1
|
Cembran A, Fernandez-Funez P. Intrinsic determinants of prion protein neurotoxicity in Drosophila: from sequence to (dys)function. Front Mol Neurosci 2023; 16:1231079. [PMID: 37645703 PMCID: PMC10461008 DOI: 10.3389/fnmol.2023.1231079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023] Open
Abstract
Prion diseases are fatal brain disorders characterized by deposition of insoluble isoforms of the prion protein (PrP). The normal and pathogenic structures of PrP are relatively well known after decades of studies. Yet our current understanding of the intrinsic determinants regulating PrP misfolding are largely missing. A 3D subdomain of PrP comprising the β2-α2 loop and helix 3 contains high sequence and structural variability among animals and has been proposed as a key domain regulating PrP misfolding. We combined in vivo work in Drosophila with molecular dynamics (MD) simulations, which provide additional insight to assess the impact of candidate substitutions in PrP from conformational dynamics. MD simulations revealed that in human PrP WT the β2-α2 loop explores multiple β-turn conformations, whereas the Y225A (rabbit PrP-like) substitution strongly favors a 310-turn conformation, a short right-handed helix. This shift in conformational diversity correlates with lower neurotoxicity in flies. We have identified additional conformational features and candidate amino acids regulating the high toxicity of human PrP and propose a new strategy for testing candidate modifiers first in MD simulations followed by functional experiments in flies. In this review we expand on these new results to provide additional insight into the structural and functional biology of PrP through the prism of the conformational dynamics of a 3D domain in the C-terminus. We propose that the conformational dynamics of this domain is a sensitive measure of the propensity of PrP to misfold and cause toxicity. This provides renewed opportunities to identify the intrinsic determinants of PrP misfolding through the contribution of key amino acids to different conformational states by MD simulations followed by experimental validation in transgenic flies.
Collapse
Affiliation(s)
- Alessandro Cembran
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, United States
| | - Pedro Fernandez-Funez
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States
| |
Collapse
|
2
|
Delgado L, Garino C, Moreno FJ, Zagon J, Broll H. Sustainable Food Systems: EU Regulatory Framework and Contribution of Insects to the Farm-To-Fork Strategy. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2130354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Lidia Delgado
- European Commission, Joint Research Center (JRC), Belgium
| | - Cristiano Garino
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | | | - Jutta Zagon
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Hermann Broll
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| |
Collapse
|
3
|
Thackray AM, Lam B, McNulty EE, Nalls AV, Mathiason CK, Magadi SS, Jackson WS, Andréoletti O, Marrero-Winkens C, Schätzl H, Bujdoso R. Clearance of variant Creutzfeldt-Jakob disease prions in vivo by the Hsp70 disaggregase system. Brain 2022; 145:3236-3249. [PMID: 35446941 PMCID: PMC9473358 DOI: 10.1093/brain/awac144] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/10/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
The metazoan Hsp70 disaggregase protects neurons from proteotoxicity that arises from the accumulation of misfolded protein aggregates. Hsp70 and its co-chaperones disassemble and extract polypeptides from protein aggregates for refolding or degradation. The effectiveness of the chaperone system decreases with age and leads to accumulation rather than removal of neurotoxic protein aggregates. Therapeutic enhancement of the Hsp70 protein disassembly machinery is proposed to counter late-onset protein misfolding neurodegenerative disease that may arise. In the context of prion disease, it is not known whether stimulation of protein aggregate disassembly paradoxically leads to enhanced formation of seeding competent species of disease-specific proteins and acceleration of neurodegenerative disease. Here we have tested the hypothesis that modulation of Hsp70 disaggregase activity perturbs mammalian prion-induced neurotoxicity and prion seeding activity. To do so we used prion protein (PrP) transgenic Drosophila that authentically replicate mammalian prions. RNASeq identified that Hsp70, DnaJ-1 and Hsp110 gene expression was downregulated in prion-exposed PrP Drosophila. We demonstrated that RNAi knockdown of Hsp110 or DnaJ-1 gene expression in variant Creutzfeldt–Jakob disease prion-exposed human PrP Drosophila enhanced neurotoxicity, whereas overexpression mitigated toxicity. Strikingly, prion seeding activity in variant Creutzfeldt–Jakob disease prion-exposed human PrP Drosophila was ablated or reduced by Hsp110 or DnaJ-1 overexpression, respectively. Similar effects were seen in scrapie prion-exposed ovine PrP Drosophila with modified Hsp110 or DnaJ-1 gene expression. These unique observations show that the metazoan Hsp70 disaggregase facilitates the clearance of mammalian prions and that its enhanced activity is a potential therapeutic strategy for human prion disease.
