1
|
Saito A, Taniguchi H, Matsumoto T, Yamada R, Ogino H. Sortase A-Mediated Ligation Facilitates Metabolic Channeling in Saccharomyces cerevisiae. ACS Synth Biol 2025. [PMID: 40254838 DOI: 10.1021/acssynbio.4c00841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Although the yeast Saccharomyces cerevisiae has been utilized for the bioproduction of various valuable substances, improving product concentration and production rate remains a challenge in its practical application. In this respect, metabolic channeling represents a potential strategy for addressing this issue. In the metabolic pathway for synthesizing a target product, closing enzymes induce substrate channeling, in which intermediates are transferred to the following enzyme to facilitate processing. To close enzymes in proximity, protein ligation is one of the solutions. However, genetic fusion often causes the generation of inactive complexes, and few techniques exist for ligating enzymes in yeast without loss of enzyme activity. Herein, we focused on sortase A, which links a short peptide tag between two target proteins. First, we demonstrated sortase A-mediated ligation in yeast using split-green fluorescent protein. Then, sortase A-mediated ligation was applied to ligate metabolic enzymes related to 3-hydroxypropionic acid, which improved 3-HP production by 2.42-fold. This strategy represents a novel approach for improving yeast bioproduction.
Collapse
Affiliation(s)
- Akira Saito
- Department of Chemical Engineering, Osaka Metropolitan University, Osaka 599-8531, Japan
| | - Hikaru Taniguchi
- Department of Chemical Engineering, Osaka Metropolitan University, Osaka 599-8531, Japan
| | - Takuya Matsumoto
- Department of Chemical Engineering, Osaka Metropolitan University, Osaka 599-8531, Japan
| | - Ryosuke Yamada
- Department of Chemical Engineering, Osaka Metropolitan University, Osaka 599-8531, Japan
| | - Hiroyasu Ogino
- Department of Chemical Engineering, Osaka Metropolitan University, Osaka 599-8531, Japan
| |
Collapse
|
2
|
Zhou X, Li L, Sun S, Xiong P, Liu X. The production of succinate with more CO 2 fixation reactions facilitated by RuBisCO-based engineered Escherichia coli. Biotechnol Prog 2025:e70015. [PMID: 39968675 DOI: 10.1002/btpr.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/16/2024] [Accepted: 01/31/2025] [Indexed: 02/20/2025]
Abstract
Redesigning metabolic pathways to enhance the efficiency of carbon fixation during chemical biosynthesis is a promising approach for achieving cleaner and greener production of multi-carbon compounds. In this study, we established a model of cell growth in Escherichia coli that is dependent on the RuBisCO-Prk pathway by regulating its central metabolism. This rewiring ensures that growth depends on RuBisCO's carboxylation, allowing heterotrophic growth to rely on carbon fixation. This model was verified by detecting the growth curve, and it was used to screen four RuBisCO genes, of which the gene from Rhodospirillum rubrum ATCC 11170 serves as a growth advantage for E.coli. In addition, this model was applied to construct an efficient succinate biosynthetic pathway that can produce two moles of succinate from one mole of xylose and three moles of CO2. Compared to conventional succinate biosynthesis, this strategy has a CO2 fixation capacity that is 1.5 times greater. Furthermore, to optimize succinate production, various approaches were employed, including the optimization of key enzymes, substrate transport, and the supply of inorganic carbon. The resulting strain was capable of producing succinate at a level of 2.09 ± 0.14 g/L, which is nearly 22.4 times that of the original strain. In conclusion, this study was developed for the production of two moles of succinate by implementing three moles of carbon fixation reactions and demonstrated the feasibility of various optimization strategies in biological carbon fixation.
Collapse
Affiliation(s)
- Xiuyuan Zhou
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
- International Joint Laboratory on Extremophilic Bacteria and Biological Synthesis, Shandong University of Technology, Zibo, China
| | - Linqing Li
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
- International Joint Laboratory on Extremophilic Bacteria and Biological Synthesis, Shandong University of Technology, Zibo, China
| | - Shengjie Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
- International Joint Laboratory on Extremophilic Bacteria and Biological Synthesis, Shandong University of Technology, Zibo, China
| | - Peng Xiong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
- International Joint Laboratory on Extremophilic Bacteria and Biological Synthesis, Shandong University of Technology, Zibo, China
| | - Xiutao Liu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
- International Joint Laboratory on Extremophilic Bacteria and Biological Synthesis, Shandong University of Technology, Zibo, China
| |
Collapse
|
3
|
Chen T, Zhang Y, Yun J, Zhao M, Zhang C, Chen Z, Zabed HM, Sun W, Qi X. Bioproduction of 3-Hydroxypropionic Acid by Enhancing the Precursor Supply with a Hybrid Pathway and Cofactor Regeneration. ACS Synth Biol 2024; 13:3366-3377. [PMID: 39323185 DOI: 10.1021/acssynbio.4c00427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
3-Hydroxypropionic acid (3-HP) is one of the 12 valuable platform chemicals with versatile applications in the chemical, food, and cosmetic industries. However, the biosynthesis of 3-HP faces challenges due to the lack of robust chassis and the high costs associated with the fermentation process. To address these challenges, we made efforts to augment the robustness of 3-HP-producing chassis by exploiting metabolic regulation, controlling carbon flux, balancing cofactor generation, and optimizing fermentation conditions. First, the malonyl-CoA (MCA) pathway was recruited and rebalanced in Escherichia coli. Subsequently, a hybrid pathway integrating the Embden-Meyerhof-Parnas pathway with the nonoxidative glycolysis pathway was systematically modulated to enhance carbon flux to the MCA pathway, followed by fine-tuning NADPH regeneration. Then, by optimizing the fermentation conditions, 3-HP production was significantly improved, reaching 6.8 g/L. Finally, in a fed-batch experiment, the final chassis produced 42.8 g/L 3-HP, corresponding to a 0.4 mol/mol yield and 0.6 g/(L·h) productivity.
Collapse
Affiliation(s)
- Tingting Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Yufei Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Junhua Yun
- School of Life Sciences, Guangzhou University, Guangzhou 510006, Guangdong, China
| | - Mei Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Cunsheng Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Ziwei Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Hossain M Zabed
- School of Life Sciences, Guangzhou University, Guangzhou 510006, Guangdong, China
| | - Wenjing Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
- School of Life Sciences, Guangzhou University, Guangzhou 510006, Guangdong, China
| |
Collapse
|
4
|
Cavuzic MT, de Sousa AS, Lohman JR, Waldrop GL. Kinetic characterization of the C-terminal domain of Malonyl-CoA reductase. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:141033. [PMID: 39019246 DOI: 10.1016/j.bbapap.2024.141033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
Malonyl-CoA reductase utilizes two equivalents of NADPH to catalyze the reduction of malonyl-CoA to 3-hydroxypropionic acid (3HP). This reaction is part of the carbon fixation pathway in the phototrophic bacterium Chloroflexus aurantiacus. The enzyme is composed of two domains. The C-terminal domain catalyzes the reduction of malonyl-CoA to malonic semialdehyde, while the N-terminal domain catalyzes the reduction of the aldehyde to 3HP. The two domains can be produced independently and retain their enzymatic activity. This report focuses on the kinetic characterization of the C-terminal domain. Initial velocity patterns and inhibition studies showed the kinetic mechanism is ordered with NADPH binding first followed by malonyl-CoA. Malonic semialdehyde is released first, while CoA and NADP+ are released randomly. Analogs of malonyl-CoA showed that the thioester carbon is reduced, while the carboxyl group is needed for proper positioning. The enzyme transfers the pro-S hydrogen of NADPH to malonyl-CoA and pH rate profiles revealed that a residue with a pKa value of about 8.8 must be protonated for activity. Kinetic isotope effects indicated that NADPH is not sticky (that is, NADPH dissociates from the enzyme faster than the rate of product formation) and product release is partially rate-limiting. Moreover, the mechanism is stepwise with the pH dependent step occurring before or after hydride transfer. The findings from this study will aid in the development of an eco-friendly biosynthesis of 3HP which is an industrial chemical used in the production of plastics and adhesives.
