NCUH062003 genome contained the secondary metabolite biosynthesis gene cluster T3PKS. Furthermore, NCUH062003 had a strong energy metabolism and substance transport capacity, and produced a small molecule heat stable peptide (SHSP, 4.1-6.5 kDa). Meanwhile, LAB proved to be safe through antibiotic susceptibility testing and CARD database comparisons.
Collapse
Affiliation(s)
- Junyi Li
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China.
- School of Food Science & Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Fei Peng
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China.
- School of Food Science & Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Hui Huang
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China.
- School of Food Science & Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Xiaoyan Xu
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China.
- School of Food Science & Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Qianqian Guan
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China.
- School of Food Science & Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China.
- School of Food Science & Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Tao Xiong
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China.
- School of Food Science & Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| |
Collapse
|
6
|
Kumar V, R A, Ahire JJ, Taneja NK. Techno-Functional Assessment of Riboflavin-Enriched Yogurt-Based Fermented Milk Prepared by Supplementing Riboflavin-Producing Probiotic Strains of Lactiplantibacillus plantarum. Probiotics Antimicrob Proteins 2024; 16:152-162. [PMID: 36515890 DOI: 10.1007/s12602-022-10026-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2022] [Indexed: 12/15/2022]
Abstract
Vitamin enrichment in fermented dairy products through the intervention of vitamin-producing probiotic strains during fermentation is a novel approach in the field of probioceuticals. In this study, riboflavin-enriched yogurt-based fermented milk was prepared by mixing 1% (v/v) riboflavin-producing strain [1.2 × 108 CFU/mL of Lactiplantibacillus plantarum MTCC 25432 or L. plantarum MTCC 25433 or L. plantarum MTCC 25434] with 2% (v/v) traditional yogurt cultures [Streptococcus thermophilus NCDC 295 and L. delbrueckii subsp. bulgaricus NCDC 293; each of 1.3 × 107 CFU/mL]. The yogurt-based fermented milk prepared with traditional yogurt cultures (2%, v/v) was served as a control. The prepared yogurt-based fermented milk samples were analyzed and compared for riboflavin content, antimicrobial activity, physicochemical, and functional properties. As a result, the yogurt-based fermented milk prepared with L. plantarum MTCC 25432 produced a significantly higher amount of riboflavin (2.49 mg/L) as compared with MTCC 25433 (2.33 mg/L), MTCC 25434 (2.14 mg/L), and control (1.70 mg/L). The probiotic supplementation to yogurt cultures maintained the pH and titratable acidity in the range of 4.1-4.4 and 1.0-1.05% (lactic acid/100 mL), as recommended by Indian yogurt standards. The rheological, texture, and antimicrobial properties of yogurt-based fermented milk were enhanced with the addition of riboflavin-producing probiotic strains. Moreover, all yogurt-based fermented milk samples prepared in this study were acceptable as per the sensory evolution scores. In conclusion, the use of riboflavin-producing L. plantarum strains along with standard yogurt cultures could be the best approach to enhancing riboflavin content in yogurt-based fermented milk and fulfilling the daily riboflavin requirement in humans.
Collapse
Affiliation(s)
- Vikram Kumar
- Department of Basic and Applied Sciences, NIFTEM, Sonepat, Haryana, India
| | - Amrutha R
- Department of Basic and Applied Sciences, NIFTEM, Sonepat, Haryana, India
| | - Jayesh J Ahire
- Advanced Enzyme Technologies Limited, Thane, Mumbai, India
| | - Neetu Kumra Taneja
- Department of Basic and Applied Sciences, NIFTEM, Sonepat, Haryana, India.
- Centre for Advanced Translational Research in Food Nanobiotechnology (CATR-FNB), NIFTEM, Sonepat, Haryana, India.
| |
Collapse
|
7
|
Aslani R, Mazaheri Y, Jafari M, Sadighara P, Molaee-Aghaee E, Ozcakmak S, Reshadat Z. Implementation of hazard analysis and critical control point (HACCP) in yogurt production. J DAIRY RES 2024; 91:125-135. [PMID: 38646882 DOI: 10.1017/s0022029924000232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
This study aimed to review hazard analysis and critical control points (HACCP) in the dairy industry for the production of yogurt. The food safety management system (FSMS) was implemented over the last several decades with several amendments. The need for practical and proactive procedures in the dairy industry was identified so that HACCP implementation could ensure that consumers would always have safe food. The concept of HACCP is a systemic and science-based method that can result in safe dairy products such as yogurt based on the complete analysis of manufacturing processes, recognition of hazards potentially present at all stages of production, and risk prevention. In yogurt production, raw milk receipt, pasteurization, packaging, and storage are the steps most susceptible to contamination and were considered critical control points. Further steps also need to be implemented to achieve other related control measures, and these will be discussed.
Collapse
Affiliation(s)
- Ramin Aslani
- Division of Food Safety & Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Yeganeh Mazaheri
- Division of Food Safety & Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Jafari
- Division of Food Safety & Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Sadighara
- Division of Food Safety & Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Molaee-Aghaee
- Division of Food Safety & Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sibel Ozcakmak
- Provincial Directorate of Agriculture and Livestock, Ministry of Agriculture and Forestry, Samsun, Türkiye
| | - Zahra Reshadat
- Department of Food Hygiene, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
8
|
Petrariu OA, Barbu IC, Niculescu AG, Constantin M, Grigore GA, Cristian RE, Mihaescu G, Vrancianu CO. Role of probiotics in managing various human diseases, from oral pathology to cancer and gastrointestinal diseases. Front Microbiol 2024; 14:1296447. [PMID: 38249451 PMCID: PMC10797027 DOI: 10.3389/fmicb.2023.1296447] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
The imbalance of microbial composition and diversity in favor of pathogenic microorganisms combined with a loss of beneficial gut microbiota taxa results from factors such as age, diet, antimicrobial administration for different infections, other underlying medical conditions, etc. Probiotics are known for their capacity to improve health by stimulating the indigenous gut microbiota, enhancing host immunity resistance to infection, helping digestion, and carrying out various other functions. Concurrently, the metabolites produced by these microorganisms, termed postbiotics, which include compounds like bacteriocins, lactic acid, and hydrogen peroxide, contribute to inhibiting a wide range of pathogenic bacteria. This review presents an update on using probiotics in managing and treating various human diseases, including complications that may emerge during or after a COVID-19 infection.
Collapse
Affiliation(s)
- Oana-Alina Petrariu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
| | - Ilda Czobor Barbu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, Bucharest, Romania
| | - Marian Constantin
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Institute of Biology of Romanian Academy, Bucharest, Romania
| | - Georgiana Alexandra Grigore
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
- National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| | - Roxana-Elena Cristian
- The Research Institute of the University of Bucharest, Bucharest, Romania
- National Institute of Research and Development for Biological Sciences, Bucharest, Romania
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Grigore Mihaescu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Corneliu Ovidiu Vrancianu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
- National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| |
Collapse
|
9
|
Lin X, Wu C. Identification and evaluation of probiotic potential of Bifidobacterium breve AHC3 isolated from chicken intestines and its effect on necrotizing enterocolitis (NEC) in newborn SD rats. PLoS One 2023; 18:e0287799. [PMID: 37917716 PMCID: PMC10621988 DOI: 10.1371/journal.pone.0287799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/13/2023] [Indexed: 11/04/2023] Open
Abstract
Necrotizing enterocolitis (NEC) is a severe intestinal disease of the newborn infants, associated with high morbidity and mortality. It has been reported that Bifidobacterium could protect the intestinal barrier function and reduce the risk of NEC. This study aimed to evaluate the probiotic potential of Bifidobacterium strains isolated from the chicken intestines and its effect on necrotizing enterocolitis in newborn SD rats. Out of 32 isolates, B. breve AHC3 not only exhibited excellent probiotic potential, including tolerance to artificial simulated gastric conditions, adhesion to HT-29 cells, antioxidant capacity and antibacterial activity, but also possessed reliable safety. Additionally, NEC model was established to further investigate the effect of B. breve AHC3 on necrotizing enterocolitis in newborn SD rats. It was illustrated that administration of B. breve AHC3 significantly not only reduced the incidence of NEC (from 81.25% to 34.38%) (P< 0.05), but also alleviated the severity of ileal injury (P< 0.05). Compared with NEC model, B. breve AHC3 could significantly decrease the level of proinflammatory factor TNF-α (P< 0.05) and increase the level of antiinflammatory factor IL-10 (P< 0.05) in the ileum of NEC rats. Through the intervention of B. breve AHC3, the gray value of inducible nitric oxide synthase (iNOS) in intestinal tissue of NEC rats was significantly reduced (P< 0.05). It was indicated that B. breve AHC3 exhibited prominent probiotic potential and reliable safety. In the neonatal SD rat model of NEC, B. breve AHC3 had an available protective effect on the intestinal injury of NEC, which might be related to reducing the inflammatory reaction in the ileum and inhibiting the expression of iNOS in intestinal tissue cells. B. breve AHC3 could be used as a potential treatment for human NEC.
Collapse
Affiliation(s)
- Xiaopei Lin
- Department of Pediatrics, Maternity and Child Health Care Hospital Affiliated to Anhui Medical University (Anhui Maternity and Child Health Care Hospital), Hefei, Anhui, China
| | - Changjun Wu
- Institute of Microbiology, Anhui Academy of Medical Sciences, Hefei, Anhui, China
| |
Collapse
|
10
|
Kumar S, Varada VV, Banakar PS, Tyagi N, Chouraddi R, Hogarehalli Mallapa R, Tyagi AK. Screening and characterization of Sahiwal cattle calves-origin lactic acid bacteria based on desired probiotic attributes for potential application. Anim Biotechnol 2023; 34:1612-1625. [PMID: 35244506 DOI: 10.1080/10495398.2022.2043885] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Probiotics are living microorganisms that confer health benefits to host when administered in adequate amounts. To develop novel host-specific probiotic for their application as feed additive, the present study was undertaken to isolate and characterize probiotic strains of indigenous cattle-calves origin. A total of 55 colonies were isolated from 12 healthy calves, with 34 of the isolates being Gram-positive, catalase-negative and vancomycin-resistant. Furthermore, eleven isolates showed tolerance to acid (pH 2.0) and thirteen isolates tolerated bile salts (0.3%). Seven common acid and bile tolerance strains were further investigated for other probiotic attributes and displayed higher (p< 0.05) auto-aggregation and cell surface hydrophobicity values. Moreover, all seven isolates had potent antibacterial activity against pathobiont E. coli as well as significant co-aggregation capacity and enzyme activity. In vitro biosafety assessment revealed that all seven isolates were non-hemolytic, negative for mucin degradation and susceptible to most of the antibiotics. Based on the obtained findings, heatmap and principal component analysis identified four highly effective probiotic candidates confirmed by 16S rDNA sequencing as Limosilactobacillus reuteri SW23, Limosilactobacillus reuteri SW26, Limosilactobacillus reuteri SW27 and Enterococcus faecium SW28, respectively. Further studies on biosafety aspect are warranted for the application of these strains in animal as potential probiotics.HIGHLIGHTSL. reuteri SW23, L. reuteri SW26, L. reuteri SW28 and Enterococcus faecium SW28 were successfully isolated and identified from indigenous calves' feces.These microbes were characterized for potential probiotics attributes.Heatmap analysis and principal component analysis (PCA) was used along with probiotic attributes to select highly effective probiotic candidates.