Collapse
Affiliation(s)
- Alana M Thackray
- University of Cambridge, Department of Veterinary Medicine, Madingley Road, Cambridge, CB3 0ES, UK
| | - Brian Lam
- Medical Research Council Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Erin E McNulty
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Amy V Nalls
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Candace K Mathiason
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Srivathsa Subramanya Magadi
- Wallenberg Center for Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, 581 83 Linköping, Sweden
| | - Walker S Jackson
- Wallenberg Center for Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, 581 83 Linköping, Sweden
| | - Olivier Andréoletti
- UMR INRA ENVT 1225 -Hôtes-Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076 Toulouse, France
| | - Cristóbal Marrero-Winkens
- Calgary Prion Research Unit, Faculty of Veterinary Medicine, University of Calgary TRW 2D10, 3280 Hospital Drive NW, Calgary, AB, Canada T2N 4Z6
| | - Hermann Schätzl
- Calgary Prion Research Unit, Faculty of Veterinary Medicine, University of Calgary TRW 2D10, 3280 Hospital Drive NW, Calgary, AB, Canada T2N 4Z6
| | - Raymond Bujdoso
- University of Cambridge, Department of Veterinary Medicine, Madingley Road, Cambridge, CB3 0ES, UK
| |
Collapse
|
4
|
Myers RR, Sanchez-Garcia J, Leving DC, Melvin RG, Fernandez-Funez P. New Drosophila models to uncover the intrinsic and extrinsic factors that mediate the toxicity of the human prion protein. Dis Model Mech 2022; 15:dmm049184. [PMID: 35142350 PMCID: PMC9093039 DOI: 10.1242/dmm.049184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 02/01/2022] [Indexed: 11/20/2022] Open
Abstract
Misfolding of the prion protein (PrP) is responsible for devastating neurological disorders in humans and other mammals. An unresolved problem in the field is unraveling the mechanisms governing PrP conformational dynamics, misfolding, and the cellular mechanism leading to neurodegeneration. The variable susceptibility of mammals to prion diseases is a natural resource that can be exploited to understand the conformational dynamics of PrP. Here we present a new fly model expressing human PrP with new, robust phenotypes in brain neurons and the eye. By using comparable attP2 insertions, we demonstrated the heightened toxicity of human PrP compared to rodent PrP along with a specific interaction with the amyloid-β peptide. By using this new model, we started to uncover the intrinsic (sequence/structure) and extrinsic (interactions) factors regulating PrP toxicity. We described PERK (officially known as EIF2AK3 in humans) and activating transcription factor 4 (ATF4) as key in the cellular mechanism mediating the toxicity of human PrP and uncover a key new protective activity for 4E-BP (officially known as Thor in Drosophila and EIF4EBP2 in humans), an ATF4 transcriptional target. Lastly, mutations in human PrP (N159D, D167S, N174S) showed partial protective activity, revealing its high propensity to misfold into toxic conformations.
Collapse
Affiliation(s)
- Ryan R. Myers
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, MN 55812, USA
| | | | - Daniel C. Leving
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, MN 55812, USA
| | - Richard G. Melvin
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, MN 55812, USA
| | - Pedro Fernandez-Funez
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, MN 55812, USA
| |
Collapse
|
5
|
Yellow Mealworm and Black Soldier Fly Larvae for Feed and Food Production in Europe, with Emphasis on Iceland. Foods 2021; 10:foods10112744. [PMID: 34829029 PMCID: PMC8625742 DOI: 10.3390/foods10112744] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 01/02/2023] Open
Abstract
Insects are part of the diet of over 2 billion people worldwide; however, insects have not been popular in Europe, neither as food nor as a feed ingredient. This has been changing in recent years, due to increased knowledge regarding the nutritional benefits, the need for novel protein production and the low environmental impact of insects compared to conventional protein production. The purpose of this study is to give an overview of the most popular insects farmed in Europe, yellow mealworm, Tenebrio molitor, and black soldier fly (BSF), Hermetia illucens, together with the main obstacles and risks. A comprehensive literature study was carried out and 27 insect farming companies found listed in Europe were contacted directly. The results show that the insect farming industry is increasing in Europe, and the success of the frontrunners is based on large investments in technology, automation and economy of scale. The interest of venture capital firms is noticeable, covering 90% of the investment costs in some cases. It is concluded that insect farming in Europe is likely to expand rapidly in the coming years, offering new proteins and other valuable products, not only as a feed ingredient, but also for human consumption. European regulations have additionally been rapidly changing, with more freedom towards insects as food and feed. There is an increased knowledge regarding safety concerns of edible insects, and the results indicate that edible insects pose a smaller risk for zoonotic diseases than livestock. However, knowledge regarding risk posed by edible insects is still lacking, but food and feed safety is essential to put products on the European market.
Collapse
|
6
|
Bizat N, Parrales V, Laoues S, Normant S, Levavasseur E, Roussel J, Privat N, Gougerot A, Ravassard P, Beaudry P, Brandel JP, Laplanche JL, Haïk S. An in vivo Caenorhabditis elegans model for therapeutic research in human prion diseases. Brain 2021; 144:2745-2758. [PMID: 34687213 DOI: 10.1093/brain/awab152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/11/2021] [Accepted: 02/27/2021] [Indexed: 11/12/2022] Open
Abstract
Human prion diseases are fatal neurodegenerative disorders that include sporadic, infectious and genetic forms. Inherited Creutzfeldt-Jakob disease due to the E200K mutation of the prion protein-coding gene is the most common form of genetic prion disease. The phenotype resembles that of sporadic Creutzfeldt-Jakob disease at both the clinical and pathological levels, with a median disease duration of 4 months. To date, there is no available treatment for delaying the occurrence or slowing the progression of human prion diseases. Existing in vivo models do not allow high-throughput approaches that may facilitate the discovery of compounds targeting pathological assemblies of human prion protein or their effects on neuronal survival. Here, we generated a genetic model in the nematode Caenorhabditis elegans, which is devoid of any homologue of the prion protein, by expressing human prion protein with the E200K mutation in the mechanosensitive neuronal system. Expression of E200K prion protein induced a specific behavioural pattern and neurodegeneration of green fluorescent protein-expressing mechanosensitive neurons, in addition to the formation of intraneuronal inclusions associated with the accumulation of a protease-resistant form of the prion protein. We demonstrated that this experimental system is a powerful tool for investigating the efficacy of anti-prion compounds on both prion-induced neurodegeneration and prion protein misfolding, as well as in the context of human prion protein. Within a library of 320 compounds that have been approved for human use and cross the blood-brain barrier, we identified five molecules that were active against the aggregation of the E200K prion protein and the neurodegeneration it induced in transgenic animals. This model breaks a technological limitation in prion therapeutic research and provides a key tool to study the deleterious effects of misfolded prion protein in a well-described neuronal system.