Collapse
Affiliation(s)
- Mirela Tkalcic Cavuzic
- Department of Biological Sciences, Louisiana State University; Baton Rouge, LA 70803, USA.
| | - Amanda Silva de Sousa
- Department of Biochemistry and Molecular Biology, Michigan State University; East Lansing, MI 48824, USA.
| | - Jeremy R Lohman
- Department of Biochemistry and Molecular Biology, Michigan State University; East Lansing, MI 48824, USA.
| | - Grover L Waldrop
- Department of Biological Sciences, Louisiana State University; Baton Rouge, LA 70803, USA.
| |
Collapse
|
5
|
Song Y, Liu H, Quax WJ, Zhang Z, Chen Y, Yang P, Cui Y, Shi Q, Xie X. Application of valencene and prospects for its production in engineered microorganisms. Front Microbiol 2024; 15:1444099. [PMID: 39171255 PMCID: PMC11335630 DOI: 10.3389/fmicb.2024.1444099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Valencene, a sesquiterpene with the odor of sweet and fresh citrus, is widely used in the food, beverage, flavor and fragrance industry. Valencene is traditionally obtained from citrus fruits, which possess low concentrations of this compound. In the past decades, the great market demand for valencene has attracted considerable attention from researchers to develop novel microbial cell factories for more efficient and sustainable production modes. This review initially discusses the biosynthesis of valencene in plants, and summarizes the current knowledge of the key enzyme valencene synthase in detail. In particular, we highlight the heterologous production of valencene in different hosts including bacteria, fungi, microalgae and plants, and focus on describing the engineering strategies used to improve valencene production. Finally, we propose potential engineering directions aiming to further increase the production of valencene in microorganisms.
Collapse
Affiliation(s)
- Yafeng Song
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Huizhong Liu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Wim J. Quax
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Zhiqing Zhang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yiwen Chen
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ping Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yinhua Cui
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingshan Shi
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiaobao Xie
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
6
|
Li L, Zhou X, Gao Z, Xiong P, Liu X. Production of succinate with two CO 2 fixation reactions from fatty acids in Cupriavidus necator H16. Microb Cell Fact 2024; 23:194. [PMID: 38970033 PMCID: PMC11225152 DOI: 10.1186/s12934-024-02470-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/02/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Biotransformation of CO2 into high-value-added carbon-based products is a promising process for reducing greenhouse gas emissions. To realize the green transformation of CO2, we use fatty acids as carbon source to drive CO2 fixation to produce succinate through a portion of the 3-hydroxypropionate (3HP) cycle in Cupriavidus necator H16. RESULTS This work can achieve the production of a single succinate molecule from one acetyl-CoA molecule and two CO2 molecules. It was verified using an isotope labeling experiment utilizing NaH13CO3. This implies that 50% of the carbon atoms present in succinate are derived from CO2, resulting in a twofold increase in efficiency compared to prior methods of succinate biosynthesis that relied on the carboxylation of phosphoenolpyruvate or pyruvate. Meanwhile, using fatty acid as a carbon source has a higher theoretical yield than other feedstocks and also avoids carbon loss during acetyl-CoA and succinate production. To further optimize succinate production, different approaches including the optimization of ATP and NADPH supply, optimization of metabolic burden, and optimization of carbon sources were used. The resulting strain was capable of producing succinate to a level of 3.6 g/L, an increase of 159% from the starting strain. CONCLUSIONS This investigation established a new method for the production of succinate by the implementation of two CO2 fixation reactions and demonstrated the feasibility of ATP, NADPH, and metabolic burden regulation strategies in biological carbon fixation.
Collapse
Affiliation(s)
- Linqing Li
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
- International Joint Laboratory on Extremophilic Bacteria and Biological Synthesis, Shandong University of Technology, Zibo, 255000, China
| | - Xiuyuan Zhou
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
- International Joint Laboratory on Extremophilic Bacteria and Biological Synthesis, Shandong University of Technology, Zibo, 255000, China
| | - Zhuoao Gao
- International Joint Laboratory on Extremophilic Bacteria and Biological Synthesis, Shandong University of Technology, Zibo, 255000, China
| | - Peng Xiong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China.
- International Joint Laboratory on Extremophilic Bacteria and Biological Synthesis, Shandong University of Technology, Zibo, 255000, China.
| | - Xiutao Liu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China.
- International Joint Laboratory on Extremophilic Bacteria and Biological Synthesis, Shandong University of Technology, Zibo, 255000, China.
| |
Collapse
|
7
|
Liu X, Li L, Zhao G, Xiong P. Optimization strategies for CO 2 biological fixation. Biotechnol Adv 2024; 73:108364. [PMID: 38642673 DOI: 10.1016/j.biotechadv.2024.108364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/07/2024] [Accepted: 04/14/2024] [Indexed: 04/22/2024]
Abstract
Global sustainable development faces a significant challenge in effectively utilizing CO2. Meanwhile, CO2 biological fixation offers a promising solution. CO2 has the highest oxidation state (+4 valence state), whereas typical multi‑carbon chemicals have lower valence states. The Gibbs free energy (ΔG) changes of CO2 reductive reactions are generally positive and this renders it necessary to input different forms of energy. Although biological carbon fixation processes are friendly to operate, the thermodynamic obstacles must be overcome. To make this reaction occur favorably and efficiently, diverse strategies to enhance CO2 biological fixation efficiency have been proposed by numerous researchers. This article reviews recent advances in optimizing CO2 biological fixation and intends to provide new insights into achieving efficient biological utilization of CO2. It first outlines the thermodynamic characteristics of diverse carbon fixation reactions and proposes optimization directions for CO2 biological fixation. A comprehensive overview of the catalytic mechanisms, optimization strategies, and challenges encountered by common carbon-fixing enzymes is then provided. Subsequently, potential routes for improving the efficiency of biological carbon fixation are discussed, including the ATP supply, reducing power supply, energy supply, reactor design, and carbon enrichment system modules. In addition, effective artificial carbon fixation pathways were summarized and analyzed. Finally, prospects are made for the research direction of continuously improving the efficiency of biological carbon fixation.
Collapse
Affiliation(s)
- Xiutao Liu
- School of Life Sciences and Medicine, Shandong University of Technology, 255000 Zibo, China; International Joint Laboratory on Extremophilic Bacteria and Biological Synthesis, Shandong University of Technology, 255000 Zibo, China.
| | - Linqing Li
- School of Life Sciences and Medicine, Shandong University of Technology, 255000 Zibo, China; International Joint Laboratory on Extremophilic Bacteria and Biological Synthesis, Shandong University of Technology, 255000 Zibo, China
| | - Guang Zhao
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, China.
| | - Peng Xiong
- School of Life Sciences and Medicine, Shandong University of Technology, 255000 Zibo, China; International Joint Laboratory on Extremophilic Bacteria and Biological Synthesis, Shandong University of Technology, 255000 Zibo, China.
| |
Collapse
|
8
|
Kabasakal BV, Cotton CAR, Murray JW. Dynamic lid domain of Chloroflexus aurantiacus Malonyl-CoA reductase controls the reaction. Biochimie 2024; 219:12-20. [PMID: 37952891 DOI: 10.1016/j.biochi.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Malonyl-Coenzyme A Reductase (MCR) in Chloroflexus aurantiacus, a characteristic enzyme of the 3-hydroxypropionate (3-HP) cycle, catalyses the reduction of malonyl-CoA to 3-HP. MCR is a bi-functional enzyme; in the first step, malonyl-CoA is reduced to the free intermediate malonate semialdehyde by the C-terminal region of MCR, and this is further reduced to 3-HP by the N-terminal region of MCR. Here we present the crystal structures of both N-terminal and C-terminal regions of the MCR from C. aurantiacus. A catalytic mechanism is suggested by ligand and substrate bound structures, and structural and kinetic studies of MCR variants. Both MCR structures reveal one catalytic, and one non-catalytic SDR (short chain dehydrogenase/reductase) domain. C-terminal MCR has a lid domain which undergoes a conformational change and controls the reaction. In the proposed mechanism of the C-terminal MCR, the conversion of malonyl-CoA to malonate semialdehyde is based on the reduction of malonyl-CoA by NADPH, followed by the decomposition of the hemithioacetal to produce malonate semialdehyde and coenzyme A. Conserved arginines, Arg734 and Arg773 are proposed to play key roles in the mechanism and conserved Ser719, and Tyr737 are other essential residues forming an oxyanion hole for the substrate intermediates.