Collapse
Affiliation(s)
- Sachin Kumar
- Rumen Biotechnology Lab, Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Vinay Venkatesh Varada
- Rumen Biotechnology Lab, Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Praveen Sivakumara Banakar
- Rumen Biotechnology Lab, Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Nitin Tyagi
- Rumen Biotechnology Lab, Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Rakesh Chouraddi
- Rumen Biotechnology Lab, Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, India
| | | | - Amrish Kumar Tyagi
- Rumen Biotechnology Lab, Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, India
- Presently as Assistant Director General (Animal nutrition and Physiology), Indian Council of Agricultural Research, New Delhi, India
| |
Collapse
|
11
|
Dehghani Champiri I, Bamzadeh Z, Rahimi E, Rouhi L. Lacticaseibacillus paracasei LB12, a Potential Probiotic Isolated from Traditional Iranian Fermented Milk (Doogh). Curr Microbiol 2023; 80:333. [PMID: 37658854 DOI: 10.1007/s00284-023-03376-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 06/13/2023] [Indexed: 09/05/2023]
Abstract
In Iran, dairy-based fermented foods, like yogurt, cheese, fermented milk, buttermilk, kashk, butter, and Doogh are essential dietary components. Doogh is typically made using fermented yogurt or buttermilk. However, a literature review revealed a lack of research on extracting probiotics from Doogh during processing. As dairy products contain lactic acid bacteria, the aim was to isolate and identify them using culture and PCR-sequencing techniques. Samples of traditional Doogh were collected throughout the Chaharmahal Bakhtiari province of Iran. A specific number of strains have been isolated and among them, the strain LB12 was selected for further characterization based on its probiotic properties. Probiotic properties like adhesion capability, antagonistic activity, resistance to the simulated stomach and intestinal fluids, pH, and bile salt were assessed according to National Standard ISO 19459 of Iran. The LB12 strain was identified as Lacticaseibacillus paracasei by partial 16 rDNA sequence analysis. This L. paracasei strain demonstrated its in vitro resilience to stomach conditions with 58.04% survival at pH 3 and more than 50% resistance to different bile salt concentrations. L. paracasei LB12 showed a cell surface hydrophobicity of 38.18% and a 6.2 log CFU/ml resistance to simulated gastric and intestinal fluids, and a rate of auto- and co-aggregation of 15% and 22%, respectively. L. parasei LB12 showed also a moderate adhesion to HT-29 cell line. In conclusion, L. paracasei LB12 is considered a promising potential probiotic suitable for the development of food supplement and pharmaceutical products.
Collapse
Affiliation(s)
- Iman Dehghani Champiri
- Department of Microbiology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Zahra Bamzadeh
- Department of Microbiology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.
| | - Ebrahim Rahimi
- Department of Food Hygiene and Public Health, Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Leila Rouhi
- Cellular and Developmental Research Center, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
12
|
Chouraddi R, Kumar S, Kumar B, Bhatia M, Varada VV, Tyagi N, Mallapa RH. Techno-functional characterization of fecal lactobacilli isolates of Bos indicus calves for probiotic properties. Vet Res Commun 2023; 47:1285-1302. [PMID: 36749534 DOI: 10.1007/s11259-023-10077-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 01/28/2023] [Indexed: 02/08/2023]
Abstract
In this study, 105 bacterial colonies were isolated from the feces of newborn healthy Bos indicus calves and 37 isolates were confirmed using morphological, biochemical tests, and genus-specific PCR as lactobacilli. 11 isolates were then short-listed for in vitro probiotic testing based on their ability to dwell under acid and bile stress. Species-level identification using 16S rRNA gene sequencing revealed that they were Ligilactobacillus salivarius. These isolates flourished in 0.4% phenol, depicting resistance in adverse conditions encountered in the gastrointestinal tract. The results of cell surface hydrophobicity were found to be 74.50% for RBL12 and 62.62% for RBL09 in hexadecane and xylene, respectively, and that of auto-aggregation was highest in RBL26 (58.92%). These isolates also produced digestive enzymes like amylase, protease, and β-galactosidase. Further assays reiterated their antimicrobial and coaggregation potential against diarrhea-causing pathogens like Escherichia coli ATCC-25922 and Salmonella arizonae ATCC-13314. Biosafety assessment revealed that none of the tested isolates were hemolytic and mucinolytic in nature. Furthermore, the antioxidant potential of the isolates was also confirmed using 1,1‑diphenyl‑2‑picrylhydrazyl (DPPH) and ferric ion-reducing antioxidant power (FRAP) assay. Along with efficient utilization of inulin, isolates showed promising adhesion ability to the HT-29 cell line. The current findings hence conclude that these Lactobacillus isolates can be exploited as animal probiotics for potential application in young calves to foster gut health and immunity.
Collapse
Affiliation(s)
- Rakesh Chouraddi
- Rumen Biotechnology Lab, Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Sachin Kumar
- Rumen Biotechnology Lab, Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India.
| | - Brijesh Kumar
- Rumen Biotechnology Lab, Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Manika Bhatia
- Rumen Biotechnology Lab, Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Vinay Venkatesh Varada
- Rumen Biotechnology Lab, Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Nitin Tyagi
- Rumen Biotechnology Lab, Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India
| | | |
Collapse
|
13
|
Valečková E, Sun L, Wang H, Dube F, Ivarsson E, Kasmaei KM, Ellström P, Wall H. Intestinal colonization with Campylobacter jejuni affects broiler gut microbiota composition but is not inhibited by daily intake of Lactiplantibacillus plantarum. Front Microbiol 2023; 14:1205797. [PMID: 37577431 PMCID: PMC10416237 DOI: 10.3389/fmicb.2023.1205797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Lactobacilli may prevent broilers from colonization with Campylobacter spp. and other gram-negative zoonotic bacteria through lactic acid production and modulation of the intestinal microbiota. This study evaluated the effects of daily intake of Lactiplantibacillus plantarum 256 (LP256) on Campylobacter jejuni (C. jejuni) loads in ceca and feces of C. jejuni challenged broilers, together with the changes in the gut microbiota. Methods Two experiments were conducted using the broilers Ross 308 (R-308; Experiment 1) for 42 days and Rowan Ranger broilers (RR; Experiment 2) for 63 days. The LP256 strain was administered either via silage inoculated with LP256 or direct supplementation in the drinking water. Concurrently, haylage as a forage similar to silage but without any inoculum was tested. C. jejuni loads in fecal matter and cecal content were determined by plate counts and qPCR, respectively. The cecal microbiota, in response to treatments and the challenge, were assessed by 16S rRNA sequencing. Results and Discussion Culturing results displayed a significant reduction in C. jejuni colonization (2.01 log) in the silage treatment in comparison to the control at 1 dpi (day post-infection) in Experiment 1. However, no treatment effect on C. jejuni was observed at the end of the experiment. In Experiment 2, no treatment effects on C. jejuni colonization were found to be statistically significant. Colonization load comparison at the peak of infection (3 dpi) to that at the end of the trial (32 dpi) revealed a significant reduction in C. jejuni in all groups, regardless of treatment. Colonization dynamics of C. jejuni in the cecal samples analyzed by qPCR showed no difference between any of the treatments in Experiment 1 or 2. In both experiments, no treatment effects on the cecal microbiota were observed. However, proportional changes in the bacterial composition were observed after the C. jejuni challenge, suggesting that colonization affected the gut microbiota. Overall, the daily intake of LP256 was not effective in reducing C. jejuni colonization in either broiler type at the end of the rearing period and did not cause any significant changes in the birds' cecal microbiota composition.
Collapse
Affiliation(s)
- Eliška Valečková
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Li Sun
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Helen Wang
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Faruk Dube
- Department of Biomedical Science and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Emma Ivarsson
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Kamyar Mogodiniyai Kasmaei
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Patrik Ellström
- Department of Medical Sciences, Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| | - Helena Wall
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
14
|
Amin M, Adams MB, Burke CM, Bolch CJS. Screening and activity of potential gastrointestinal probiotic lactic acid bacteria against Yersinia ruckeri O1b. JOURNAL OF FISH DISEASES 2023; 46:369-379. [PMID: 36601713 DOI: 10.1111/jfd.13750] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Yersiniosis of cultured Atlantic salmon is a recurrent fish health management challenge in many continents. The causative organism, Yersinia ruckeri, can reside latently in the gut and lead to acute infection and disease during hatchery and sea-transfer stages. One potential prevention approach is the administration of probiotic bacteria to suppress gut colonization of Y. ruckeri. Our study aimed to isolate and identify anti-Yersinia activity among lactic acid bacteria (LAB) isolated from the gastrointestinal tract (GIT) of aquatic animals. Of the 186 aquatic GIT isolates examined, three strains showed diffusible antimicrobial activity towards Y. ruckeri O1b. Analysis of 16 s rRNA gene sequences indicated the three bacterial strains were Enterococci, related to Enterococcus sp. (99%), Enterococcus thailandicus (99%), and Enterococcus durans (99%). Anti-Yersinia activity was maintained at neutral pH (~6.5-7.0), and in-vitro environmental tolerance assays showed the three strains could withstand simulated salmonids gastrointestinal tract conditions of: low pH (3.4) and 3% bile salt content. All three Enterococci strains showed higher adhesion to the intestinal mucus of Atlantic salmon than Y. ruckeri O1b (E. durans 24%, E. enterococcus sp. 25% and E. thailandicus 98%, compared to Y. ruckeri O1b 5%). However, only Enterococcus sp. and E. thailandicus were able to grow in the salmon intestinal mucus broth while E. durans showed no growth. Anti-Yersinia activity was completely inactivated by proteinase-K treatment, suggesting that the active compound/s are proteinaceous and may be bacteriocin-like inhibitory substances (BLIS). Our data indicate that Enterococcus sp. MA176 and E. thailandicus MA122 are potential probionts for the prevention of yersiniosis in salmonids. Further in-vivo studies are required to determine whether these bacteria reduce the incidence of yersiniosis in Atlantic salmon.