Collapse
Affiliation(s)
- Nicolas Bizat
- Paris Brain Institute, Inserm U 1127, CNRS UMR 7225, Sorbonne University, Hospital Pitié-Salpêtrière, F-75013 Paris, France.,Faculté de Pharmacie de Paris, Paris University, Paris F-75006, France
| | - Valeria Parrales
- Paris Brain Institute, Inserm U 1127, CNRS UMR 7225, Sorbonne University, Hospital Pitié-Salpêtrière, F-75013 Paris, France
| | - Sofian Laoues
- Paris Brain Institute, Inserm U 1127, CNRS UMR 7225, Sorbonne University, Hospital Pitié-Salpêtrière, F-75013 Paris, France
| | - Sébastien Normant
- Paris Brain Institute, Inserm U 1127, CNRS UMR 7225, Sorbonne University, Hospital Pitié-Salpêtrière, F-75013 Paris, France
| | - Etienne Levavasseur
- Paris Brain Institute, Inserm U 1127, CNRS UMR 7225, Sorbonne University, Hospital Pitié-Salpêtrière, F-75013 Paris, France
| | - Julian Roussel
- Paris Brain Institute, Inserm U 1127, CNRS UMR 7225, Sorbonne University, Hospital Pitié-Salpêtrière, F-75013 Paris, France
| | - Nicolas Privat
- Paris Brain Institute, Inserm U 1127, CNRS UMR 7225, Sorbonne University, Hospital Pitié-Salpêtrière, F-75013 Paris, France
| | - Alexianne Gougerot
- Paris Brain Institute, Inserm U 1127, CNRS UMR 7225, Sorbonne University, Hospital Pitié-Salpêtrière, F-75013 Paris, France
| | - Philippe Ravassard
- Paris Brain Institute, Inserm U 1127, CNRS UMR 7225, Sorbonne University, Hospital Pitié-Salpêtrière, F-75013 Paris, France
| | - Patrice Beaudry
- Paris Brain Institute, Inserm U 1127, CNRS UMR 7225, Sorbonne University, Hospital Pitié-Salpêtrière, F-75013 Paris, France
| | - Jean-Philippe Brandel
- Paris Brain Institute, Inserm U 1127, CNRS UMR 7225, Sorbonne University, Hospital Pitié-Salpêtrière, F-75013 Paris, France.,AP-HP, Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob, University Hospital Pitié-Salpêtrière, Paris F-75013, France
| | - Jean-Louis Laplanche
- Faculté de Pharmacie de Paris, Paris University, Paris F-75006, France.,Inserm, UMR-S 1144, Paris F-75006, France
| | - Stéphane Haïk
- Paris Brain Institute, Inserm U 1127, CNRS UMR 7225, Sorbonne University, Hospital Pitié-Salpêtrière, F-75013 Paris, France.,AP-HP, Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob, University Hospital Pitié-Salpêtrière, Paris F-75013, France
| |
Collapse
|
7
|
Myers R, Cembran A, Fernandez-Funez P. Insight From Animals Resistant to Prion Diseases: Deciphering the Genotype - Morphotype - Phenotype Code for the Prion Protein. Front Cell Neurosci 2020; 14:254. [PMID: 33013324 PMCID: PMC7461849 DOI: 10.3389/fncel.2020.00254] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/24/2020] [Indexed: 12/30/2022] Open
Abstract
Prion diseases are a group of neurodegenerative diseases endemic in humans and several ruminants caused by the misfolding of native prion protein (PrP) into pathological conformations. Experimental work and the mad-cow epidemic of the 1980s exposed a wide spectrum of animal susceptibility to prion diseases, including a few highly resistant animals: horses, rabbits, pigs, and dogs/canids. The variable susceptibility to disease offers a unique opportunity to uncover the mechanisms governing PrP misfolding, neurotoxicity, and transmission. Previous work indicates that PrP-intrinsic differences (sequence) are the main contributors to disease susceptibility. Several residues have been cited as critical for encoding PrP conformational stability in prion-resistant animals, including D/E159 in dog, S167 in horse, and S174 in rabbit and pig PrP (all according to human numbering). These amino acids alter PrP properties in a variety of assays, but we still do not clearly understand the structural correlates of PrP toxicity. Additional insight can be extracted from comparative structural studies, followed by molecular dynamics simulations of selected mutations, and testing in manipulable animal models. Our working hypothesis is that protective amino acids generate more compact and stable structures in a C-terminal subdomain of the PrP globular domain. We will explore this idea in this review and identify subdomains within the globular domain that may hold the key to unravel how conformational stability and disease susceptibility are encoded in PrP.
Collapse
Affiliation(s)
- Ryan Myers
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States
| | - Alessandro Cembran
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, United States
| | - Pedro Fernandez-Funez
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States
| |
Collapse
|
8
|
Thackray AM, Andréoletti O, Bujdoso R. Mammalian prion propagation in PrP transgenic Drosophila. Brain 2019; 141:2700-2710. [PMID: 29985975 PMCID: PMC6113635 DOI: 10.1093/brain/awy183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/24/2018] [Indexed: 12/22/2022] Open
Abstract
Mammalian prions propagate by template-directed misfolding and aggregation of normal cellular prion related protein PrPC as it converts into disease-associated conformers collectively referred to as PrPSc. Mammalian species may be permissive for prion disease because these hosts have co-evolved specific co-factors that assist PrPC conformational change and prion propagation. We have tested this hypothesis by examining whether faithful prion propagation occurs in the normally PrPC-null invertebrate host Drosophila melanogaster. Ovine PrP transgenic Drosophila exposed at the larval stage to ovine scrapie showed a progressive accumulation of transmissible prions in adult flies. Strikingly, the biological properties of distinct ovine prion strains were maintained during their propagation in Drosophila. Our observations show that the co-factors necessary for strain-specific prion propagation are not unique to mammalian species. Our studies establish Drosophila as a novel host for the study of transmissible mammalian prions.