Collapse
Affiliation(s)
- Burak V Kabasakal
- Department of Life Sciences, Imperial College, Exhibition Road, London, SW7 2AZ, UK; Turkish Accelerator and Radiation Laboratory, Gölbaşı, 06830, Ankara, Turkiye
| | - Charles A R Cotton
- Department of Life Sciences, Imperial College, Exhibition Road, London, SW7 2AZ, UK; Cambrium GmbH, Max-Urich-Strasse 3, 13355, Berlin, Germany
| | - James W Murray
- Department of Life Sciences, Imperial College, Exhibition Road, London, SW7 2AZ, UK.
| |
Collapse
|
9
|
Qin N, Li L, Wan X, Ji X, Chen Y, Li C, Liu P, Zhang Y, Yang W, Jiang J, Xia J, Shi S, Tan T, Nielsen J, Chen Y, Liu Z. Increased CO 2 fixation enables high carbon-yield production of 3-hydroxypropionic acid in yeast. Nat Commun 2024; 15:1591. [PMID: 38383540 PMCID: PMC10881976 DOI: 10.1038/s41467-024-45557-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/28/2024] [Indexed: 02/23/2024] Open
Abstract
CO2 fixation plays a key role to make biobased production cost competitive. Here, we use 3-hydroxypropionic acid (3-HP) to showcase how CO2 fixation enables approaching theoretical-yield production. Using genome-scale metabolic models to calculate the production envelope, we demonstrate that the provision of bicarbonate, formed from CO2, restricts previous attempts for high yield production of 3-HP. We thus develop multiple strategies for bicarbonate uptake, including the identification of Sul1 as a potential bicarbonate transporter, domain swapping of malonyl-CoA reductase, identification of Esbp6 as a potential 3-HP exporter, and deletion of Uga1 to prevent 3-HP degradation. The combined rational engineering increases 3-HP production from 0.14 g/L to 11.25 g/L in shake flask using 20 g/L glucose, approaching the maximum theoretical yield with concurrent biomass formation. The engineered yeast forms the basis for commercialization of bio-acrylic acid, while our CO2 fixation strategies pave the way for CO2 being used as the sole carbon source.
Collapse
Affiliation(s)
- Ning Qin
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lingyun Li
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Department of Life Sciences, Chalmers University of Technology, SE412 96, Gothenburg, Sweden
| | - Xiaozhen Wan
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xu Ji
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yu Chen
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Chaokun Li
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Ping Liu
- The State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yijie Zhang
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Weijie Yang
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Junfeng Jiang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jianye Xia
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Shuobo Shi
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Tianwei Tan
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jens Nielsen
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
- Department of Life Sciences, Chalmers University of Technology, SE412 96, Gothenburg, Sweden.
- BioInnovation Institute, Ole Maaløes Vej 3, DK2200, Copenhagen, Denmark.
| | - Yun Chen
- Department of Life Sciences, Chalmers University of Technology, SE412 96, Gothenburg, Sweden.
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens, Lyngby, Denmark.
| | - Zihe Liu
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
10
|
Batista RS, Chaves GL, Oliveira DB, Pantaleão VL, Neves JDDS, da Silva AJ. Glycerol as substrate and NADP +-dependent glyceraldehyde-3-phosphate dehydrogenase enable higher production of 3-hydroxypropionic acid through the β-alanine pathway in E. coli. BIORESOURCE TECHNOLOGY 2024; 393:130142. [PMID: 38049020 DOI: 10.1016/j.biortech.2023.130142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Microbial engineering is a promising way to produce3-HP using biorenewable substrates such as glycerol. However, theglycerol pathway to obtain 3-HPrequires vitamin B-12, which hinders its economic viability. The present work showed that 3-HP can be efficiently produced from glycerol through the β-alanine pathway. To develop a cell factory for this purpose, glycerol was evaluated as a substrate and showed more than two-fold improved 3-HP production compared to glucose. Next, the reducing power was modulated by overexpression of an NADP+ -dependent glyceraldehyde-3-phosphate dehydrogenase coupled with CRISPR-based repression of the endogenous gapA gene, resulting in a 91 % increase in 3-HP titer. Finally, the toxicity of 3-HP accumulation was addressed by overexpressing a putative exporter (YohJK). Fed-batch cultivation of the final strain yielded 72.2 g/L of 3-HP and a productivity of 1.64 g/L/h, which are the best results for the β-alanine pathway and are similar to those found for other pathways.
Collapse
Affiliation(s)
- Raquel Salgado Batista
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luís, km 235, São Carlos, São Paulo 13565-905, Brazil
| | - Gabriel Luz Chaves
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luís, km 235, São Carlos, São Paulo 13565-905, Brazil
| | - Davi Benedito Oliveira
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luís, km 235, São Carlos, São Paulo 13565-905, Brazil
| | - Vitor Leonel Pantaleão
- Department of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luís, km 235, São Carlos, São Paulo 13565-905, Brazil
| | - José Davi Dos Santos Neves
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luís, km 235, São Carlos, São Paulo 13565-905, Brazil
| | - Adilson José da Silva
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luís, km 235, São Carlos, São Paulo 13565-905, Brazil; Department of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luís, km 235, São Carlos, São Paulo 13565-905, Brazil.
| |
Collapse
|
11
|
Nie M, Wang J, Zhang K. Engineering a Novel Acetyl-CoA Pathway for Efficient Biosynthesis of Acetyl-CoA-Derived Compounds. ACS Synth Biol 2024; 13:358-369. [PMID: 38151239 DOI: 10.1021/acssynbio.3c00613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Acetyl-CoA is an essential central metabolite in living organisms and a key precursor for various value-added products as well. However, the intracellular availability of acetyl-CoA limits the efficient production of these target products due to complex and strict regulation. Here, we proposed a new acetyl-CoA pathway, relying on two enzymes, threonine aldolase and acetaldehyde dehydrogenase (acetylating), which can convert one l-threonine into one acetyl-CoA, one glycine, and generate one NADH, without carbon loss. Introducing the acetyl-CoA pathway could increase the intracellular concentration of acetyl-CoA by 8.6-fold compared with the wild-type strain. To develop a cost-competitive and genetically stable acetyl-CoA platform strain, the new acetyl-CoA pathway, driven by the constitutive strong promoter, was integrated into the chromosome of Escherichia coli. We demonstrated the practical application of this new acetyl-CoA pathway by high titer production of β-alanine, mevalonate, and N-acetylglucosamine. At the same time, this pathway achieved a high-yield production of glycine, a value-added commodity chemical for the synthesis of glyphosate and thiamphenicol. This work shows the potential of this new acetyl-CoA pathway for the industrial production of acetyl-CoA-derived compounds.
Collapse
Affiliation(s)
- Mengzhen Nie
- Zhejiang University, Hangzhou, Zhejiang 310027, China
- Center of Synthetic Biology and Integrated Bioengineering, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Jingyu Wang
- Center of Synthetic Biology and Integrated Bioengineering, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Kechun Zhang
- Center of Synthetic Biology and Integrated Bioengineering, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| |
Collapse
|
12
|
Àvila-Cabré S, Pérez-Trujillo M, Albiol J, Ferrer P. Engineering the synthetic β-alanine pathway in Komagataella phaffii for conversion of methanol into 3-hydroxypropionic acid. Microb Cell Fact 2023; 22:237. [PMID: 37978380 PMCID: PMC10655335 DOI: 10.1186/s12934-023-02241-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Methanol is increasingly gaining attraction as renewable carbon source to produce specialty and commodity chemicals, as it can be generated from renewable sources such as carbon dioxide (CO2). In this context, native methylotrophs such as the yeast Komagataella phaffii (syn Pichia pastoris) are potentially attractive cell factories to produce a wide range of products from this highly reduced substrate. However, studies addressing the potential of this yeast to produce bulk chemicals from methanol are still scarce. 3-Hydroxypropionic acid (3-HP) is a platform chemical which can be converted into acrylic acid and other commodity chemicals and biopolymers. 3-HP can be naturally produced by several bacteria through different metabolic pathways. RESULTS In this study, production of 3-HP via the synthetic β-alanine pathway has been established in K. phaffii for the first time by expressing three heterologous genes, namely panD from Tribolium castaneum, yhxA from Bacillus cereus, and ydfG from Escherichia coli K-12. The expression of these key enzymes allowed a production of 1.0 g l-1 of 3-HP in small-scale cultivations using methanol as substrate. The addition of a second copy of the panD gene and selection of a weak promoter to drive expression of the ydfG gene in the PpCβ21 strain resulted in an additional increase in the final 3-HP titer (1.2 g l-1). The 3-HP-producing strains were further tested in fed-batch cultures. The best strain (PpCβ21) achieved a final 3-HP concentration of 21.4 g l-1 after 39 h of methanol feeding, a product yield of 0.15 g g-1, and a volumetric productivity of 0.48 g l-1 h-1. Further engineering of this strain aiming at increasing NADPH availability led to a 16% increase in the methanol consumption rate and 10% higher specific productivity compared to the reference strain PpCβ21. CONCLUSIONS Our results show the potential of K. phaffii as platform cell factory to produce organic acids such as 3-HP from renewable one-carbon feedstocks, achieving the highest volumetric productivities reported so far for a 3-HP production process through the β-alanine pathway.