Collapse
Affiliation(s)
- Muhamad Amin
- Institute for Marine and Antarctic Studies (IMAS), Launceston, University of Tasmania, Tasmania, Australia
- Department of Aquaculture, Faculty of Fisheries and Marine, Universitas Airlangga, Surabaya, Indonesia
| | - Mark B Adams
- Institute for Marine and Antarctic Studies (IMAS), Launceston, University of Tasmania, Tasmania, Australia
| | - Christopher M Burke
- Institute for Marine and Antarctic Studies (IMAS), Launceston, University of Tasmania, Tasmania, Australia
| | - Christopher J S Bolch
- Institute for Marine and Antarctic Studies (IMAS), Launceston, University of Tasmania, Tasmania, Australia
| |
Collapse
|
15
|
Gao X, Yu J, Chang L, Wang Y, Sun X, Mu G, Qian F. In vitro antibacterial activity of Bacillus coagulans T242 on Caco-2 cells infected with Salmonella Typhimurium. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
16
|
Noor S, Ali S, Riaz S, Sardar I, Farooq MA, Sajjad A. Chemopreventive role of probiotics against cancer: a comprehensive mechanistic review. Mol Biol Rep 2023; 50:799-814. [PMID: 36324027 DOI: 10.1007/s11033-022-08023-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Probiotics use different mechanisms such as intestinal barrier improvement, bacterial translocation and maintaining gut microbiota homeostasis to treat cancer. Probiotics' ability to induce apoptosis against tumor cells makes them more effective to treat cancer. Moreover, probiotics stimulate immune function through an immunomodulation mechanism that induces an anti-tumor effect. There are different strains of probiotics, but the most important ones are lactic acid bacteria (LAB) having antagonistic and anti-mutagenic activities. Live and dead probiotics have anti-inflammatory, anti-proliferative, anti-oxidant and anti-metastatic properties which are useful to fight against different diseases, especially cancer. The main focus of this article is to review the anti-cancerous properties of probiotics and their role in the reduction of different types of cancer. However, further investigations are in progress to improve the efficiency of probiotics in cancer treatment.
Collapse
Affiliation(s)
- Shehzeen Noor
- Applied Entomology and Medical Toxicology and Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Shaukat Ali
- Applied Entomology and Medical Toxicology and Laboratory, Department of Zoology, Government College University, Lahore, Pakistan.
| | - Shumaila Riaz
- Applied Entomology and Medical Toxicology and Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Iqra Sardar
- Applied Entomology and Medical Toxicology and Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Muhammad Adeel Farooq
- Applied Entomology and Medical Toxicology and Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Ayesha Sajjad
- Applied Entomology and Medical Toxicology and Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| |
Collapse
|
17
|
Hossain TJ, Mozumder HA, Ali F, Akther K. Inhibition of Pathogenic Microbes by the Lactic Acid Bacteria Limosilactobacillus Fermentum Strain LAB-1 and Levilactobacillus Brevis Strain LAB-5 Isolated from the Dairy Beverage Borhani. CURRENT RESEARCH IN NUTRITION AND FOOD SCIENCE JOURNAL 2022. [DOI: 10.12944/crnfsj.10.3.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Lactic acid bacteria (LAB) with prominent antimicrobial effects against pathogens have been reported in several milk-based and plant-based foods. Borhani is a popular beverage prepared from the ingredients of both dairy and plant origins and is believed to be highly beneficial for health. Herein, we report the pathogen-inhibitory activity of two borhani-associated lactic acid bacteria (LAB), Limosilactobacillus fermentum strain LAB-1 and Levilactobacillus brevis strain LAB-5. Their antimicrobial activity was primarily assessed using the cell free supernatant (CFS) by agar diffusion technique in which both strains showed strong antimicrobial effects against several pathogenic and spoilage microorganisms including Acinetobacter baumannii, Bacillus cereus, Bacillus subtilis, Escherichia coli, Klebsiella pneumonia, Pseudomonas aeruginosa, Salmonella abony, Salmonella typhi, Shigella flexneri, and Staphylococcus aureus. The L. fermentum strain with its ability to inhibit all the target pathogens appeared to be more effective with larger inhibition-zone formation as compared to the L. brevis strain which also successfully inhibited all pathogens but had relatively little effects on A. baumannii. The extent of their inhibitory effect was further assessed by co-culture inhibition assay in which growth of the test microbes was monitored for 24 hours in presence of the CFS. The CFS of both lactic acid bacteria could effectively inhibit growth of the pathogenic microbes for a significant period of time. While the L. fermentum strain could almost completely stop growth of all test organisms, the L. brevis strain was particularly effective against Shigella flexneri and the Salmonella species. Our study, therefore, suggests the presence of beneficial lactic acid bacteria in borhani which can be of important use as antimicrobial agents in functional foods and therapeutics to help acquire protection against drug resistant pathogens.
Collapse
Affiliation(s)
- Tanim Jabid Hossain
- 1Department of Biochemistry and Molecular Biology, University of Chittagong, Chattogram, Bangladesh
| | | | - Ferdausi Ali
- 3Department of Microbiology, University of Chittagong, Chattogram Bangladesh
| | - Khadiza Akther
- 2Biochemistry and Pathogenesis of Microbes Research Group, Chattogram, Bangladesh
| |
Collapse
|
18
|
Characterization of probiotic properties and development of banana powder enriched with freeze-dried Lacticaseibacillus paracasei probiotics. Heliyon 2022; 8:e11063. [PMID: 36276732 PMCID: PMC9578979 DOI: 10.1016/j.heliyon.2022.e11063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/11/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Lacticaseibacillus paracasei is one of the probiotic bacteria widely identified from fermented foods. The application of L. paracasei is commonly used in dairy and non-dairy products. To investigate the probiotic properties of L. paracasei cells including their acid, pepsin, pancreatin, and bile salt tolerances; adhesion ability; antipathogen activity; and antibiotic susceptibility, L. paracasei cells were incorporated into skim milk and lyophilized by freeze drying. Freeze-dried probiotic cells were add to green banana powder and low moisture additive food matrices and a storage analysis of the product was performed. The result showed that L. paracasei cells possessed potentially beneficial probiotic properties to survive stress in the gastrointestinal tract (GIT) and functional abilities as an anti-enteropathogenic agent; they were also safe to use and displayed antibiotic properties. Furthermore, the probiotic freeze-drying technique preserved high probiotic cell survivability (1011 CFU/g). In term of prolonged storage (60 days), the powder product was stable and maintained probiotic survival (107 CFU/g) while excluding non-probiotic growth. In conclusion, L. paracasei displayed probiotic properties in the GIT and was judged to be a highly acceptable product as a probiotics–banana rehydrated beverage.
Collapse
|
19
|
Mehra Y, Rajesh NG, Viswanathan P. Analysis and Characterization of Lactobacillus paragasseri and Lacticaseibacillus paracasei: Two Probiotic Bacteria that Can Degrade Intestinal Oxalate in Hyperoxaluric Rats. Probiotics Antimicrob Proteins 2022; 14:854-872. [PMID: 35699895 DOI: 10.1007/s12602-022-09958-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
Abstract
In the present study, we characterized the probiotic properties of two commercially available bacterial strains, Lactobacillus paragasseri UBLG-36 and Lacticaseibacillus paracasei UBLPC-87, and evaluated their ability to degrade oxalate in vitro and in a hyperoxaluria-induced nephrolithiasis rat model. UBLG-36 harboring two oxalate catabolizing genes, oxalyl coenzyme A decarboxylase (oxc) and formyl coenzyme A transferase (frc), was previously shown to degrade oxalate in vitro effectively. Here, we show that UBLPC-87, lacking both oxc and frc, could still degrade oxalate in vitro. Both these strains harbored several potential putative probiotic genes that may have conferred them the ability to survive in low pH and 0.3% bile, resist antibiotic stress, show antagonistic activity against pathogenic bacteria, and adhere to epithelial cell surfaces. We further evaluated if UBLG-36 and UBLPC-87 could degrade oxalate in vivo and prevent hyperoxaluria-induced nephrolithiasis in rats. We observed that rats treated with 4.5% sodium oxalate (NaOx) developed hyperoxaluria and renal stones. However, when pre-treated with UBLG-36 or UBLPC-87 before administering 4.5% NaOx, the rats were protected against several pathophysiological manifestations of hyperoxaluria. Compared to the hyperoxaluric rats, the probiotic pre-treated rats showed reduced urinary excretion of oxalate and urea (p < 0.05), decreased serum blood urea nitrogen and creatinine (p < 0.05), alleviated stone formation and renal histological damage, and an overall decrease in renal tissue oxalate and calcium content (p < 0.05). Taken together, both UBLG-36 and UBLPC-87 are effective oxalate catabolizing probiotics capable of preventing hyperoxaluria and alleviating renal damage associated with nephrolithiasis.