Collapse
Affiliation(s)
- Alana M Thackray
- University of Cambridge, Department of Veterinary Medicine, Madingley Road, Cambridge, CB3 OES, UK
| | - Olivier Andréoletti
- UMR INRA ENVT 1225 -Hôtes-Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, Toulouse, France
| | - Raymond Bujdoso
- University of Cambridge, Department of Veterinary Medicine, Madingley Road, Cambridge, CB3 OES, UK
| |
Collapse
|
9
|
Kooh P, Ververis E, Tesson V, Boué G, Federighi M. Entomophagy and Public Health: A Review of Microbiological Hazards. Health (London) 2019. [DOI: 10.4236/health.2019.1110098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Fernandez-Cassi X, Supeanu A, Jansson A, Boqvist S, Vagsholm I. Novel foods: a risk profile for the house cricket ( Acheta domesticus). EFSA J 2018; 16:e16082. [PMID: 32626053 PMCID: PMC7015497 DOI: 10.2903/j.efsa.2018.e16082] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Novel foods could represent a sustainable alternative to traditional farming and conventional foodstuffs. Starting in 2018, Regulation (EU) 2283/2015 entered into force, laying down provisions for the approval of novel foods in Europe, including insects. This Approved Regulation establishes the requirements that enable Food Business Operators to bring new foods into the EU market, while ensuring high levels of food safety for European consumers. The present risk profile tackles the hazards for one of the most promising novel food insects, the house cricket (Acheta domesticus). The risk profile envisages a closed A. domesticus crickets rearing system, under Hazard Analysis and Critical Control Points (HACCP) and good farming practices (GFP), in contrast with open cricket farms. The methodology used involves screening the literature and identifying possible hazards, followed by adding relevant inclusion criteria for the evidence obtained. These criteria include animal health and food safety aspects, for the entire lifespan of crickets, based on the farm to fork One Health principle. When data were scarce, comparative evidence from close relatives of the Orthoptera genus was used (e.g. grasshoppers, locusts and other cricket species). Nevertheless, significant data gaps in animal health and food safety are present. Even if HACCP‐type systems are implemented, the risk profile identifies the following considerable concerns: (1) high total aerobic bacterial counts; (2) survival of spore‐forming bacteria following thermal processing; (3) allergenicity of insects and insect‐derived products; and (4) the bioaccumulation of heavy metals (e.g. cadmium). Other hazards like parasites, fungi, viruses, prions, antimicrobial resistance and toxins are ranked as low risk. For some hazards, a need for additional evidence is highlighted.
Collapse
|
11
|
Younan ND, Chen KF, Rose RS, Crowther DC, Viles JH. Prion protein stabilizes amyloid-β (Aβ) oligomers and enhances Aβ neurotoxicity in a Drosophila model of Alzheimer's disease. J Biol Chem 2018; 293:13090-13099. [PMID: 29887525 DOI: 10.1074/jbc.ra118.003319] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/05/2018] [Indexed: 12/16/2022] Open
Abstract
The cellular prion protein (PrPC) can act as a cell-surface receptor for β-amyloid (Aβ) peptide; however, a role for PrPC in the pathogenesis of Alzheimer's disease (AD) is contested. Here, we expressed a range of Aβ isoforms and PrPC in the Drosophila brain. We found that co-expression of Aβ and PrPC significantly reduces the lifespan, disrupts circadian rhythms, and increases Aβ deposition in the fly brain. In contrast, under the same conditions, expression of Aβ or PrPC individually did not lead to these phenotypic changes. In vitro studies revealed that substoichiometric amounts of PrPC trap Aβ as oligomeric assemblies and fragment-preformed Aβ fibers. The ability of membrane-anchored PrPC to trap Aβ as cytotoxic oligomers at the membrane surface and fragment inert Aβ fibers suggests a mechanism by which PrPC exacerbates Aβ deposition and pathogenic phenotypes in the fly, supporting a role for PrPC in AD. This study provides a second animal model linking PrPC expression with Aβ toxicity and supports a role for PrPC in AD pathogenesis. Blocking the interaction of Aβ and PrPC represents a potential therapeutic strategy.
Collapse
Affiliation(s)
- Nadine D Younan
- From the School of Biological and Chemical Sciences, Queen Mary, University of London, London E1 4NS, United Kingdom
| | - Ko-Fan Chen
- the Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom, and
| | - Ruth-Sarah Rose
- From the School of Biological and Chemical Sciences, Queen Mary, University of London, London E1 4NS, United Kingdom
| | - Damian C Crowther
- the Neuroscience IMED Biotech Unit, AstraZeneca, Cambridge CB21 6GH, United Kingdom
| | - John H Viles
- From the School of Biological and Chemical Sciences, Queen Mary, University of London, London E1 4NS, United Kingdom,
| |
Collapse
|
12
|
Thackray AM, Andréoletti O, Bujdoso R. The use of PrP transgenic Drosophila to replace and reduce vertebrate hosts in the bioassay of mammalian prion infectivity. F1000Res 2018; 7:595. [PMID: 29946445 PMCID: PMC5998032 DOI: 10.12688/f1000research.14753.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/27/2018] [Indexed: 11/24/2022] Open
Abstract
Prion diseases are fatal neurodegenerative conditions of humans and vertebrate species. The transmissible prion agent is a novel infectious particle composed principally of PrP Sc, an abnormal isomer of the normal host protein PrP C. The only reliable method to detect mammalian prion infectivity is by bioassay, invariably in a vertebrate host. The current prion bioassays typically involve intracerebral or peripheral inoculation of test material into the experimental host and subsequent euthanasia when clinical signs of terminal prion disease become evident. It may be months or years before the onset of clinical disease becomes evident and a pre-determined clinical end-point is reached. Consequently, bioassay of prion infectivity in vertebrate species is cumbersome, time consuming, expensive, and increasingly open to ethical debate because these animals are subjected to terminal neurodegenerative disease. Prions are a significant risk to public health through the potential for zoonotic transmission of animal prion diseases. Attention has focussed on the measurement of prion infectivity in different tissues and blood from prion-infected individuals in order to determine the distribution of infectious prions in diseased hosts. New animal models are required in order to replace or reduce, where possible, the dependency on the use of vertebrate species, including the 'gold standard' mouse prion bioassay, to assess prion infectivity levels. Here we highlight the development of a Drosophila-based prion bioassay, a highly sensitive and rapid invertebrate animal system that can efficiently detect mammalian prions. This novel invertebrate model system will be of considerable interest to biologists who perform prion bioassays as it will promote reduction and replacement in the number of sentient animals currently used for this purpose. This article is a composite of previous methods that provides an overview of the methodology of the model and discusses the experimental data to promote its viability for use instead of more sentient hosts.