Collapse
Affiliation(s)
- Sílvia Àvila-Cabré
- Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Míriam Pérez-Trujillo
- Servei de Ressonància Magnètica Nuclear, Facultat de Ciències i Biociències, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Joan Albiol
- Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Pau Ferrer
- Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain.
| |
Collapse
|
13
|
Matsumoto T, Otani T, Yamada R, Ogino H. Enhancing 3-hydroxypropionic acid production in Saccharomyces cerevisiae through enzyme localization within mitochondria. Biochem Biophys Res Commun 2023; 680:1-6. [PMID: 37703602 DOI: 10.1016/j.bbrc.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023]
Abstract
Microbial 3-hydroxypropionic acid (3-HP) production can potentially replace petroleum-based production methods for acrylic acid. Here, we constructed a yeast strain that expressed enzymes related to 3-HP biosynthesis within the mitochondria. This approach aimed to enhance the 3-HP production by utilizing the mitochondrial acetyl-CoA, an important intermediate for synthesizing 3-HP. The strain that expressed 3-HP-producing enzymes in the mitochondria (YPH-mtA3HP) showed improved production of 3-HP compared to that shown by the strain expressing 3-HP-producing enzymes in the cytosol (YPH-cyA3HP). Additionally, cMCR was overexpressed, which regulates a rate-limiting reaction in synthesizing 3-HP. In this study, we aimed to further enhance 3-HP production by expressing multiple copies of cMCR in the mitochondria using the δ-integration strategy to optimize the expression level of cMCR (YPH-mtA3HPx*). The results of flask-scale cultivation showed that 3-HP production by cMCR δ-integration was significantly higher, exhibiting a yield of 160 mg/L in YPH-mtA3HP6* strain and 257 mg/L in YPH-mtA3HP22* strain. Notably, YPH-mtA3HP22*, exhibited the highest 3-HP titer, which was 3.2-fold higher than that of YPH-cyA3HP. Our results demonstrated the potential of utilizing the mitochondrial compartment within S. cerevisiae for enhancing 3-HP production.
Collapse
Affiliation(s)
- Takuya Matsumoto
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan.
| | - Takashi Otani
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Ryosuke Yamada
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Hiroyasu Ogino
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| |
Collapse
|
14
|
Zhang X, Xin J, Wang Z, Wu W, Liu Y, Min Z, Xin Y, Liu B, He J, Zhang X, Xu X. Structural basis of a bi-functional malonyl-CoA reductase (MCR) from the photosynthetic green non-sulfur bacterium Roseiflexus castenholzii. mBio 2023; 14:e0323322. [PMID: 37278533 PMCID: PMC10470521 DOI: 10.1128/mbio.03233-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/10/2023] [Indexed: 06/07/2023] Open
Abstract
Malonyl-CoA reductase (MCR) is a NADPH-dependent bi-functional enzyme that performs alcohol dehydrogenase and aldehyde dehydrogenase (CoA-acylating) activities in the N- and C-terminal fragments, respectively. It catalyzes the two-step reduction of malonyl-CoA to 3-hydroxypropionate (3-HP), a key reaction in the autotrophic CO2 fixation cycles of Chloroflexaceae green non-sulfur bacteria and the archaea Crenarchaeota. However, the structural basis underlying substrate selection, coordination, and the subsequent catalytic reactions of full-length MCR is largely unknown. For the first time, we here determined the structure of full-length MCR from the photosynthetic green non-sulfur bacterium Roseiflexus castenholzii (RfxMCR) at 3.35 Å resolution. Furthermore, we determined the crystal structures of the N- and C-terminal fragments bound with reaction intermediates NADP+ and malonate semialdehyde (MSA) at 2.0 Å and 2.3 Å, respectively, and elucidated the catalytic mechanisms using a combination of molecular dynamics simulations and enzymatic analyses. Full-length RfxMCR was a homodimer of two cross-interlocked subunits, each containing four tandemly arranged short-chain dehydrogenase/reductase (SDR) domains. Only the catalytic domains SDR1 and SDR3 incorporated additional secondary structures that changed with NADP+-MSA binding. The substrate, malonyl-CoA, was immobilized in the substrate-binding pocket of SDR3 through coordination with Arg1164 and Arg799 of SDR4 and the extra domain, respectively. Malonyl-CoA was successively reduced through protonation by the Tyr743-Arg746 pair in SDR3 and the catalytic triad (Thr165-Tyr178-Lys182) in SDR1 after nucleophilic attack from NADPH hydrides. IMPORTANCE The bi-functional MCR catalyzes NADPH-dependent reduction of malonyl-CoA to 3-HP, an important metabolic intermediate and platform chemical, from biomass. The individual MCR-N and MCR-C fragments, which contain the alcohol dehydrogenase and aldehyde dehydrogenase (CoA-acylating) activities, respectively, have previously been structurally investigated and reconstructed into a malonyl-CoA pathway for the biosynthetic production of 3-HP. However, no structural information for full-length MCR has been available to illustrate the catalytic mechanism of this enzyme, which greatly limits our capacity to increase the 3-HP yield of recombinant strains. Here, we report the cryo-electron microscopy structure of full-length MCR for the first time and elucidate the mechanisms underlying substrate selection, coordination, and catalysis in the bi-functional MCR. These findings provide a structural and mechanistic basis for enzyme engineering and biosynthetic applications of the 3-HP carbon fixation pathways.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and the Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
- Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Jiyu Xin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and the Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Zhiguo Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and the Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Wenping Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and the Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Yutong Liu
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zhenzhen Min
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and the Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Yueyong Xin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and the Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Bing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and the Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Jun He
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xingwei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and the Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Xiaoling Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and the Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
- Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
15
|
Guo L, Liu M, Bi Y, Qi Q, Xian M, Zhao G. Using a synthetic machinery to improve carbon yield with acetylphosphate as the core. Nat Commun 2023; 14:5286. [PMID: 37648707 PMCID: PMC10468489 DOI: 10.1038/s41467-023-41135-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023] Open
Abstract
In microbial cell factory, CO2 release during acetyl-CoA production from pyruvate significantly decreases the carbon atom economy. Here, we construct and optimize a synthetic carbon conserving pathway named as Sedoheptulose-1,7-bisphosphatase Cycle with Trifunctional PhosphoKetolase (SCTPK) in Escherichia coli. This cycle relies on a generalist phosphoketolase Xfspk and converts glucose into the stoichiometric amounts of acetylphosphate (AcP). Furthermore, genetic circuits responding to AcP positively or negatively are created. Together with SCTPK, they constitute a gene-metabolic oscillator that regulates Xfspk and enzymes converting AcP into valuable chemicals in response to intracellular AcP level autonomously, allocating metabolic flux rationally and improving the carbon atom economy of bioconversion process. Using this synthetic machinery, mevalonate is produced with a yield higher than its native theoretical yield, and the highest titer and yield of 3-hydroxypropionate via malonyl-CoA pathway are achieved. This study provides a strategy for improving the carbon yield of microbial cell factories.
Collapse
Affiliation(s)
- Likun Guo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Min Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Yujia Bi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Mo Xian
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Guang Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
| |
Collapse
|
16
|
Liu D, Hwang HJ, Otoupal PB, Geiselman GM, Kim J, Pomraning KR, Kim YM, Munoz N, Nicora CD, Gao Y, Burnum-Johnson KE, Jacobson O, Coradetti S, Kim J, Deng S, Dai Z, Prahl JP, Tanjore D, Lee TS, Magnuson JK, Gladden JM. Engineering Rhodosporidium toruloides for production of 3-hydroxypropionic acid from lignocellulosic hydrolysate. Metab Eng 2023; 78:72-83. [PMID: 37201565 DOI: 10.1016/j.ymben.2023.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/28/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
Microbial production of valuable bioproducts is a promising route towards green and sustainable manufacturing. The oleaginous yeast, Rhodosporidium toruloides, has emerged as an attractive host for the production of biofuels and bioproducts from lignocellulosic hydrolysates. 3-hydroxypropionic acid (3HP) is an attractive platform molecule that can be used to produce a wide range of commodity chemicals. This study focuses on establishing and optimizing the production of 3HP in R. toruloides. As R. toruloides naturally has a high metabolic flux towards malonyl-CoA, we exploited this pathway to produce 3HP. Upon finding the yeast capable of catabolizing 3HP, we then implemented functional genomics and metabolomic analysis to identify the catabolic pathways. Deletion of a putative malonate semialdehyde dehydrogenase gene encoding an oxidative 3HP pathway was found to significantly reduce 3HP degradation. We further explored monocarboxylate transporters to promote 3HP transport and identified a novel 3HP transporter in Aspergillus pseudoterreus by RNA-seq and proteomics. Combining these engineering efforts with media optimization in a fed-batch fermentation resulted in 45.4 g/L 3HP production. This represents one of the highest 3HP titers reported in yeast from lignocellulosic feedstocks. This work establishes R. toruloides as a host for 3HP production from lignocellulosic hydrolysate at high titers, and paves the way for further strain and process optimization towards enabling industrial production of 3HP in the future.