Collapse
Affiliation(s)
- Yogita Mehra
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Nachiappa Ganesh Rajesh
- Department of Pathology, Jawaharlal Institute of Postgraduate Medical Education & Research, Pondicherry, India
| | - Pragasam Viswanathan
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
20
|
Zamani N, Fazeli MR, Sepahi AA, Shariatmadari F. A new probiotic Lactobacillus plantarum strain isolated from traditional dairy together with nanochitosan particles shows the synergistic effect on aflatoxin B1 detoxification. Arch Microbiol 2022; 204:624. [DOI: 10.1007/s00203-022-03231-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 11/02/2022]
|
21
|
Organic Acids Secreted by Lactobacillus spp. Isolated from Urine and Their Antimicrobial Activity against Uropathogenic Proteus mirabilis. Molecules 2022; 27:molecules27175557. [PMID: 36080323 PMCID: PMC9457960 DOI: 10.3390/molecules27175557] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/21/2022] Open
Abstract
The natural microbiota of the urinary tract includes Lactobacillus spp., which secrete molecules with antimicrobial properties and have antagonistic activity against many pathogens. This paper focuses on the antibacterial effect of Lactobacillus strains isolated from urine against clinical strains of Proteus mirabilis isolated from kidney stones and from urine with coexisting urolithiasis. The study involved analyzing the main antimicrobial molecules secreted by Lactobacillus. In order to indicate which agent had the strongest antimicrobial effect, the supernatants were made alkaline and treated with catalase and high temperature. Both treated and untreated supernatants were analyzed for their activity. Exposing uropathogens to all untreated cell-free supernatants of Lactobacillus significantly reduced their growth, and it was established that these properties were related to organic acid secretion by these strains. Using LC–MS/MS and spectrophotometric techniques, lactic, citric, and succinic acids were determined qualitatively and quantitatively. The influence of these acids on the P. mirabilis growth and biofilm formation and their influence on membrane permeability were also investigated. The results indicate that organic acids secreted by Lactobacillus strains have a high antibacterial potential and could be used as novel agents in the treatment of urinary tract infections caused by P. mirabilis.
Collapse
|
22
|
In vitro and in vivo evaluation of Bacillus clausii against Schistosoma mansoni. Acta Trop 2022; 235:106669. [PMID: 36037981 DOI: 10.1016/j.actatropica.2022.106669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/28/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022]
Abstract
Experimental studies and clinical trials have been showing that probiotics are promising in the prevention and control of parasite infections. B. clausii, obtained from Enterogermina®, was cultured to obtain cell-free culture supernatant (CFS) and spores to evaluate its schistosomicidal effect in vitro and in vivo against Schistosoma mansoni, respectively. For in vitro and in vivo analysis mice were infected with 120 and 50 cercariae, respectively. Couples of adult worms, recovered on day 45 of infection, were exposed to CFS. The in vivo assay was performed for 100 days, where all animals were infected on the 30th day. Four experimental groups were formed, as follows: G1 - Saline solution from the 1st until the 100th day; G2 - B. clausii from the 1st until the 100th day; G3 - B. clausii from the 68th day (onset of oviposition) until the 100th day and G4 - PZQ (50 mg/Kg) from the 75th until the 79th day. In vitro, CFS of B. clausii does not caused mortality nor changed the motility on S. mansoni adult worms. G2 and G3 showed reduction of the 68.58 and 44.25% in the number of eggs eliminated in the feces and 34.29 and 53.6% and 22.8 and 48.49% the number of eggs trapped in the liver and intestine, respectively. Furthermore, in both therapeutic regimens G2 and G3, B. clausii increased the percentage of dead eggs in the intestinal tissue. B. clausii CFS, in vitro, does not showed action against S. mansoni and that treatment with B. clausii spores modulates favorably the parasitological parameters in the experimental infection of S. mansoni.
Collapse
|
23
|
Anticandidal and Antibiofilm Effect of Synbiotics including Probiotics and Inulin-Type Fructans. Antibiotics (Basel) 2022; 11:antibiotics11081135. [PMID: 36010004 PMCID: PMC9405293 DOI: 10.3390/antibiotics11081135] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Background: There is great interest in the search for new alternatives to antimicrobial drugs, and the use of synbiotics is a promising approach to this problem. This study evaluated the growth inhibition and antibiofilm activity of the short-chain fatty acids produced by Lacticaseibacillus rhamnosus and Pediococcus acidilactici in combination with inulin-type fructans against Candida albicans. Methods: The growth inhibition of Candida was evaluated using microdilution analysis in 96-well microtiter plates; different concentrations of cell-free supernatants of Lacticaseibacillus rhamnosus and Pediococcus acidilactici were exposed to Candida albicans. The antibiofilm assessment was carried out using the crystal violet staining assay. The short-chain fatty acids were analyzed by gas chromatography. Results: The clinically isolated Candida albicans interacted with supernatants from Lacticaseibacillus rhamnosus and Pediococcus acidilactici and showed significant growth inhibition and antibiofilm formation versus the controls. Lactate and acetic acid were elevated in the supernatants. The results suggest that the supernatants obtained from the synbiotic combinations of Lacticaseibacillus rhamnosus and Pediococcus acidilactici with inulin-type fructans can inhibit the growth and biofilm formation against a clinically isolated Candida albicans strain. Conclusions: These results suggest that synbiotic formulations could be a promising alternative to antifungal drugs in candidiasis therapy.
Collapse
|
24
|
Aalipanah S, Fazeli MR, Akhavan Sepahi A, Shariatmadari F. Synergistic Effects of Probiotic Bifidobacterium Isolated from Chicken's Intestine in Combination with Polyvinylpyrrolidone on Reduction of Aflatoxin B 1. Lett Appl Microbiol 2022; 75:1160-1170. [PMID: 35778982 DOI: 10.1111/lam.13783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 10/17/2022]
Abstract
Food contamination with aflatoxin is one of the most critical concerns of health professionals. One of the best ways to reduce aflatoxin content in food is probiotics. Therefore, this study was performed to isolate Bifidobacterium from the chick's intestine; evaluate its probiotic activities and its application with Polyvinylpyrrolidone (PVP) to reduce aflatoxin B1 (AFB1 ) in the medium were investigated. Samples were isolated from the chick's intestine, and Bifidobacterium was isolated and identified by biochemical and molecular methods. Next, the potential probiotic characterization was assessed. Afterward, the effect of selected isolate and PVP on reducing AFB1 in the medium was studied using ELISA and HPLC. Biochemical and molecular evaluations indicated isolation of Bifidobacterium bifidum strain from chick's intestine. One of the B. bifidum strains was selected for the next steps, which showed potential probiotic characterization and the ability to reduce the concentration of AFB1 in the medium (50% reduction). When used in combination with PVP showed synergistic effects in reducing the concentration of AFB1 from the medium (up to 90%). In conclusion, it was found that selected B. bifidum strains and PVP could have synergistic effects in reducing AFB1 toxin in a medium up to 90%.
Collapse
Affiliation(s)
- Sorour Aalipanah
- Department of Microbiology, Faculty of Biological Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Mohammad Reza Fazeli
- Department of drug and food control, Pharmaceutical quality assurance research center, Faculty of Pharmacy, Tehran University, Tehran, Iran
| | - Abbas Akhavan Sepahi
- Department of Microbiology, Faculty of Biological Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Farid Shariatmadari
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
25
|
Nalla K, Manda NK, Dhillon HS, Kanade SR, Rokana N, Hess M, Puniya AK. Impact of Probiotics on Dairy Production Efficiency. Front Microbiol 2022; 13:805963. [PMID: 35756055 PMCID: PMC9218901 DOI: 10.3389/fmicb.2022.805963] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 04/07/2022] [Indexed: 12/12/2022] Open
Abstract
There has been growing interest on probiotics to enhance weight gain and disease resistance in young calves and to improve the milk yield in lactating animals by reducing the negative energy balance during the peak lactation period. While it has been well established that probiotics modulate the microbial community composition in the gastrointestinal tract, and a probiotic-mediated homeostasis in the rumen could improve feed conversation competence, volatile fatty acid production and nitrogen flow that enhances the milk composition as well as milk production, detailed changes on the molecular and metabolic level prompted by probiotic feed additives are still not understood. Moreover, as living biotherapeutic agents, probiotics have the potential to directly change the gene expression profile of animals by activating the signalling cascade in the host cells. Various direct and indirect components of probiotic approaches to improve the productivity of dairy animals are discussed in this review.
Collapse
Affiliation(s)
- Kirankumar Nalla
- Department of Plant Science, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Naresh Kumar Manda
- Department of Biosensors and Nanotechnology, CSIR-Institute of Microbial Technology, Chandigarh, India
| | | | - Santosh R Kanade
- Department of Plant Science, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Namita Rokana
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Matthias Hess
- Systems Microbiology and Natural Product Discovery Laboratory, Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Anil Kumar Puniya
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|
26
|
Mekky AF, Hassanein WA, Reda FM, Elsayed HM. Anti-biofilm potential of Lactobacillus plantarum Y3 culture and its cell-free supernatant against multidrug-resistant uropathogen Escherichia coli U12. Saudi J Biol Sci 2022; 29:2989-2997. [PMID: 35531251 PMCID: PMC9073023 DOI: 10.1016/j.sjbs.2022.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 11/23/2022] Open
Abstract
Uropathogens develop biofilms on urinary catheters, resulting in persistent and chronic infections that are associated with resistance to antimicrobial therapy. Therefore, the current study was performed to control biofilm-associated urinary tract infections through assaying the anti-biofilm ability of lactic acid bacteria (LAB) against multidrug-resistant (MDR) uropathogens. Twenty LAB were obtained from pickles and fermented dairy products, and screened for their anti-biofilm and antimicrobial effects against MDR Escherichia coli U12 (ECU12). Lactobacillus plantarum Y3 (LPY3) (MT498405), showed the highest inhibitory effect and biofilm production. Pre-coating of a microtitre plate with LPY3 culture was more potent than co-incubation. Pre-coating with LPY3 culture generated a higher anti-biofilm effect with an adherence of 14.5% than cell free supernatant (CFS) (31.2%). Anti-biofilm effect of CFS was heat stable up to 100 °C with higher effect at pH 4-6. Pre-coating urinary catheter with LPY3 culture reduced the CFU/cm2 of ECU12 attached to the catheter for up to seven days. Meanwhile, CFS reduced the ECU12 CFU/cm2 for up to four days. Scanning electron microscope confirmed the reduction of ECU12 adherence to catheters after treatment with CFS. Therefore, Lactobacillus plantarum can be applied in medical devices as prophylactic agent and as a natural biointervention to treat urinary tract infections.