Collapse
Affiliation(s)
- Alana M. Thackray
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 OES, UK
| | - Olivier Andréoletti
- UMR INRA ENVT 1225 -Hôtes-Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, Toulouse, 31076, France
| | - Raymond Bujdoso
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 OES, UK
| |
Collapse
|
13
|
Jonson M, Nyström S, Sandberg A, Carlback M, Michno W, Hanrieder J, Starkenberg A, Nilsson KPR, Thor S, Hammarström P. Aggregated Aβ1-42 Is Selectively Toxic for Neurons, Whereas Glial Cells Produce Mature Fibrils with Low Toxicity in Drosophila. Cell Chem Biol 2018; 25:595-610.e5. [PMID: 29657084 DOI: 10.1016/j.chembiol.2018.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 01/12/2018] [Accepted: 03/12/2018] [Indexed: 10/17/2022]
Abstract
The basis for selective vulnerability of certain cell types for misfolded proteins (MPs) in neurodegenerative diseases is largely unknown. This knowledge is crucial for understanding disease progression in relation to MPs spreading in the CNS. We assessed this issue in Drosophila by cell-specific expression of human Aβ1-42 associated with Alzheimer's disease. Expression of Aβ1-42 in various neurons resulted in concentration-dependent severe neurodegenerative phenotypes, and intraneuronal ring-tangle-like aggregates with immature fibril properties when analyzed by aggregate-specific ligands. Unexpectedly, expression of Aβ1-42 from a pan-glial driver produced a mild phenotype despite massive brain load of Aβ1-42 aggregates, even higher than in the strongest neuronal driver. Glial cells formed more mature fibrous aggregates, morphologically distinct from aggregates found in neurons, and was mainly extracellular. Our findings implicate that Aβ1-42 cytotoxicity is both cell and aggregate morphotype dependent.
Collapse
Affiliation(s)
- Maria Jonson
- Department of Physics, Chemistry and Biology, Linköping University, Linköping SE-581 83, Sweden
| | - Sofie Nyström
- Department of Physics, Chemistry and Biology, Linköping University, Linköping SE-581 83, Sweden
| | - Alexander Sandberg
- Department of Physics, Chemistry and Biology, Linköping University, Linköping SE-581 83, Sweden
| | - Marcus Carlback
- Department of Physics, Chemistry and Biology, Linköping University, Linköping SE-581 83, Sweden
| | - Wojciech Michno
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, 431 80 Mölndal, Sweden
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, 431 80 Mölndal, Sweden; Department of Molecular Neuroscience, Institute of Neurology, University College London, London W1C3BG, UK
| | - Annika Starkenberg
- Department of Clinical and Experimental Medicine, Linköping University, Linköping SE-581 85, Sweden
| | - K Peter R Nilsson
- Department of Physics, Chemistry and Biology, Linköping University, Linköping SE-581 83, Sweden
| | - Stefan Thor
- Department of Clinical and Experimental Medicine, Linköping University, Linköping SE-581 85, Sweden
| | - Per Hammarström
- Department of Physics, Chemistry and Biology, Linköping University, Linköping SE-581 83, Sweden.
| |
Collapse
|
14
|
Fraqueza MJR, Patarata LADSC. Constraints of HACCP Application on Edible Insect for Food and Feed. FUTURE FOODS 2017. [DOI: 10.5772/intechopen.69300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
15
|
Genetic human prion disease modelled in PrP transgenic Drosophila. Biochem J 2017; 474:3253-3267. [PMID: 28814578 PMCID: PMC5606059 DOI: 10.1042/bcj20170462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/07/2017] [Accepted: 08/15/2017] [Indexed: 12/26/2022]
Abstract
Inherited human prion diseases, such as fatal familial insomnia (FFI) and familial Creutzfeldt–Jakob disease (fCJD), are associated with autosomal dominant mutations in the human prion protein gene PRNP and accumulation of PrPSc, an abnormal isomer of the normal host protein PrPC, in the brain of affected individuals. PrPSc is the principal component of the transmissible neurotoxic prion agent. It is important to identify molecular pathways and cellular processes that regulate prion formation and prion-induced neurotoxicity. This will allow identification of possible therapeutic interventions for individuals with, or at risk from, genetic human prion disease. Increasingly, Drosophila has been used to model human neurodegenerative disease. An important unanswered question is whether genetic prion disease with concomitant spontaneous prion formation can be modelled in Drosophila. We have used pUAST/PhiC31-mediated site-directed mutagenesis to generate Drosophila transgenic for murine or hamster PrP (prion protein) that carry single-codon mutations associated with genetic human prion disease. Mouse or hamster PrP harbouring an FFI (D178N) or fCJD (E200K) mutation showed mild Proteinase K resistance when expressed in Drosophila. Adult Drosophila transgenic for FFI or fCJD variants of mouse or hamster PrP displayed a spontaneous decline in locomotor ability that increased in severity as the flies aged. Significantly, this mutant PrP-mediated neurotoxic fly phenotype was transferable to recipient Drosophila that expressed the wild-type form of the transgene. Collectively, our novel data are indicative of the spontaneous formation of a PrP-dependent neurotoxic phenotype in FFI- or CJD-PrP transgenic Drosophila and show that inherited human prion disease can be modelled in this invertebrate host.