Collapse
Affiliation(s)
- Di Liu
- Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA, USA; Agile BioFoundry, Department of Energy, Emeryville, CA, USA.
| | - Hee Jin Hwang
- Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA, USA; Agile BioFoundry, Department of Energy, Emeryville, CA, USA
| | - Peter B Otoupal
- Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA, USA; Agile BioFoundry, Department of Energy, Emeryville, CA, USA; DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
| | - Gina M Geiselman
- Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA, USA; Agile BioFoundry, Department of Energy, Emeryville, CA, USA; DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
| | - Joonhoon Kim
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kyle R Pomraning
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Young-Mo Kim
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA; Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Nathalie Munoz
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA; Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Carrie D Nicora
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Yuqian Gao
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA; Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kristin E Burnum-Johnson
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA; Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Oslo Jacobson
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA; Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Samuel Coradetti
- Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA, USA; Agile BioFoundry, Department of Energy, Emeryville, CA, USA
| | - Jinho Kim
- DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Shuang Deng
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ziyu Dai
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jan-Philip Prahl
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA; Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Deepti Tanjore
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA; Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Taek Soon Lee
- DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jon K Magnuson
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA; DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - John M Gladden
- Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA, USA; Agile BioFoundry, Department of Energy, Emeryville, CA, USA; DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA.
| |
Collapse
|
17
|
Zhou S, Zhang Y, Wei Z, Park S. Recent advances in metabolic engineering of microorganisms for the production of monomeric C3 and C4 chemical compounds. BIORESOURCE TECHNOLOGY 2023; 377:128973. [PMID: 36972803 DOI: 10.1016/j.biortech.2023.128973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 06/18/2023]
Abstract
Bio-based C3 and C4 bi-functional chemicals are useful monomers in biopolymer production. This review describes recent progresses in the biosynthesis of four such monomers as a hydroxy-carboxylic acid (3-hydroxypropionic acid), a dicarboxylic acid (succinic acid), and two diols (1,3-propanediol and 1,4-butanediol). The use of cheap carbon sources and the development of strains and processes for better product titer, rate and yield are presented. Challenges and future perspectives for (more) economical commercial production of these chemicals are also briefly discussed.
Collapse
Affiliation(s)
- Shengfang Zhou
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Yingli Zhang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Zhiwen Wei
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Sunghoon Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| |
Collapse
|
18
|
Xu S, Qiao W, Wang Z, Fu X, Liu Z, Shi S. Exploiting a heterologous construction of the 3-hydroxypropionic acid carbon fixation pathway with mesaconate as an indicator in Saccharomyces cerevisiae. BIORESOUR BIOPROCESS 2023; 10:33. [PMID: 38647598 PMCID: PMC10991142 DOI: 10.1186/s40643-023-00652-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/14/2023] [Indexed: 04/25/2024] Open
Abstract
The 3-Hydroxypropionic acid (3-HP) pathway is one of the six known natural carbon fixation pathways, in which the carbon species used is bicarbonate. It has been considered to be the most suitable pathway for aerobic CO2 fixation among the six natural carbon fixation pathways. Mesaconate is a high value-added derivative in the 3-HP pathway and can be used as a co-monomer to produce fire-retardant materials and hydrogels. In this study, we use mesaconate as a reporting compound to evaluate the construction and optimization of the sub-part of the 3-HP pathway in Saccharomyces cerevisiae. Combined with fine-tuning of the malonyl-CoA reductase (MCR-C and MCR-N) expression level and optimization of 3-Hydroxypropionyl-CoA synthase, the 3-HP sub-pathway was optimized using glucose or ethanol as the substrate, with the productions of mesaconate reaching 90.78 and 61.2 mg/L, respectively.
Collapse
Affiliation(s)
- Shijie Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Weibo Qiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zuanwen Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoying Fu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zihe Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
19
|
Liu S, Sun Y, Wei T, Gong D, Wang Q, Zhan Z, Song J. Engineering 3-Hydroxypropionic Acid Production from Glucose in Yarrowia lipolytica through Malonyl-CoA Pathway. J Fungi (Basel) 2023; 9:jof9050573. [PMID: 37233284 DOI: 10.3390/jof9050573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
3-Hydroxypropionic acid (3-HP) is an important intermediate compound in the chemical industry. Green and environmentally friendly microbial synthesis methods are becoming increasingly popular in a range of industries. Compared to other chassis cells, Yarrowia lipolytica possesses advantages, such as high tolerance to organic acid and a sufficient precursor required to synthesize 3-HP. In this study, gene manipulations, including the overexpression of genes MCR-NCa, MCR-CCa, GAPNSm, ACC1 and ACSSeL641P and knocking out bypass genes MLS1 and CIT2, leading to the glyoxylate cycle, were performed to construct a recombinant strain. Based on this, the degradation pathway of 3-HP in Y. lipolytica was discovered, and relevant genes MMSDH and HPDH were knocked out. To our knowledge, this study is the first to produce 3-HP in Y. lipolytica. The yield of 3-HP in recombinant strain Po1f-NC-14 in shake flask fermentation reached 1.128 g·L-1, and the yield in fed-batch fermentation reached 16.23 g·L-1. These results are highly competitive compared to other yeast chassis cells. This study creates the foundation for the production of 3-HP in Y. lipolytica and also provides a reference for further research in the future.
Collapse
Affiliation(s)
- Shiyu Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Yao Sun
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Tianhui Wei
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Dianliang Gong
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Qi Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Zhe Zhan
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Jinzhu Song
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| |
Collapse
|
20
|
Ahn JW, Kim S, Hong J, Kim KJ. Cryo-EM structure of bifunctional malonyl-CoA reductase from Chloroflexus aurantiacus reveals a dynamic domain movement for high enzymatic activity. Int J Biol Macromol 2023; 242:124676. [PMID: 37146856 DOI: 10.1016/j.ijbiomac.2023.124676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/10/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
The platform chemical 3-hydroxypropionic acid is used to synthesize various valuable materials, including bioplastics. Bifunctional malonyl-CoA reductase is a key enzyme in 3-hydroxypropionic acid biosynthesis as it catalyzes the two-step reduction of malonyl-CoA to malonate semialdehyde to 3-hydroxypropionic acid. Here, we report the cryo-EM structure of a full-length malonyl-CoA reductase protein from Chloroflexus aurantiacus (CaMCRFull). The EM model of CaMCRFull reveals a tandem helix architecture comprising an N-terminal (CaMCRND) and a C-terminal (CaMCRCD) domain. The CaMCRFull model also revealed that the enzyme undergoes a dynamic domain movement between CaMCRND and CaMCRCD due to the presence of a flexible linker between these two domains. Increasing the flexibility and extension of the linker resulted in a twofold increase in enzyme activity, indicating that for CaMCR, domain movement is crucial for high enzyme activity. We also describe the structural features of CaMCRND and CaMCRCD. This study reveals the protein structures underlying the molecular mechanism of CaMCRFull and thereby provides valuable information for future enzyme engineering to improve the productivity of 3-hydroxypropionic acid.