Collapse
Key Words
- Adherence
- BHI, brain heart infusion
- Biofilms
- CAUTI, catheter associated urinary tract infection
- CFU, colony forming unit
- CRA, congo red agar
- CV, crystal violet
- LAB, Lactic acid bacteria
- LPY3, Lactobacillus plantarum Y3
- Lactic acid bacteria
- MRS, De Man, Rogosa, and Sharpe
- PBS, phosphate-buffered saline
- SEM, scanning electron microscope
Collapse
Affiliation(s)
- Asmaa F. Mekky
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Wesam A. Hassanein
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Fifi M. Reda
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Hanan M. Elsayed
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
27
|
Wu C, Dai C, Tong L, Lv H, Zhou X. Evaluation of the Probiotic Potential of Lactobacillus delbrueckii ssp. indicus WDS-7 Isolated from Chinese Traditional Fermented Buffalo Milk In Vitro. Pol J Microbiol 2022; 71:91-105. [PMID: 35635173 PMCID: PMC9152907 DOI: 10.33073/pjm-2022-012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/19/2022] [Indexed: 11/08/2022] Open
Abstract
The present study aimed to evaluate the probiotic potential of lactic acid bacteria (LAB) isolated from Chinese traditional fermented buffalo milk. Out of 22 isolates, 11 were putatively identified as LAB preliminarily. A total of six LAB strains displayed strong adhesion to HT-29 cells and all these strains showed preferable tolerance to artificially simulated gastrointestinal juices. WDS-4, WDS-7, and WDS-18 exhibited excellent antioxidant capacities, including DPPH radical, ABTS+ radical, and superoxide anion scavenging activities. Compared with the other two LAB strains, WDS-7 had a stronger inhibition effect on four pathogens. Based on the 16S rRNA gene sequencing and phylogenetic analysis, WDS-7 was identified as Lactobacillus delbrueckii ssp. indicus and selected to assess the potential and safety of probiotics further. The results revealed that WDS-7 strain had a strong capacity for acid production and good thermal stability. WDS-7 strain also possessed bile salt hydrolase (BSH) activity. Compared to LGG, WDS-7 was a greater biofilm producer on the plastic surface and exhibited a better EPS production ability (1.94 mg/ml as a glucose equivalent). WDS-7 was proved to be sensitive in the majority of tested antibiotics and absence of hemolytic activity. Moreover, no production of biogenic amines and β-glucuronidase was observed in WDS-7. The findings of this work indicated that L. delbrueckii ssp. indicus WDS-7 fulfilled the probiotic criteria in vitro and could be exploited for further evaluation in vivo.
Collapse
Affiliation(s)
- Changjun Wu
- Anhui Academy of Medical Sciences , Hefei , Anhui Province , China
| | - Chenwei Dai
- Anhui Academy of Medical Sciences , Hefei , Anhui Province , China
| | - Lin Tong
- Anhui Academy of Medical Sciences , Hefei , Anhui Province , China
| | - Han Lv
- Anhui Academy of Medical Sciences , Hefei , Anhui Province , China
| | - Xiuhong Zhou
- Anhui Academy of Medical Sciences , Hefei , Anhui Province , China
| |
Collapse
|
28
|
Moraffah F, Kiani M, Abdollahi M, Yoosefi S, Vatanara A, Samadi N. In Vitro-In Vivo Correlation for the Antibacterial Effect of Lactiplantibacillus plantarum as a Topical Healer for Infected Burn Wound. Probiotics Antimicrob Proteins 2022; 14:675-689. [PMID: 35349102 DOI: 10.1007/s12602-022-09934-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2022] [Indexed: 01/20/2023]
Abstract
Difficulties in delivering antimicrobial agents to wound areas and emersion of multiple drug resistant organisms (MDROs) have converted managing burn infections into a complicated task in medicine. Probiotics emerged not only as a probable solution for burn infections but also as an accelerator in the healing process. The probability of in vitro-in vivo correlation (IVIVC) in probiotic activity leads to lower costs in finding new therapeutic options. Simulated wound fluid (SWF) was used to evaluate the antibacterial function of Lactiplantibacillus plantarum in wounds. The growth parameters in SWF were evaluated using a logistic model to predict growth behavior in the wound area. In addition, probiotic antimicrobial activity and secretion of antibacterial substances in SWF were also studied. Data were used to select the initial dose and apply frequency for in vivo study. The wound models were infected by two main pathogens (Pseudomonas aeruginosa or Staphylococcus aureus). In vitro results showed less lag time associated with considerable acid production in SWF. In the following, secretion of antimicrobial substances and co-aggregation with pathogens became more important. The susceptibility of pathogens to these factors was different, and culture medium affected the yield of each factor involved in eliminating pathogens. Histological analysis and macroscopic examination of wounds revealed probiotics as effective as positive control or more. There were some differences in the antibacterial functions of probiotics in simulated and real wound environments. The in vitro effect of probiotics on removal of pathogens was not the same as the trend seen in vivo.
Collapse
Affiliation(s)
- Fatemeh Moraffah
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Melika Kiani
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Yoosefi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Vatanara
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Nasrin Samadi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
- Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
Anjum M, Laitila A, Ouwehand AC, Forssten SD. Current Perspectives on Gastrointestinal Models to Assess Probiotic-Pathogen Interactions. Front Microbiol 2022; 13:831455. [PMID: 35173703 PMCID: PMC8841803 DOI: 10.3389/fmicb.2022.831455] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/06/2022] [Indexed: 12/12/2022] Open
Abstract
There are different models available that mimic the human intestinal epithelium and are thus available for studying probiotic and pathogen interactions in the gastrointestinal tract. Although, in vivo models make it possible to study the overall effects of a probiotic on a living subject, they cannot always be conducted and there is a general commitment to reduce the use of animal models. Hence, in vitro methods provide a more rapid tool for studying the interaction between probiotics and pathogens; as well as being ethically superior, faster, and less expensive. The in vitro models are represented by less complex traditional models, standard 2D models compromised of culture plates as well as Transwell inserts, and newer 3D models like organoids, enteroids, as well as organ-on-a-chip. The optimal model selected depends on the research question. Properly designed in vitro and/or in vivo studies are needed to examine the mechanism(s) of action of probiotics on pathogens to obtain physiologically relevant results.
Collapse
Affiliation(s)
| | | | | | - Sofia D. Forssten
- International Flavors and Fragrances, Health and Biosciences, Danisco Sweeteners Oy, Kantvik, Finland
| |
Collapse
|
30
|
Evaluation of inhibitory and probiotic properties of lactic acid bacteria isolated from vaginal microflora. Folia Microbiol (Praha) 2022; 67:427-445. [PMID: 35083726 DOI: 10.1007/s12223-021-00942-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 12/10/2021] [Indexed: 01/02/2023]
Abstract
Lactic acid bacteria (LABs) are known to secrete species-specific secondary metabolites that could be utilized as novel therapeutics against multi-drug resistant pathogens. This study aimed to investigate the antagonistic and probiotic properties of LABs isolated from the vaginal ecosystem of healthy women and to assess the stability of their antagonistic metabolites. Among 43 strains isolated from healthy women, eight LAB strains exhibited detectable BLISs (bacteriocin-like substances) producing ability against E. faecalis (JH-86), S. aureus (JH-68), Streptococcus sp. (JH-80), and E. coli (JH-101), with zone of inhibition (ZI) ranging from 9.00 to 20.33 mm and minimum inhibitory concentrations (MICs) from 62.5 to 500 μL/mL, respectively. The partially purified compounds extracted from cell free supernatant (CFS) displayed an increase in antagonistic activity based on ZI, 9.67-30.17 mm and MICs, 3.91-15.63 mg/mL, respectively. In a time-kill study, both crude and partially purified compounds of Limosilactobacillus reuteri (MT180537), Pediococcus pentosaceus (MT176555), Limosilactobacillus pontis (MW362838), and Levilactobacillus brevis (MW362790) exhibited significant bactericidal action against E. faecalis (MW051601), the most frequent etiological agent of aerobic vaginitis (AV). The active secondary metabolites from L. reuteri (MT180537), P. pentosaceus (MT176555), and L. pontis (MW362838) were protein in nature and remained stable under different physicochemical conditions. Regarding probiotic properties, the strains presented probiotic characteristics, i.e., good acid, bile salt tolerance, aggregation properties, and biofilm formation. The strains were susceptible to most of the commonly used antibiotics and had no hemolytic activity. In conclusion, antagonistic compounds or BLIS produced by L. reuteri (MT180537) could be investigated further for preparation of ointments to treat AV.
Collapse
|
31
|
Antibacterial activity of supernatants of Lactoccocus lactis, Lactobacillus rhamnosus, Pediococcus pentosaceus and curcumin against Aeromonas hydrophila. In vitro study. Vet Res Commun 2022; 46:459-470. [PMID: 34997440 DOI: 10.1007/s11259-021-09871-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/30/2021] [Indexed: 10/19/2022]
Abstract
Secretions of beneficial intestinal bacteria can inhibit the growth and biofilm formation of a wide range of microorganisms. Curcumin has shown broad spectrum antioxidant, anti-inflammatory, and antimicrobial potential. It is important to evaluate the influence of these secretions with bioactive peptides, in combination with curcumin, to limit growth and inhibit biofilm formation of pathogenic bacteria of importance in aquaculture. In the present study, the supernatants of Lactoccocus lactis NZ9000, Lactobacillus rhamnosus GG and Pediococcus pentosaceus NCDO 990, and curcumin (0,1,10,25 and 50 μM) were used to evaluate their efficacy in growth, inhibition biofilm and membrane permeability of Aeromonas hydrophila CAIM 347 (A. hydrophila). The supernatants of probiotics and curcumin 1,10 and 25 μM exerted similar effects in reducing the growth of A. hydrophila at 12 h of interaction. The supernatants of the probiotics and curcumin 25 and 50 μM exerted similar effects in reducing the biofilm of A. hydrophila. There is a significant increase in the membrane permeability of A. hydrophila in interaction with 50 μM curcumin at two hours of incubation and with the supernatants separately in the same period. Different modes of action of curcumin and bacteriocins separately were demonstrated as effective substitutes for antibiotics in containing A. hydrophila and avoiding the application of antibiotics. The techniques implemented in this study provide evidence that there is no synergy between treatments at the selected concentrations and times.