Collapse
|
16
|
Fernandez-Funez P, Sanchez-Garcia J, Rincon-Limas DE. Drosophila models of prionopathies: insight into prion protein function, transmission, and neurotoxicity. Curr Opin Genet Dev 2017; 44:141-148. [PMID: 28415023 PMCID: PMC5474952 DOI: 10.1016/j.gde.2017.03.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/03/2017] [Accepted: 03/21/2017] [Indexed: 11/26/2022]
Abstract
Prion diseases (PrD) are unique neurodegenerative conditions with sporadic, genetic, and infectious etiologies. The agent responsible for these pathologies is a misfolded conformation of the prion protein (PrP). Although a process of autocatalytic "conversion" is known to mediate disease transmission, important gaps still remain regarding the physiological function of PrP and its relevance to pathogenesis, the molecular and cellular mechanisms mediating neurotoxicity and transmission, and the PrP conformations responsible for neurotoxicity. New Drosophila models expressing mammalian PrP have revealed physiological insight into PrP function and opened the door to significant progress in prion transmission and PrP neurotoxicity. Importantly, flies expressing human PrP showing a robust eye phenotype will allow performing genetic screens to uncover novel mechanisms mediating PrP neurotoxicity.
Collapse
Affiliation(s)
- Pedro Fernandez-Funez
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, MN 55811, USA.
| | - Jonatan Sanchez-Garcia
- Department of Neurology, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Diego E Rincon-Limas
- Departments of Neurology and Neuroscience, McKnight Brain Institute and Center for Translational Research on Neurodegenerative Diseases, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
17
|
van Raamsdonk LWD, van der Fels-Klerx HJ, de Jong J. New feed ingredients: the insect opportunity. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2017; 34:1384-1397. [PMID: 28393682 DOI: 10.1080/19440049.2017.1306883] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In the framework of sustainability and a circular economy, new ingredients for feed are desired and, to this end, initiatives for implementing such novel ingredients have been started. The initiatives include a range of different sources, of which insects are of particular interest. Within the European Union, generally, a new feed ingredient should comply with legal constraints in terms of 'yes, provided that' its safety commits to a range of legal limits for heavy metals, mycotoxins, pesticides, contaminants, pathogens etc. In the case of animal proteins, however, a second legal framework applies which is based on the principle 'no, unless'. This legislation for eradicating transmissible spongiform encephalopathy consists of prohibitions with a set of derogations applying to specific situations. Insects are currently considered animal proteins. The use of insect proteins is a good case to illustrate this difference between a positive, although restricted, modus and a negative modus for allowing animal proteins. This overview presents aspects in the areas of legislation, feed safety, environmental issues, efficiency and detection of the identity of insects. Use of insects as an extra step in the feed production chain costs extra energy and this results in a higher footprint. A measure for energy conversion should be used to facilitate the comparison between production systems based on cold- versus warm-blooded animals. Added value can be found by applying new commodities for rearing, including but not limited to category 2 animal by-products, catering and household waste including meat, and manure. Furthermore, monitoring of a correct use of insects is one possible approach for label control, traceability and prevention of fraud. The link between legislation and enforcement is strong. A principle called WISE (Witful, Indicative, Societal demands, Enforceable) is launched for governing the relationship between the above-mentioned aspects.
Collapse
Affiliation(s)
| | | | - J de Jong
- a RIKILT Wageningen University and Research , Wageningen , the Netherlands
| |
Collapse
|
18
|
Brandner S, Jaunmuktane Z. Prion disease: experimental models and reality. Acta Neuropathol 2017; 133:197-222. [PMID: 28084518 PMCID: PMC5250673 DOI: 10.1007/s00401-017-1670-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 01/04/2023]
Abstract
The understanding of the pathogenesis and mechanisms of diseases requires a multidisciplinary approach, involving clinical observation, correlation to pathological processes, and modelling of disease mechanisms. It is an inherent challenge, and arguably impossible to generate model systems that can faithfully recapitulate all aspects of human disease. It is, therefore, important to be aware of the potentials and also the limitations of specific model systems. Model systems are usually designed to recapitulate only specific aspects of the disease, such as a pathological phenotype, a pathomechanism, or to test a hypothesis. Here, we evaluate and discuss model systems that were generated to understand clinical, pathological, genetic, biochemical, and epidemiological aspects of prion diseases. Whilst clinical research and studies on human tissue are an essential component of prion research, much of the understanding of the mechanisms governing transmission, replication, and toxicity comes from in vitro and in vivo studies. As with other neurodegenerative diseases caused by protein misfolding, the pathogenesis of prion disease is complex, full of conundra and contradictions. We will give here a historical overview of the use of models of prion disease, how they have evolved alongside the scientific questions, and how advancements in technologies have pushed the boundaries of our understanding of prion biology.