Collapse
Affiliation(s)
- Jae-Woo Ahn
- Postech Biotech Center, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea; Center for Biomolecular Capture Technology, Bio Open Innovation Center, Pohang University of Science and Technology, 47 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Sangwoo Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jiyeon Hong
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyung-Jin Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea; KNU Institute for Microorganisms, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu 41566, Republic of Korea.
| |
Collapse
|
21
|
Zhang Y, Su M, Chen Y, Wang Z, Nielsen J, Liu Z. Engineering yeast mitochondrial metabolism for 3-hydroxypropionate production. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:64. [PMID: 37031180 PMCID: PMC10082987 DOI: 10.1186/s13068-023-02309-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/24/2023] [Indexed: 04/10/2023]
Abstract
BACKGROUND With unique physiochemical environments in subcellular organelles, there has been growing interest in harnessing yeast organelles for bioproduct synthesis. Among these organelles, the yeast mitochondrion has been found to be an attractive compartment for production of terpenoids and branched-chain alcohols, which could be credited to the abundant supply of acetyl-CoA, ATP and cofactors. In this study we explored the mitochondrial potential for production of 3-hydroxypropionate (3-HP) and performed the cofactor engineering and flux control at the acetyl-CoA node to maximize 3-HP synthesis. RESULTS Metabolic modeling suggested that the mitochondrion serves as a more suitable compartment for 3-HP synthesis via the malonyl-CoA pathway than the cytosol, due to the opportunity to obtain a higher maximum yield and a lower oxygen consumption. With the malonyl-CoA reductase (MCR) targeted into the mitochondria, the 3-HP production increased to 0.27 g/L compared with 0.09 g/L with MCR expressed in the cytosol. With enhanced expression of dissected MCR enzymes, the titer reached to 4.42 g/L, comparable to the highest titer achieved in the cytosol so far. Then, the mitochondrial NADPH supply was optimized by overexpressing POS5 and IDP1, which resulted in an increase in the 3-HP titer to 5.11 g/L. Furthermore, with induced expression of an ACC1 mutant in the mitochondria, the final 3-HP production reached 6.16 g/L in shake flask fermentations. The constructed strain was then evaluated in fed-batch fermentations, and produced 71.09 g/L 3-HP with a productivity of 0.71 g/L/h and a yield on glucose of 0.23 g/g. CONCLUSIONS In this study, the yeast mitochondrion is reported as an attractive compartment for 3-HP production. The final 3-HP titer of 71.09 g/L with a productivity of 0.71 g/L/h was achieved in fed-batch fermentations, representing the highest titer reported for Saccharomyces cerevisiae so far, that demonstrated the potential of recruiting the yeast mitochondria for further development of cell factories.
Collapse
Affiliation(s)
- Yiming Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Mo Su
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yu Chen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Zheng Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jens Nielsen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
- BioInnovation Institute, Ole Maaløes Vej 3, DK2200, Copenhagen, Denmark
| | - Zihe Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
22
|
Li M, Li W, Zhang T, Guo K, Feng D, Liang F, Xu C, Xian M, Zou H. De Novo Synthesis of Poly(3-hydroxybutyrate-co-3-hydroxypropionate) from Oil by Engineered Cupriavidus necator. Bioengineering (Basel) 2023; 10:bioengineering10040446. [PMID: 37106633 PMCID: PMC10135886 DOI: 10.3390/bioengineering10040446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Poly(3-hydroxybutyrate-co-3-hydroxypropionate) [P(3HB-co-3HP)] is a biodegradable and biocompatible polyester with improved and expanded material properties compared with poly(3-hydroxybutyrate) (PHB). This study engineered a robust malonyl-CoA pathway in Cupriavidus necator for the efficient supply of a 3HP monomer, and could achieve the production of [P(3HB-co-3HP)] from variable oil substrates. Flask level experiments followed by product purification and characterization found the optimal fermentation condition (soybean oil as carbon source, 0.5 g/L arabinose as induction level) in general consideration of the PHA content, PHA titer and 3HP molar fraction. A 5 L fed-batch fermentation (72 h) further increased the dry cell weight (DCW) to 6.08 g/L, the titer of [P(3HB-co-3HP)] to 3.11 g/L and the 3HP molar fraction to 32.25%. Further improving the 3HP molar fraction by increasing arabinose induction failed as the engineered malonyl-CoA pathway was not properly expressed under the high-level induction condition. With several promising advantages (broader range of economic oil substrates, no need for expensive supplementations such as alanine and VB12), this study indicated a candidate route for the industrial level production of [P(3HB-co-3HP)]. For future prospects, further studies are needed to further improve the strain and the fermentation process and expand the range of relative products.
Collapse
Affiliation(s)
- Mengdi Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wei Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Tongtong Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Keyi Guo
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Dexin Feng
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Fengbing Liang
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Chao Xu
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Mo Xian
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Huibin Zou
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| |
Collapse
|
23
|
Yu W, Gao J, Yao L, Zhou YJ. Bioconversion of methanol to 3-hydroxypropionate by engineering Ogataea polymorpha. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(22)64195-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
24
|
Yuan S, Xu C, Jin M, Xian M, Liu W. Synergistic improvement of cinnamylamine production by metabolic regulation. J Biol Eng 2023; 17:14. [PMID: 36823535 PMCID: PMC9948449 DOI: 10.1186/s13036-023-00334-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Aromatic primary amines (APAs) are key intermediates in the chemical industry with numerous applications. Efficient and mild biocatalytic synthesis is an excellent complement to traditional chemical synthesis. Our lab previously reported a whole-cell catalytic system for the synthesis of APAs catalyzed by carboxylic acid reductase from Neurospora crassa (ncCAR) and ω-transaminase from Ochrobactrum anthropi (OATA). However, the accumulation of toxic intermediates (aromatic aldehydes) during biocatalytic synthesis affected yields of APAs due to metabolic imbalance. RESULTS In this work, the biocatalytic synthesis of APAs (taking cinnamylamine as an example) was metabolically regulated by the overexpression or knockout of five native global transcription factors (TFs), the overexpression of eight native resistance genes, and optimization of promoters. Transcriptome analysis showed that knockout of the TF arcA increased the fluxes of NADPH and ATP in E. coli, while the rate of pyruvate metabolism was accelerated. In addition, the genes related to stress and detoxification were upregulated with the overexpression of resistance gene marA, which reduced the NADPH level in E. coli. Then, the expression level of soluble OATA increased by promoter optimization. Overall, arcA and marA could regulate the catalytic rate of NADPH- dependent ncCAR, while arcA and optimized promoter could regulate the catalytic rate of OATA. Lastly, the cinnamylamine yield of the best metabolically engineered strain S020 was increased to 90% (9 mM, 1.2 g/L), and the accumulation of cinnamaldehyde was below 0.9 mM. This work reported the highest production of cinnamylamine by biocatalytic synthesis. CONCLUSION This regulatory process provides a common strategy for regulating the biocatalytic synthesis of other APAs. Being entirely biocatalytic, our one-pot procedure provides considerable advantages in terms of environmental and safety impacts over reported chemical methods.
Collapse
Affiliation(s)
- Shan Yuan
- grid.458500.c0000 0004 1806 7609CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101 Shandong P.R. China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Chao Xu
- grid.458500.c0000 0004 1806 7609CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101 Shandong P.R. China
| | - Miaomiao Jin
- grid.458500.c0000 0004 1806 7609CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101 Shandong P.R. China
| | - Mo Xian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, Shandong, P.R. China.
| | - Wei Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, Shandong, P.R. China.
| |
Collapse
|
25
|
Production of 3-Hydroxypropionic Acid from Renewable Substrates by Metabolically Engineered Microorganisms: A Review. Molecules 2023; 28:molecules28041888. [PMID: 36838875 PMCID: PMC9960984 DOI: 10.3390/molecules28041888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
3-Hydroxypropionic acid (3-HP) is a platform chemical with a wide range of existing and potential applications, including the production of poly(3-hydroxypropionate) (P-3HP), a biodegradable plastic. The microbial synthesis of 3-HP has attracted significant attention in recent years due to its green and sustainable properties. In this paper, we provide an overview of the microbial synthesis of 3-HP from four major aspects, including the main 3-HP biosynthesis pathways and chassis strains used for the construction of microbial cell factories, the major carbon sources used for 3-HP production, and fermentation processes. Recent advances in the biosynthesis of 3-HP and related metabolic engineering strategies are also summarized. Finally, this article provides insights into the future direction of 3-HP biosynthesis.
Collapse
|
26
|
Liang B, Zhang X, Meng C, Wang L, Yang J. Directed evolution of tripartite ATP-independent periplasmic transporter for 3-Hydroxypropionate biosynthesis. Appl Microbiol Biotechnol 2023; 107:663-676. [PMID: 36525041 DOI: 10.1007/s00253-022-12330-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/28/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Our previous study's introduction of the malonic acid assimilation pathway into Escherichia coli enabled biosynthesis of 3-Hydroxypropionate (3-HP) from malonate. However, the relatively low uptake activity of tripartite ATP-independent periplasmic (TRAP) malonic acid transporter (MatPQM) is considered rate-limiting in malonate utilization. Here, to improve the transport performance of this importer, MatP variants were obtained via directed evolution and a novel developed enzyme-inhibition-based high throughput screening approach. This plate chromogenic screening method is based on the fact that malonic acid inhibits both of succinate dehydrogenase activity and further the capability of the reduction of methylene-blue to methylene-white. The best mutant E103G/S194G/Y218H/L235P/N272S showed twofold increased transport efficiency compared to the wild-type. ITC assay and structural analysis revealed that increased binding affinity of the mutant to the ligand was the reason for improved uptake activity of MatPQM. Finally, the engineered strain harboring the evolved mutant produced 20.08 g/L 3-HP with the yield of 0.87 mol/mol malonate in a bioreactor. Therefore, the well-established directed evolution strategy can be regarded as the reference work for other TRAP-type transporters engineering. And, this transporter mutant with enhanced malonic acid uptake activity has broad applications in the microbial biosynthesis of malonyl-CoA-derived valuable compounds in bacteria. KEY POINTS: • We reported directed evolution of a TRAP-type malonic acid transporter. • We found the enhanced malonate uptake activity of mutant lies in improved affinity. • We enhanced 3-HP bioproduction with high yield by employing the best mutant.