Collapse
|
32
|
Elmansy EA, Elkady EM, Asker MS, Abdou AM, Abdallah NA, Amer SK. Exopolysaccharide produced by Lactiplantibacillus plantarum RO30 isolated from Romi cheese: characterization, antioxidant and burn healing activity. World J Microbiol Biotechnol 2022; 38:245. [PMID: 36287274 PMCID: PMC9605930 DOI: 10.1007/s11274-022-03439-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/10/2022] [Indexed: 11/26/2022]
Abstract
Microbial exopolysaccharides (EPSs) extracted from lactic acid bacteria (LAB) are generally recognized as safe. They have earned popularity in recent years because of their exceptional biological features. Therefore, the present study main focus was to study EPS-production from probiotic LAB and to investigate their antioxidant and burn wound healing efficacy. Seventeen LAB were isolated from different food samples. All of them showed EPS-producing abilities ranging from 1.75 ± 0.05 to 4.32 ± 0.12 g/l. RO30 isolate (from Romi cheese) was chosen, due to its ability to produce the highest EPS yield (4.23 ± 0.12 g/l). The 16S rDNA sequencing showed it belonged to the Lactiplantibacillus plantarum group and was further identified as L. plantarum RO30 with accession number OL757866. It displayed well in vitro probiotic properties. REPS was extracted and characterized. The existence of COO−, OH and amide groups corresponding to typical EPSs was confirmed via FTIR. It was constituted of glucuronic acid, mannose, glucose, and arabinose in a molar ratio of 2.2:0.1:0.5:0.1, respectively. The average molecular weight was 4.96 × 104 g/mol. In vitro antioxidant assays showed that the REPS possesses a DPPH radical scavenging ability of 43.60% at 5 mg/ml, reducing power of 1.108 at 10 mg/ml, and iron chelation activity of 72.49% and 89.78% at 5 mg/ml and 10 mg/ml, respectively. The healing efficacy of REPS on burn wound models in albino Wistar rats showed that REPS at 0.5% (w/w) concentration stimulated the process of healing in burn areas. The results suggested that REPS might be useful as a burn wound healing agent.
Collapse
Affiliation(s)
- Eman A. Elmansy
- Microbial Biotechnology Department, Institute of Biotechnology Research, National Research Centre, El-Tahreer Street, Dokki, Cairo, 12622, Egypt
| | - Ebtsam M. Elkady
- Microbial Biotechnology Department, Institute of Biotechnology Research, National Research Centre, El-Tahreer Street, Dokki, Cairo, 12622, Egypt
| | - Mohsen S. Asker
- Microbial Biotechnology Department, Institute of Biotechnology Research, National Research Centre, El-Tahreer Street, Dokki, Cairo, 12622, Egypt
| | - Amr M. Abdou
- Department of Microbiology and Immunology, National Research Centre, El-Tahreer Street, Dokki, Cairo, 12622 Egypt
| | - Nagwa A. Abdallah
- Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Shaimaa K. Amer
- Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
33
|
In vitro screening for potential probiotic properties of Ligilactobacillus salivarius isolated from cattle calves. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
34
|
Antimicrobial activity of bacteriocin produced by a new Latilactobacillus curvatus sp.LAB-3H isolated from traditional yogurt. Arch Microbiol 2021; 204:101. [DOI: 10.1007/s00203-021-02641-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 01/25/2023]
|
35
|
Lactobacillus reuteri and Enterococcus faecium from Poultry Gut Reduce Mucin Adhesion and Biofilm Formation of Cephalosporin and Fluoroquinolone-Resistant Salmonella enterica. Animals (Basel) 2021; 11:ani11123435. [PMID: 34944212 PMCID: PMC8697943 DOI: 10.3390/ani11123435] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/29/2021] [Accepted: 09/03/2021] [Indexed: 12/16/2022] Open
Abstract
Non-typhoidal Salmonella (NTS) can cause infection in poultry, livestock, and humans. Although the use of antimicrobials as feed additives is prohibited, the previous indiscriminate use and poor regulatory oversight in some parts of the world have resulted in increased bacterial resistance to antimicrobials, including cephalosporins and fluoroquinolones, which are among the limited treatment options available against NTS. This study aimed to isolate potential probiotic lactic acid bacteria (LAB) strains from the poultry gut to inhibit fluoroquinolone and cephalosporin resistant MDR Salmonella Typhimurium and S. Enteritidis. The safety profile of the LAB isolates was evaluated for the hemolytic activity, DNase activity, and antibiotic resistance. Based on the safety results, three possible probiotic LAB candidates for in vitro Salmonella control were chosen. Candidate LAB isolates were identified by 16S rDNA sequencing as Lactobacillus reuteri PFS4, Enterococcus faecium PFS13, and Enterococcus faecium PFS14. These strains demonstrated a good tolerance to gastrointestinal-related stresses, including gastric acid, bile, lysozyme, and phenol. In addition, the isolates that were able to auto aggregate had the ability to co-aggregate with MDR S. Typhimurium and S. Enteritidis. Furthermore, LAB strains competitively reduced the adhesion of pathogens to porcine mucin Type III in co-culture studies. The probiotic combination of the selected LAB isolates inhibited the biofilm formation of S. Typhimurium FML15 and S. Enteritidis FML18 by 90% and 92%, respectively. In addition, the cell-free supernatant (CFS) of the LAB culture significantly reduced the growth of Salmonella in vitro. Thus, L. reuteri PFS4, E. faecium PFS13, and E. faecium PFS 14 are potential probiotics that could be used to control MDR S. Typhimurium and S. Enteritidis in poultry. Future investigations are required to elucidate the in vivo potential of these probiotic candidates as Salmonella control agents in poultry and animal feed.
Collapse
|
36
|
Dubey AK, Podia M, Priyanka, Raut S, Singh S, Pinnaka AK, Khatri N. Insight Into the Beneficial Role of Lactiplantibacillus plantarum Supernatant Against Bacterial Infections, Oxidative Stress, and Wound Healing in A549 Cells and BALB/c Mice. Front Pharmacol 2021; 12:728614. [PMID: 34803678 PMCID: PMC8600115 DOI: 10.3389/fphar.2021.728614] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/28/2021] [Indexed: 12/29/2022] Open
Abstract
Lactiplantibacillus plantarum MTCC 2621 is a well-characterized probiotic strain and is reported to possess many health benefits. However, the wound healing potential of this probiotic is yet to be explored. Here, we have assessed the antibacterial, antioxidant, and wound healing activities of cell-free supernatant of Lactiplantibacillus plantarum MTCC 2621 (Lp2621). Lp2621 exhibited excellent antibacterial activity against the indicator bacteria in the agar well diffusion assay. Lp2621 did not show any hemolytic activity. The safety of Lp2621 gel was established using the skin irritation assay in BALB/c mice, and no dermal reactions were observed. The supernatant showed 60–100% protection of A549 cells against H2O2-induced stress. In the scratch assay, Lp2621 accelerated wound healing after 24 h of treatment. The percent wound healing was significantly higher in cells treated with Lp2621 at 18–24 h posttreatment. In an excision wound healing in mice, topical application of Lp2621 gel showed faster healing than the vehicle- and betadine-treated groups. Similar wound healing activity was observed in wounds infected with Staphylococcus aureus. Histological examination revealed better wound healing in Lp2621-treated mice. Topical treatment of the wounds with Lp2621 gel resulted in the upregulation of pro-inflammatory cytokine IL-6 in the early phase of wound healing and enhanced IL-10 expression in the later phase. These findings unveil a protective role of Lp2621 against bacterial infection, oxidative stress, and wound healing.
Collapse
Affiliation(s)
- Ashish Kumar Dubey
- IMTECH Centre for Animal Resources and Experimentation (iCARE), Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mansi Podia
- IMTECH Centre for Animal Resources and Experimentation (iCARE), Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India
| | - Priyanka
- IMTECH Centre for Animal Resources and Experimentation (iCARE), Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sachin Raut
- IMTECH Centre for Animal Resources and Experimentation (iCARE), Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sanpreet Singh
- Immunology Laboratory, Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India
| | - Anil Kumar Pinnaka
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.,MTCC-Microbial Type Culture Collection and Gene Bank, Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India
| | - Neeraj Khatri
- IMTECH Centre for Animal Resources and Experimentation (iCARE), Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
37
|
Bioprospecting Antimicrobials from Lactiplantibacillus plantarum: Key Factors Underlying Its Probiotic Action. Int J Mol Sci 2021; 22:ijms222112076. [PMID: 34769500 PMCID: PMC8585029 DOI: 10.3390/ijms222112076] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 01/16/2023] Open
Abstract
Lactiplantibacillus plantarum (L. plantarum) is a well-studied and versatile species of lactobacilli. It is found in several niches, including human mucosal surfaces, and it is largely employed in the food industry and boasts a millenary tradition of safe use, sharing a long-lasting relationship with humans. L. plantarum is generally recognised as safe and exhibits a strong probiotic character, so that several strains are commercialised as health-promoting supplements and functional food products. For these reasons, L. plantarum represents a valuable model to gain insight into the nature and mechanisms of antimicrobials as key factors underlying the probiotic action of health-promoting microbes. Probiotic antimicrobials can inhibit the growth of pathogens in the gut ensuring the intestinal homeostasis and contributing to the host health. Furthermore, they may be attractive alternatives to conventional antibiotics, holding potential in several biomedical applications. The aim of this review is to investigate the most relevant papers published in the last ten years, bioprospecting the antimicrobial activity of characterised probiotic L. plantarum strains. Specifically, it focuses on the different chemical nature, the action spectra and the mechanisms underlying the bioactivity of their antibacterial and antiviral agents. Emerging trends in postbiotics, some in vivo applications of L. plantarum antimicrobials, including strengths and limitations of their therapeutic potential, are addressed and discussed.
Collapse
|
38
|
Jatuponwiphat T, Namrak T, Nitisinprasert S, Nakphaichit M, Vongsangnak W. Integrative growth physiology and transcriptome profiling of probiotic Limosilactobacillus reuteri KUB-AC5. PeerJ 2021; 9:e12226. [PMID: 34707932 PMCID: PMC8500091 DOI: 10.7717/peerj.12226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/08/2021] [Indexed: 12/26/2022] Open
Abstract
Limosilactobacillus reuteri KUB-AC5 has been widely used as probiotic in chicken for Salmonella reduction. However, a preferable carbon source and growth phase is poorly characterized underlying metabolic responses on growth and inhibition effects of L. reuteri KUB-AC5. This study therefore aimed to investigate transcriptome profiling of L. reuteri KUB-AC5 revealing global metabolic responses when alteration of carbon sources and growth phases. Interestingly, L. reuteri KUB-AC5 grown under sucrose culture showed to be the best for fast growth and inhibition effects against Salmonella Enteritidis S003 growth. Towards the transcriptome profiling and reporter proteins/metabolites analysis, the results showed that amino acid transport via ABC systems as well as sucrose metabolism and transport are key metabolic responses at Logarithmic (L)-phase of L. reuteri KUB-AC5 growth. Considering the Stationary (S)-phase, we found the potential reporter proteins/metabolites involved in carbohydrate metabolism e.g., levansucrase and levan. Promisingly, levansucrase and levan were revealed to be candidates in relation to inhibition effects of L. reuteri KUB-AC5. Throughout this study, L. reuteri KUB-AC5 had a metabolic control in acclimatization to sucrose and energy pools through transcriptional co-regulation, which supported the cell growth and inhibition potentials. This study offers a perspective in optimizing fermentation condition through either genetic or physiological approaches for enhancing probiotic L. reuteri KUB-AC5 properties.