Collapse
Affiliation(s)
- Sebastian Brandner
- Department of Neurodegenerative Disease, UCL Institute of Neurology and Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London, WC1N 3BG UK
| | - Zane Jaunmuktane
- Department of Neurodegenerative Disease, UCL Institute of Neurology and Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London, WC1N 3BG UK
| |
Collapse
|
19
|
Bioassay of prion-infected blood plasma in PrP transgenic Drosophila. Biochem J 2016; 473:4399-4412. [PMID: 27733649 DOI: 10.1042/bcj20160417] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 10/03/2016] [Accepted: 10/11/2016] [Indexed: 01/27/2023]
Abstract
In pursuit of a tractable bioassay to assess blood prion infectivity, we have generated prion protein (PrP) transgenic Drosophila, which show a neurotoxic phenotype in adulthood after exposure to exogenous prions at the larval stage. Here, we determined the sensitivity of ovine PrP transgenic Drosophila to ovine prion infectivity by exposure of these flies to a dilution series of scrapie-infected sheep brain homogenate. Ovine PrP transgenic Drosophila showed a significant neurotoxic response to dilutions of 10-2 to 10-10 of the original scrapie-infected sheep brain homogenate. Significantly, we determined that this prion-induced neurotoxic response in ovine PrP transgenic Drosophila was transmissible to ovine PrP transgenic mice, which is indicative of authentic mammalian prion detection by these flies. As a consequence, we considered that PrP transgenic Drosophila were sufficiently sensitive to exogenous mammalian prions to be capable of detecting prion infectivity in the blood of scrapie-infected sheep. To test this hypothesis, we exposed ovine PrP transgenic Drosophila to scrapie-infected plasma, a blood fraction notoriously difficult to assess by conventional prion bioassays. Notably, pre-clinical plasma from scrapie-infected sheep induced neurotoxicity in PrP transgenic Drosophila and this effect was more pronounced after exposure to samples collected at the clinical phase of disease. The neurotoxic phenotype in ovine PrP transgenic Drosophila induced by plasma from scrapie-infected sheep was transmissible since head homogenate from these flies caused neurotoxicity in recipient flies during fly-to-fly transmission. Our data show that PrP transgenic Drosophila can be used successfully to bioassay prion infectivity in blood from a prion-diseased mammalian host.
Collapse
|
20
|
|
21
|
McGurk L, Berson A, Bonini NM. Drosophila as an In Vivo Model for Human Neurodegenerative Disease. Genetics 2015; 201:377-402. [PMID: 26447127 PMCID: PMC4596656 DOI: 10.1534/genetics.115.179457] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/19/2015] [Indexed: 12/13/2022] Open
Abstract
With the increase in the ageing population, neurodegenerative disease is devastating to families and poses a huge burden on society. The brain and spinal cord are extraordinarily complex: they consist of a highly organized network of neuronal and support cells that communicate in a highly specialized manner. One approach to tackling problems of such complexity is to address the scientific questions in simpler, yet analogous, systems. The fruit fly, Drosophila melanogaster, has been proven tremendously valuable as a model organism, enabling many major discoveries in neuroscientific disease research. The plethora of genetic tools available in Drosophila allows for exquisite targeted manipulation of the genome. Due to its relatively short lifespan, complex questions of brain function can be addressed more rapidly than in other model organisms, such as the mouse. Here we discuss features of the fly as a model for human neurodegenerative disease. There are many distinct fly models for a range of neurodegenerative diseases; we focus on select studies from models of polyglutamine disease and amyotrophic lateral sclerosis that illustrate the type and range of insights that can be gleaned. In discussion of these models, we underscore strengths of the fly in providing understanding into mechanisms and pathways, as a foundation for translational and therapeutic research.
Collapse
Affiliation(s)
- Leeanne McGurk
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Amit Berson
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Nancy M Bonini
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
22
|
Bujdoso R, Landgraf M, Jackson WS, Thackray AM. Prion-induced neurotoxicity: Possible role for cell cycle activity and DNA damage response. World J Virol 2015; 4:188-197. [PMID: 26279981 PMCID: PMC4534811 DOI: 10.5501/wjv.v4.i3.188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 03/19/2015] [Accepted: 04/30/2015] [Indexed: 02/05/2023] Open
Abstract
Protein misfolding neurodegenerative diseases arise through neurotoxicity induced by aggregation of host proteins. These conditions include Alzheimer’s disease, Huntington’s disease, Parkinson’s disease, motor neuron disease, tauopathies and prion diseases. Collectively, these conditions are a challenge to society because of the increasing aged population and through the real threat to human food security by animal prion diseases. It is therefore important to understand the cellular and molecular mechanisms that underlie protein misfolding-induced neurotoxicity as this will form the basis for designing strategies to alleviate their burden. Prion diseases are an important paradigm for neurodegenerative conditions in general since several of these maladies have now been shown to display prion-like phenomena. Increasingly, cell cycle activity and the DNA damage response are recognised as cellular events that participate in the neurotoxic process of various neurodegenerative diseases, and their associated animal models, which suggests they are truly involved in the pathogenic process and are not merely epiphenomena. Here we review the role of cell cycle activity and the DNA damage response in neurodegeneration associated with protein misfolding diseases, and suggest that these events contribute towards prion-induced neurotoxicity. In doing so, we highlight PrP transgenic Drosophila as a tractable model for the genetic analysis of transmissible mammalian prion disease.
Collapse
|
23
|
Prion-induced and spontaneous formation of transmissible toxicity in PrP transgenic Drosophila. Biochem J 2014; 463:31-40. [PMID: 25000212 DOI: 10.1042/bj20140129] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Prion diseases are fatal transmissible neurodegenerative diseases of various mammalian species. Central to these conditions is the conversion of the normal host prion protein PrP(C) into the abnormal prion conformer PrP(Sc). Mature PrP(C) is attached to the plasma membrane by a glycosylphosphatidylinositol anchor, whereas during biosynthesis and metabolism cytosolic and secreted forms of the protein may arise. The role of topological PrP(C) variants in the mechanism of prion formation and prion-induced neurotoxicity during prion disease remains undefined. In the present study we investigated whether Drosophila transgenic for ovine PrP targeted to the plasma membrane, to the cytosol or for secretion, could produce transmissible toxicity following exposure to exogenous ovine prions. Although all three topological variants of PrP were efficiently expressed in Drosophila, cytosolic PrP was conformationally distinct and required denaturation before recognition by immunobiochemical methods. Adult Drosophila transgenic for pan neuronally expressed ovine PrP targeted to the plasma membrane, to the cytosol or for secretion exhibited a decreased locomotor activity after exposure at the larval stage to ovine prions. Proteinase K-resistant PrP(Sc) was detected by protein misfolding cyclic amplification in prion-exposed Drosophila transgenic for membrane-targeted PrP. Significantly, head homogenate from all three variants of prion-exposed PrP transgenic Drosophila induced a decreased locomotor activity when transmitted to PrP recipient flies. Drosophila transgenic for PrP targeted for secretion exhibited a spontaneous locomotor defect in the absence of prion exposure that was transmissible in PrP transgenic flies. Our data are consistent with the formation of transmissible prions in PrP transgenic Drosophila.