Collapse
Affiliation(s)
- Bo Liang
- College of Food Science & Engineering, Qingdao Special Food Research Institute, Qingdao Agricultural University, Qingdao, China
- Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Xinping Zhang
- College of Food Science & Engineering, Qingdao Special Food Research Institute, Qingdao Agricultural University, Qingdao, China
- Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Chenfei Meng
- College of Food Science & Engineering, Qingdao Special Food Research Institute, Qingdao Agricultural University, Qingdao, China
- Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Lu Wang
- College of Food Science & Engineering, Qingdao Special Food Research Institute, Qingdao Agricultural University, Qingdao, China
- Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Jianming Yang
- College of Food Science & Engineering, Qingdao Special Food Research Institute, Qingdao Agricultural University, Qingdao, China.
- Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
27
|
Qiu C, Tao H, Shen Y, Qi Q, Hou J. Dynamic-tuning yeast storage carbohydrate improves the production of acetyl-CoA-derived chemicals. iScience 2022; 26:105817. [PMID: 36636342 PMCID: PMC9830206 DOI: 10.1016/j.isci.2022.105817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/21/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Acetyl-coenzyme A (Acetyl-CoA) and malonyl-coenzyme A (malonyl-CoA) are important precursors for producing various chemicals, and their availability affects the production of their downstream chemicals. Storage carbohydrates are considered important carbon and energy reservoirs. Herein, we find that regulating the storage carbohydrate synthesis improves metabolic fluxes toward malonyl-CoA. Interestingly, not only directly decreasing storage carbohydrate accumulation improved malonyl-CoA availability but also increasing the storage carbohydrate by UGP1 overexpression enables an even higher production of acetyl-CoA- and malonyl-CoA-derived chemicals. We find that Ugp1p overexpression dynamically regulates the carbon flux to storage carbohydrate synthesis. In early exponential phases, Ugp1 overexpression causes more storage carbohydrate accumulation, while the carbon flux is then redirected toward acetyl-CoA and malonyl-CoA in later phases, thereby contributing to the synthesis of their derived products. Our study demonstrates the importance of storage carbohydrates rearrangement for the availability of acetyl-CoA and malonyl-CoA and therefore will facilitate the synthesis of their derived chemicals.
Collapse
Affiliation(s)
- Chenxi Qiu
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, Shandong 266237, P. R. China
| | - Huilin Tao
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, Shandong 266237, P. R. China
| | - Yu Shen
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, Shandong 266237, P. R. China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, Shandong 266237, P. R. China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, Shandong 266237, P. R. China,Corresponding author
| |
Collapse
|
28
|
Rewiring regulation on respiro-fermentative metabolism relieved Crabtree effects in Saccharomyces cerevisiae. Synth Syst Biotechnol 2022; 7:1034-1043. [PMID: 35801089 PMCID: PMC9241035 DOI: 10.1016/j.synbio.2022.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/12/2022] [Accepted: 06/12/2022] [Indexed: 11/20/2022] Open
Abstract
The respiro-fermentative metabolism in the yeast Saccharomyces cerevisiae, also called the Crabtree effect, results in lower energy efficiency and biomass yield which can impact yields of chemicals to be produced using this cell factory. Although it can be engineered to become Crabtree negative, the slow growth and glucose consumption rate limit its industrial application. Here the Crabtree effect in yeast can be alleviated by engineering the transcription factor Mth1 involved in glucose signaling and a subunit of the RNA polymerase II mediator complex Med2. It was found that the mutant with the MTH1A81D&MED2*432Y allele could grow in glucose rich medium with a specific growth rate of 0.30 h−1, an ethanol yield of 0.10 g g−1, and a biomass yield of 0.21 g g−1, compared with a specific growth rate of 0.40 h−1, an ethanol yield of 0.46 g g−1, and a biomass yield of 0.11 g g−1 in the wild-type strain CEN.PK 113-5D. Transcriptome analysis revealed significant downregulation of the glycolytic process, as well as the upregulation of the TCA cycle and the electron transfer chain. Significant expression changes of several reporter transcription factors were also identified, which might explain the higher energy efficiencies in the engineered strain. We further demonstrated the potential of the engineered strain with the production of 3-hydroxypropionic acid at a titer of 2.04 g L−1, i.e., 5.4-fold higher than that of a reference strain, indicating that the alleviated glucose repression could enhance the supply of mitochondrial acetyl-CoA. These results suggested that the engineered strain could be used as an efficient cell factory for mitochondrial production of acetyl-CoA derived chemicals.
Collapse
|
29
|
Singh HB, Kang MK, Kwon M, Kim SW. Developing methylotrophic microbial platforms for a methanol-based bioindustry. Front Bioeng Biotechnol 2022; 10:1050740. [PMID: 36507257 PMCID: PMC9727194 DOI: 10.3389/fbioe.2022.1050740] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/11/2022] [Indexed: 11/24/2022] Open
Abstract
Methanol, a relatively cheap and renewable single-carbon feedstock, has gained considerable attention as a substrate for the bio-production of commodity chemicals. Conventionally produced from syngas, along with emerging possibilities of generation from methane and CO2, this C1 substrate can serve as a pool for sequestering greenhouse gases while supporting a sustainable bio-economy. Methylotrophic organisms, with the inherent ability to use methanol as the sole carbon and energy source, are competent candidates as platform organisms. Accordingly, methanol bioconversion pathways have been an attractive target for biotechnological and bioengineering interventions in developing microbial cell factories. This review summarizes the recent advances in methanol-based production of various bulk and value-added chemicals exploiting the native and synthetic methylotrophic organisms. Finally, the current challenges and prospects of streamlining these methylotrophic platforms are discussed.
Collapse
Affiliation(s)
- Hawaibam Birla Singh
- Division of Applied Life Science (BK21 Four), ABC-RLRC, PMBBRC, Gyeongsang National University, Jinju, South Korea
| | - Min-Kyoung Kang
- Division of Applied Life Science (BK21 Four), ABC-RLRC, PMBBRC, Gyeongsang National University, Jinju, South Korea
| | - Moonhyuk Kwon
- Division of Life Science, ABC-RLRC, PMBBRC, Gyeongsang National University, Jinju, South Korea,*Correspondence: Moonhyuk Kwon, ; Seon-Won Kim,
| | - Seon-Won Kim
- Division of Applied Life Science (BK21 Four), ABC-RLRC, PMBBRC, Gyeongsang National University, Jinju, South Korea,*Correspondence: Moonhyuk Kwon, ; Seon-Won Kim,
| |
Collapse
|
30
|
Lu J, Wang Y, Xu M, Fei Q, Gu Y, Luo Y, Wu H. Efficient biosynthesis of 3-hydroxypropionic acid from ethanol in metabolically engineered Escherichia coli. BIORESOURCE TECHNOLOGY 2022; 363:127907. [PMID: 36087655 DOI: 10.1016/j.biortech.2022.127907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Engineering microbial cell factories to convert CO2-based feedstock into chemicals and fuels provide a feasible carbon-neutral route for the third-generation biorefineries. Ethanol became one of the major products of syngas fermentation by engineered acetogens. The key building block chemical 3-hydroxypropionic acid (3-HP) can be synthesized from ethanol by the malonyl-CoA pathway with CO2 fixation. In this study, the effect of two ethanol consumption pathways on 3-HP synthesis were studied as well as the effect of TCA cycle, gluconeogenesis pathway, and transhydrogenase. And the 3-HP synthesis pathway was also optimized. The engineered strain synthesized 1.66 g/L of 3-HP with a yield of 0.24 g/g. Furthermore, the titer and the yield of 3-HP increased to 13.17 g/L and 0.57 g/g in the whole-cell biocatalysis system. This study indicated that ethanol as feedstock had the potential to synthesize 3-HP, which provided an alternative route for future biorefinery.