Collapse
Affiliation(s)
- Theeraphol Jatuponwiphat
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Thanawat Namrak
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
| | - Sunee Nitisinprasert
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
| | - Massalin Nakphaichit
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| |
Collapse
|
39
|
Harandi FN, Khorasani AC, Shojaosadati SA, Hashemi-Najafabadi S. Living Lactobacillus-ZnO nanoparticles hybrids as antimicrobial and antibiofilm coatings for wound dressing application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112457. [PMID: 34702533 DOI: 10.1016/j.msec.2021.112457] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 01/25/2023]
Abstract
Probiotic bacteria are able to produce antimicrobial substances as well as to synthesize green metal nanoparticles (NPs). New antimicrobial and antibiofilm coatings (LAB-ZnO NPs), composed of Lactobacillus strains and green ZnO NPs, were employed for the modification of gum Arabic-polyvinyl alcohol-polycaprolactone nanofibers matrix (GA-PVA-PCL) against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. The physicochemical properties of ZnO NPs biologically synthesized by L. plantarum and L. acidophilus, LAB-ZnO NPs hybrids and LAB-ZnO NPs@GA-PVA-PCL were studied using FE-SEM, EDX, EM, FTIR, XRD and ICP-OES. The morphology of LAB-ZnO NPs hybrids was spherical in range of 4.56-91.61 nm with an average diameter about 34 nm. The electrospun GA-PVA-PCL had regular, continuous and without beads morphology in the scale of nanometer and micrometer with an average diameter of 565 nm. Interestingly, the LAB not only acted as a biosynthesizer in the green synthesis of ZnO NPs but also synergistically enhanced the antimicrobial and antibiofilm efficacy of LAB-ZnO NPs@GA-PVA-PCL. Moreover, the low cytotoxicity of ZnO NPs and ZnO NPs@GA-PVA-PCL on the mouse embryonic fibroblasts cell line led to make them biocompatible. These results suggest that LAB-ZnO NPs@GA-PVA-PCL has potential as a safe promising antimicrobial and antibiofilm dressing in wound healing against pathogens.
Collapse
Affiliation(s)
- Fereshte Nazemi Harandi
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | | | - Seyed Abbas Shojaosadati
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
| | - Sameereh Hashemi-Najafabadi
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
40
|
Prakash V, Krishnan AS, Ramesh R, Bose C, Pillai GG, Nair BG, Pal S. Synergistic Effects of Limosilactobacillus fermentum ASBT-2 with Oxyresveratrol Isolated from Coconut Shell Waste. Foods 2021; 10:foods10112548. [PMID: 34828830 PMCID: PMC8622123 DOI: 10.3390/foods10112548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022] Open
Abstract
Value-added phytochemicals from food by-products and waste materials have gained much interest and among them, dietary polyphenolic compounds with potential biological properties extend a promising sustainable approach. Oxyresveratrol (Oxy), a stilbenoid polyphenol, possesses great therapeutic potential, though its pharmacokinetic issues need attention. A good source of oxyresveratrol was found in underutilized coconut shells and the synbiotic applications of the compound in combination with a potential probiotic isolate Limosilactobacillus fermentum ASBT-2 was investigated. The compound showed lower inhibitory effects on the strain with minimum inhibitory concentration (MIC) of 1000 µg/mL. Oxyresveratrol at sub-MIC concentrations (500 µg/mL and 250 µg/mL) enhanced the probiotic properties without exerting any inhibitory effects on the strain. The combination at sub- MIC concentration of the compound inhibited Salmonella enterica and in silico approaches were employed to elucidate the possible mode of action of oxy on the pathogen. Thus, the combination could target pathogens in the gut without exerting negative impacts on growth of beneficial strains. This approach could be a novel perspective to address the poor pharmacokinetic properties of the compound.
Collapse
Affiliation(s)
- Vidhya Prakash
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India; (V.P.); (A.S.K.); (R.R.); (C.B.); (B.G.N.)
| | - Akshaya S Krishnan
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India; (V.P.); (A.S.K.); (R.R.); (C.B.); (B.G.N.)
| | - Reshma Ramesh
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India; (V.P.); (A.S.K.); (R.R.); (C.B.); (B.G.N.)
| | - Chinchu Bose
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India; (V.P.); (A.S.K.); (R.R.); (C.B.); (B.G.N.)
| | | | - Bipin G. Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India; (V.P.); (A.S.K.); (R.R.); (C.B.); (B.G.N.)
| | - Sanjay Pal
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India; (V.P.); (A.S.K.); (R.R.); (C.B.); (B.G.N.)
- Correspondence: ; Tel.: +91-4762805315
| |
Collapse
|
41
|
Muleta A, Hailu D, Stoecker BJ, Belachew T. Camel milk consumption is associated with less childhood stunting and underweight than bovine milk in rural pastoral districts of Somali, Ethiopia: a cross-sectional study. J Nutr Sci 2021; 10:e78. [PMID: 34616549 PMCID: PMC8477347 DOI: 10.1017/jns.2021.75] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/18/2021] [Accepted: 08/24/2021] [Indexed: 11/06/2022] Open
Abstract
Undernutrition is a major global health problem. Various types of animal milk are used for feeding children at early ages; however, associations of camel milk (CaM) and bovine milk (BM) with the nutritional status of children have not been explored. A comparative community-based cross-sectional study was conducted among pre-schoolers in rural pastoral districts of Somali, Ethiopia. Children were selected from households with lactating camels or cows. Anthropometric measurements followed standard procedures for height-for-age, weight-for-age and weight-for-height scores. Independent sample t-tests identified significant differences in anthropometric indices based on the type of milk consumed. Multivariable logistic regression was used to examine associations between milk consumption and other predictors of growth failures. The prevalence of stunting was 24⋅1 % [95 % confidence interval (CI) 20⋅5, 28⋅3] of pre-schoolers, 34⋅8 % (95 % CI 29⋅9, 39⋅6) were wasted and 34⋅7 % (95 % CI 30⋅1, 39⋅9) were underweight. Higher proportions of BM-fed children were severely stunted, wasted and underweight compared with CaM consumers. Using logistic regression models, children who consumed BM [adjusted odds ratio (AOR): 2⋅10; 95 % CI 1⋅22, 3⋅61] and who were anaemic (AOR: 4⋅22; 95 % CI 2⋅23, 7⋅98) were more likely to be stunted than their counterparts, while girls were less likely to be stunted than boys (AOR: 0⋅57; 95 % CI 0⋅34, 0⋅94). Similarly, children who consumed BM (AOR: 1⋅97; 95 % CI 1⋅20, 3⋅24), who were anaemic (AOR: 2⋅27; 95 % CI 1⋅38, 3⋅72) and who drank unsafe water (AOR: 1⋅91; 95 % CI 1⋅19, 3⋅07) were more likely to be underweight than their counterparts. In conclusion, CaM consumption was associated with lower prevalence of stunting and underweight than BM. Promoting CaM in pastoralist areas may help to curb the high level of undernutrition.
Collapse
Affiliation(s)
- Anbissa Muleta
- Department of Food Science and Nutrition, Jigjiga University, Jigjiga, Ethiopia
- School of Nutrition, Food Science and Technology, Hawassa University, Hawassa, Ethiopia
| | - Dejene Hailu
- Department of Public and Environmental Health, College of Health Sciences, Hawassa University, Hawassa, Ethiopia
| | - Barbara J. Stoecker
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Tefera Belachew
- Department of Nutrition and Dietetics, Jimma University, Jimma, Ethiopia
| |
Collapse
|
42
|
Potential Use of Lactic Acid Bacteria with Pathogen Inhibitory Capacity as a Biopreservative Agent for Chorizo. Processes (Basel) 2021. [DOI: 10.3390/pr9091582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The biopreservation of meat products is of great interest due to the demand for products with low or minimal chemical additives. Lactic acid bacteria (LAB) have been used as protective cultures for many centuries. The objective of this work was to characterize 10 native LAB isolated from meat masses with biopreservative potential for meat products. The isolates were subjected to viability tests with different concentrations of NaCl, nitrite, and nitrate salts, pHs, and temperature conditions. Antibiotic resistance and type of lactic acid isomer were tested. In addition, the isolates were tested against seven pathogens, and inhibitory substances were identified by diffusion in agar wells. Finally, two isolates, Lb. plantarum (SB17) and Lb. sakei (SB3) were tested as protective cultures of chorizo in a model. As a result, the viability at different concentrations of NaCl and nitrate and nitrate salts were obtained. pH and temperature exerted a negative effect on the growth of some of the isolates. Pathogens were inhibited mainly by the presence of organic acids; P. aurius was the most susceptible, and S. typhimurium and S. marcescens were the most resistant. The strains SB17 and SB3 had similar effects on chorizo, and time exerted a deleterious effect on microbiological quality and pH. The results indicated that the 10 isolates show promising characteristics for the preservation of cooked meat products, with the strain Lb. plantarum (SB17) being the most promising.
Collapse
|
43
|
Sornsenee P, Singkhamanan K, Sangkhathat S, Saengsuwan P, Romyasamit C. Probiotic Properties of Lactobacillus Species Isolated from Fermented Palm Sap in Thailand. Probiotics Antimicrob Proteins 2021; 13:957-969. [PMID: 33595830 DOI: 10.1007/s12602-021-09754-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2021] [Indexed: 10/22/2022]
Abstract
Lactic acid bacteria (LAB), which are the most frequently used probiotics in foods, confer health benefits such as antimicrobial activity, immune stimulation, and anticancer activity. Fermented palm sap is a potential source of LAB. This study aimed to evaluate in vitro antimicrobial and probiotic properties of LAB isolated from traditional fermented palm sap in Thailand. Among 40 isolated LAB species, 10 were preliminarily selected for their antimicrobial activity. These 10 isolates were identified and confirmed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and 16S rRNA sequencing as Lactobacillus paracasei (8/10), Lactobacillus fermentum (1/10), and Lactobacillus brevis (1/10). They were evaluated for probiotic characteristics and antimicrobial activities against pathogens. These isolates were tolerant toward simulated gastrointestinal tract conditions, including low pH, pepsin, pancreatin, and bile salts. The 10 isolates retained strong auto-aggregation and cell surface hydrophobicity, and they adhered tightly to human intestinal epithelial cells. The isolates were susceptible to ampicillin, erythromycin, clindamycin, tetracycline, and chloramphenicol but resistant to vancomycin, kanamycin, and streptomycin. Moreover, all isolates exhibited no hemolytic activity. All isolates exhibited good antibacterial activity against nine pathogenic bacteria. Thus, these 10 Lactobacillus isolates from fermented palm sap are promising potential candidates for use as probiotics in functional fermented foods and pharmaceutical products.