Collapse
|
24
|
Abstract
The formation of amyloid aggregates is a feature of most, if not all, polypeptide chains. In vivo modelling of this process has been undertaken in the fruitfly Drosophila melanogaster with remarkable success. Models of both neurological and systemic amyloid diseases have been generated and have informed our understanding of disease pathogenesis in two main ways. First, the toxic amyloid species have been at least partially characterized, for example in the case of the Aβ (amyloid β-peptide) associated with Alzheimer's disease. Secondly, the genetic underpinning of model disease-linked phenotypes has been characterized for a number of neurodegenerative disorders. The current challenge is to integrate our understanding of disease-linked processes in the fly with our growing knowledge of human disease, for the benefit of patients.
Collapse
|
25
|
Abstract
Prion diseases are characterized by a conformational change in the normal host protein PrPC. While the majority of mature PrPC is tethered to the plasma membrane by a glycosylphosphatidylinositol anchor, topological variants of this protein can arise during its biosynthesis. Here we have generated Drosophila transgenic for cytosolic ovine PrP in order to investigate its toxic potential in flies in the absence or presence of exogenous ovine prions. While cytosolic ovine PrP expressed in Drosophila was predominantly detergent insoluble and showed resistance to low concentrations of proteinase K, it was not overtly detrimental to the flies. However, Drosophila transgenic for cytosolic PrP expression exposed to classical or atypical scrapie prion inocula showed a faster decrease in locomotor activity than similar flies exposed to scrapie-free material. The susceptibility to classical scrapie inocula could be assessed in Drosophila transgenic for panneuronal expression of cytosolic PrP, whereas susceptibility to atypical scrapie required ubiquitous PrP expression. Significantly, the toxic phenotype induced by ovine scrapie in cytosolic PrP transgenic Drosophila was transmissible to recipient PrP transgenic flies. These data show that while cytosolic PrP expression does not adversely affect Drosophila, this topological PrP variant can participate in the generation of transmissible scrapie-induced toxicity. These observations also show that PrP transgenic Drosophila are susceptible to classical and atypical scrapie prion strains and highlight the utility of this invertebrate host as a model of mammalian prion disease. Importance: During prion diseases, the host protein PrPC converts into an abnormal conformer, PrPSc, a process coupled to the generation of transmissible prions and neurotoxicity. While PrPC is principally a glycosylphosphatidylinositol-anchored membrane protein, the role of topological variants, such as cytosolic PrP, in prion-mediated toxicity and prion formation is undefined. Here we generated Drosophila transgenic for cytosolic PrP expression in order to investigate its toxic potential in the absence or presence of exogenous prions. Cytosolic ovine PrP expressed in Drosophila was not overtly detrimental to the flies. However, cytosolic PrP transgenic Drosophila exposed to ovine scrapie showed a toxic phenotype absent from similar flies exposed to scrapie-free material. Significantly, the scrapie-induced toxic phenotype in cytosolic transgenic Drosophila was transmissible to recipient PrP transgenic flies. These data show that cytosolic PrP can participate in the generation of transmissible prion-induced toxicity and highlight the utility of Drosophila as a model of mammalian prion disease.
Collapse
|
26
|
Konsolaki M. Fruitful research: drug target discovery for neurodegenerative diseases in Drosophila. Expert Opin Drug Discov 2013; 8:1503-13. [PMID: 24151920 DOI: 10.1517/17460441.2013.849691] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Although vertebrate model systems have obvious advantages in the study of human disease, invertebrate organisms have contributed enormously to this field as well. The conservation of genome structure and physiology among organisms poses unexpected peculiarities, and the redundancy in certain gene families or the presence of polymorphisms that can slightly alter gene expression can, in certain instances, bring invertebrate systems, such as Drosophila, closer to humans than mice and vice versa. This necessitates the analysis of disease pathways in multiple model organisms. AREAS COVERED The author highlights findings from Drosophila models of neurodegenerative diseases that have occurred in the past few years. She also highlights and discusses various molecular, genetic and genomic tools used in flies, as well as methods for generating disease models. Finally, the author describes Drosophila models of Alzheimer's, Parkinson's tri-nucleotide repeat diseases, and Fragile X syndrome and summarizes insights in disease mechanisms that have been discovered directly in fly models. EXPERT OPINION Full genome genetic screens in Drosophila can lead to the rapid identification of drug target candidates that can be subsequently validated in a vertebrate system. In addition, the Drosophila models of neurodegeneration may often show disease phenotypes that are absent in equivalent mouse models. The author believes that the extensive contribution of Drosophila to both new disease drug target discovery, in addition to target validation, makes them indispensible to drug discovery and development.
Collapse
Affiliation(s)
- Mary Konsolaki
- Rutgers, The State University of New Jersey, Department of Genetics, Nelson Biological Laboratories , Room AB422, Piscataway, NJ 08854 , USA +1 732 445 2813 ; +1 732 445 6920 ;
| |
Collapse
|