Collapse
Affiliation(s)
- Phoomjai Sornsenee
- Department of Family and Preventive Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Kamonnut Singkhamanan
- Department of Biomedical Sciences, Faculty of Medicine, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Surasak Sangkhathat
- Department of Biomedical Sciences, Faculty of Medicine, Prince of Songkla University, Songkhla, 90110, Thailand
- Department of Surgery, Faculty of Medicine, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Phanvasri Saengsuwan
- Department of Biomedical Sciences, Faculty of Medicine, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Chonticha Romyasamit
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80161, Thailand.
| |
Collapse
|
44
|
Effects of C60 Fullerene on Thioacetamide-Induced Rat Liver Toxicity and Gut Microbiome Changes. Antioxidants (Basel) 2021; 10:antiox10060911. [PMID: 34199786 PMCID: PMC8226855 DOI: 10.3390/antiox10060911] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/30/2022] Open
Abstract
Thioacetamide (TAA) is widely used to study liver toxicity accompanied by oxidative stress, inflammation, cell necrosis, fibrosis, cholestasis, and hepatocellular carcinoma. As an efficient free radical's scavenger, C60 fullerene is considered a potential liver-protective agent in chemically-induced liver injury. In the present work, we examined the hepatoprotective effects of two C60 doses dissolved in virgin olive oil against TAA-induced hepatotoxicity in rats. We showed that TAA-induced increase in liver oxidative stress, judged by the changes in the activities of SOD, CAT, GPx, GR, GST, the content of GSH and 4-HNE, and expression of HO-1, MnSOD, and CuZnSOD, was more effectively ameliorated with a lower C60 dose. Improvement in liver antioxidative status caused by C60 was accompanied by a decrease in liver HMGB1 expression and an increase in nuclear Nrf2/NF-κB p65 ratio, suggesting a reduction in inflammation, necrosis and fibrosis. These results were in accordance with liver histology analysis, liver comet assay, and changes in serum levels of ALT, AST, and AP. The changes observed in gut microbiome support detrimental effects of TAA and hepatoprotective effects of low C60 dose. Less protective effects of a higher C60 dose could be a consequence of its enhanced aggregation and related pro-oxidant role.
Collapse
|
45
|
Study of the Antimicrobial Potential of Bacteria found in Natural Resources. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.2.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteriocins are of great interest as potential antimicrobial agents against various types of bacteria, fungi, and viruses. Isolates of microorganisms derived from natural sources were used in the current study, including lactic acid bacteria and other antagonistic microorganisms. The species of the microorganisms were determined using 16S rDNA and ITS nrDNA analyses. E. coli, S. enterica, S. aureus, P. aeruginosa, B. mycoides, A. faecalis, P. vulgaris, S. flexneri , L. monocytogenes, C. albicans, A. flavus, and P. citrinum were used as pathogenic and opportunistic strains. It was found that 11 strains of antagonistic microorganisms have significant antimicrobial activity against all pathogenic and opportunistic microorganisms. The antimicrobial properties of these microorganisms are currently under study.
Collapse
|
46
|
Baharudin MMAA, Ngalimat MS, Mohd Shariff F, Balia Yusof ZN, Karim M, Baharum SN, Sabri S. Antimicrobial activities of Bacillus velezensis strains isolated from stingless bee products against methicillin-resistant Staphylococcus aureus. PLoS One 2021; 16:e0251514. [PMID: 33974665 PMCID: PMC8112681 DOI: 10.1371/journal.pone.0251514] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/28/2021] [Indexed: 12/29/2022] Open
Abstract
Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) have reached epidemic proportions globally. Therefore, there is an urgent need for a continuous supply of antibiotics to combat the problem. In this study, bacteria initially identified as species belonging to the Bacillus amyloliquefaciens operational group were re-identified based on the housekeeping gene, gyrB. Cell-free supernatants (CFS) from the strains were used for antimicrobial tests using the agar well diffusion assay against MRSA and various types of pathogenic bacteria. The minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and physicochemical characteristics of the CFS were determined. Based on gyrB sequence analysis, five strains (PD9, B7, PU1, BP1 and L9) were identified as Bacillus velezensis. The CFS of all B. velezensis strains showed broad inhibitory activities against Gram-negative and -positive as well as MRSA strains. Strain PD9 against MRSA ATCC 33742 was chosen for further analysis as it showed the biggest zone of inhibition (21.0 ± 0.4 mm). The MIC and MBC values obtained were 125 μl/ml. The crude antimicrobial extract showed bactericidal activity and was stable at various temperatures (40–80°C), pH (4–12), surfactants (Tween 20, Tween 80, SDS and Triton X-100) and metal ions (MgCI2, NaCI2, ZnNO3 and CuSO4) when tested. However, the crude extract was not stable when treated with proteinase K. All these properties resembled the characteristics of peptides. The antimicrobial compound from the selected strain was purified by using solvent extraction method and silica gel column chromatography. The purified compound was subjected to High Performance Liquid Chromatography which resulted in a single peak of the anti-MRSA compound being detected. The molecular weight of the anti-MRSA compound was determined by using SDS-PAGE and zymogram. The size of the purified antimicrobial peptide was approximately ~ 5 kDa. The antimicrobial peptide produced from B. velezensis strain PD9 is a promising alternative to combat the spread of MRSA infections in the future.
Collapse
Affiliation(s)
- Mohamad Malik Al-adil Baharudin
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohamad Syazwan Ngalimat
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Fairolniza Mohd Shariff
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Zetty Norhana Balia Yusof
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Murni Karim
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Syarul Nataqain Baharum
- Metabolomics Research Laboratory, Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Suriana Sabri
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- * E-mail:
| |
Collapse
|
47
|
Developing a functional lozenge with microencapsulated Lactiplantibacillus pentosus to improve oral and dental health. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
48
|
Abstract
Scientists have invested considerable resources in the study of the microbiota of the human body. These microorganisms play pivotal roles in immunity and disease. Of which, probiotics are live beneficial microorganisms that keep your intestinal or lung microbiota healthy, and occupy a special role in combating the infections. Thus, it is critical to understand their contributions to these processes. Technology can facilitate advanced studies of the microbiota, including how it develops and its positive and negatives effects on the immune system. This paper investigates how several factors (e.g. birth delivery mode, metabolic activities, types of microorganisms, and immune system interactions) affect the microbiota, particularly in early life. The paper also discusses how gastrointestinal microbes in particular may be associated with certain disease processes, such as those related to schizophrenia, autism, and diabetes. Clinical studies show that certain probiotic strains, like Lactobacillus rhamnosus GG and Bifidobacterium animalis ssp. lactis help to prevent infection of pathogenic organisms (both bacterial and viral). This research may yield crucial contributions to disease prevention and public health. The dysbiosis may result in changes in the acquired immunity later on. The probiotic strains can prevent viral replication during SARS-CoV-2 or COVID-19 infection by reducing proinflammatory cytokines. There has been much interest into the intestinal flora as proposed by the diversity, volume, and proposed role in disease. Future research in the field of microbiome should be done in order to uncover their association to gut virome by noting both their influence on each other and relevant health and disease.
Collapse
|
49
|
Genomics-based approaches to identify and predict the health-promoting and safety activities of promising probiotic strains – A probiogenomics review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.12.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Diguță CF, Nițoi GD, Matei F, Luță G, Cornea CP. The Biotechnological Potential of Pediococcus spp. Isolated from Kombucha Microbial Consortium. Foods 2020; 9:E1780. [PMID: 33271757 PMCID: PMC7760545 DOI: 10.3390/foods9121780] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/21/2022] Open
Abstract
In the past decade, the probiotic market has grown rapidly, both for foods and supplements intended to enhance wellness in healthy individuals. Different lactic acid bacteria (LAB), especially Lactobacillus spp., of different origins have already been used to develop commercial probiotic products. Nowadays, LAB new alternative sources, such as non-dairy fermented food products, are being exploited. One such source is Kombucha, a fermented low-alcohol beverage made of tea leaves. In this regard, we tested seven Pediococcus spp. strains isolated from a local industrial Kombucha for their biotechnological potential. Two, out of the seven isolates, identified as Pediococcus pentosaceus (L3) and Pediococcus acidiliactici (L5), were selected as successful candidates for the food industry, due to their probiotic and technological properties. In regard to their resistance in the gastro-intestinal tract, both selected strains were tolerant to a pH of 3.5, presence of 0.3% pepsin, and 0.5% bile salt concentration. On the antagonistic side, the fresh suspension of selected isolates had high inhibitory activity against pathogenic bacteria, such as Salmonella enterica Typhimurium, Listeria monocytogenes, Listeria ivanovii, Bacillus cereus, Proteus hauseri, and methicillin resistant Staphylococcus aureus. In addition, moderate to high inhibitory activity was noticed against foodborne molds (e.g., Penicillium expansum and Penicillium digitatum). These safety issues were supported by their negative hemolytic activity and good antioxidant potential (56-58%). Selected isolates were sensitive to ampicillin, penicillin, erythromycin, and lincomycin, while a broad range of other antibiotics were not effective inhibitors. On the technological side, both strains tolerated 5% NaCl and, during the freeze-drying process, had a good survival rate (86-92%). The selected Pediococcus strains have proven properties to be used for further development of functional products.
Collapse
Affiliation(s)
| | | | - Florentina Matei
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine Bucharest, 59 Mărăști Blvd., 011464 Bucharest, Romania; (C.F.D.); (G.D.N.); (G.L.); (C.P.C.)
| | | | | |
Collapse
|