Collapse
Affiliation(s)
- Juefeng Lu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yuying Wang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Mingcheng Xu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qiang Fei
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yang Gu
- Key Laboratory of Synthetic Biology, The State Key Laboratory of Plant Carbon-Nitrogen Assimilation, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yuanchan Luo
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Hui Wu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China; Key Laboratory of Bio-based Material Engineering of China National Light Industry Council, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
31
|
Yu W, Cao X, Gao J, Zhou YJ. Overproduction of 3-hydroxypropionate in a super yeast chassis. BIORESOURCE TECHNOLOGY 2022; 361:127690. [PMID: 35901866 DOI: 10.1016/j.biortech.2022.127690] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
3-Hydroxypropionate (3-HP) is a platform chemical for production of acrylic acid, acrylamide and biodegradable polymers. Several microbial cell factories have been constructed for production of 3-HP from malonyl-CoA by using a malonyl-CoA reductase, which however suffer from inadequate supply of precursor and cofactor. Here 3-HP biosynthesis was optimized in a super yeast chassis with sufficient supply of precursor malonyl-CoA and cofactor NADPH, which had a 3-fold higher 3-HP (1.4 g/L) than that of wild-type background. The instability of the engineered strain was observed in fed-batch fermentation due to the plasmid loss, which may be caused by the toxic intermediate malonate semialdehyde. Genome integration of MCR-C encoding C-terminal of MCR enabled stable gene expression and much higher 3-HP production of 4.4 g/L under batch fermentation and 56.5 g/L under fed-batch fermentation with a yield of 0.31 g/g glucose. This was the highest 3-HP production reported from glucose in engineered microbes.
Collapse
Affiliation(s)
- Wei Yu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuan Cao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jiaoqi Gao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yongjin J Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
32
|
Extraction, Isolation, and Purification of Value-Added Chemicals from Lignocellulosic Biomass. Processes (Basel) 2022. [DOI: 10.3390/pr10091752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This review covers the operating conditions for extracting top value-added chemicals, such as levulinic acid, lactic acid, succinic acid, vanillic acid, 3-hydroxypropionic acid, xylitol, 2,5-furandicarboxylic acid, 5-hydroxymethyl furfural, chitosan, 2,3-butanediol, and xylo-oligosaccharides, from common lignocellulosic biomass. Operating principles of novel extraction methods, beyond pretreatments, such as Soxhlet extraction, ultrasound-assisted extraction, and enzymatic extraction, are also presented and reviewed. Post extraction, high-value biochemicals need to be isolated, which is achieved through a combination of one or more isolation and purification steps. The operating principles, as well as a review of isolation methods, such as membrane filtration and liquid–liquid extraction and purification using preparative chromatography, are also discussed.
Collapse
|
33
|
Liu W, Yuan S, Jin M, Xian M. Biocatalytic synthesis of 2-fluoro-3-hydroxypropionic acid. Front Bioeng Biotechnol 2022; 10:969012. [PMID: 36061447 PMCID: PMC9428585 DOI: 10.3389/fbioe.2022.969012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Fluorine has become an important element for the design of synthetic molecules for use in medicine, agriculture, and materials. The introduction of fluorine atoms into organic compound molecules can often give these compounds new functions and make them have better performance. Despite the many advantages provided by fluorine for tuning key molecular properties, it is rarely found in natural metabolism. We seek to expand the molecular space available for discovery through the development of new biosynthetic strategies that cross synthetic with natural compounds. Towards this goal, 2-fluoro-3-hydroxypropionic acid (2-F-3-HP) was first synthesized using E. coli coexpressing methylmalonyl CoA synthase (MatBrp), methylmalonyl CoA reductase (MCR) and malonate transmembrane protein (MadLM). The concentration of 2-F-3-HP reached 50.0 mg/L by whole-cell transformation after 24 h. 2-F-3-HP can be used as the substrate to synthesize other fluorides, such as poly (2-fluoro-3-hydroxypropionic acid) (FP3HP). Being entirely biocatalytic, our procedure provides considerable advantages in terms of environmental and safety impacts over reported chemical methods.
Collapse
Affiliation(s)
- Wei Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong, China
- *Correspondence: Mo Xian, ; Wei Liu,
| | - Shan Yuan
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Miaomiao Jin
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong, China
| | - Mo Xian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong, China
- *Correspondence: Mo Xian, ; Wei Liu,
| |
Collapse
|
34
|
Liang B, Sun G, Zhang X, Nie Q, Zhao Y, Yang J. Recent Advances, Challenges and Metabolic Engineering Strategies in the Biosynthesis of 3-Hydroxypropionic Acid. Biotechnol Bioeng 2022; 119:2639-2668. [PMID: 35781640 DOI: 10.1002/bit.28170] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2022] [Accepted: 06/29/2022] [Indexed: 11/07/2022]
Abstract
As an attractive and valuable platform chemical, 3-hydroxypropionic acid (3-HP) can be used to produce a variety of industrially important commodity chemicals and biodegradable polymers. Moreover, the biosynthesis of 3-HP has drawn much attention in recent years due to its sustainability and environmental friendliness. Here, we focus on recent advances, challenges and metabolic engineering strategies in the biosynthesis of 3-HP. While glucose and glycerol are major carbon sources for its production of 3-HP via microbial fermentation, other carbon sources have also been explored. To increase yield and titer, synthetic biology and metabolic engineering strategies have been explored, including modifying pathway enzymes, eliminating flux blockages due to byproduct synthesis, eliminating toxic byproducts, and optimizing via genome-scale models. This review also provides insights on future directions for 3-HP biosynthesis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Bo Liang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China.,Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Guannan Sun
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China.,Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Xinping Zhang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China.,Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Qingjuan Nie
- Foreign Languages School, Qingdao Agricultural University, Qingdao, China
| | - Yukun Zhao
- Pony Testing International Group, Qingdao, China
| | - Jianming Yang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China.,Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
35
|
Wang S, Jin X, Jiang W, Wang Q, Qi Q, Liang Q. The Expression Modulation of the Key Enzyme Acc for Highly Efficient 3-Hydroxypropionic Acid Production. Front Microbiol 2022; 13:902848. [PMID: 35633674 PMCID: PMC9130761 DOI: 10.3389/fmicb.2022.902848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
3-Hydroxypropionic acid (3-HP) is a promising high value-added chemical. Acetyl-CoA carboxylase (Acc) is a vital rate-limiting step in 3-HP biosynthesis through the malonyl-CoA pathway. However, Acc toxicity in cells during growth blocks its ability to catalyze acetyl-CoA to malonyl-CoA. The balancing of Acc and malonyl-CoA reductase (MCR) expression is another an unexplored but key process in 3-HP production. To solve these problems, in the present study, we developed a method to mitigate Acc toxicity cell growth through Acc subunits (AccBC and DtsR1) expression adjustment. The results revealed that cell growth and 3-HP production can be accelerated through the adjustment of DtsR1 and AccBC expression. Subsequently, the balancing Acc and MCR expression was also employed for 3-HP production, the engineered strain achieved the highest titer of 6.8 g/L, with a high yield of 0.566 g/g glucose and productivity of 0.13 g/L/h, in shake-flask fermentation through the malonyl-CoA pathway. Likewise, the engineered strain also had the highest productivity (1.03 g/L/h) as well as a high yield (0.246 g/g glucose) and titer (up to 38.13 g/L) in fed-batch fermentation, constituting the most efficient strain for 3-HP production through the malonyl-CoA pathway using a cheap carbon source. This strategy might facilitate the production of other malonyl-CoA-derived chemical compounds in the future.
Collapse
Affiliation(s)
- Sumeng Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Xin Jin
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Wei Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Qian Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Quanfeng Liang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| |
Collapse
|
36
|
Son J, Baritugo KA, Lim SH, Lim HJ, Jeong S, Lee JY, Choi JI, Joo JC, Na JG, Park SJ. Microbial cell factories for the production of three-carbon backbone organic acids from agro-industrial wastes. BIORESOURCE TECHNOLOGY 2022; 349:126797. [PMID: 35122981 DOI: 10.1016/j.biortech.2022.126797] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
At present, mass production of basic and valuable commodities is dependent on linear petroleum-based industries, which ultimately makes the depletion of finite natural reserves and accumulation of non-biodegradable and hazardous wastes. Therefore, an ecofriendly and sustainable solution should be established for a circular economy where infinite resources, such as agro-industrial wastes, are fully utilized as substrates in the production of target value-added chemicals. Hereby, recent advances in metabolic engineering strategies and techniques used in the development of microbial cell factories for enhanced production of three-carbon platform chemicals such as lactic acid, propionic acid, and 3-hydroxypropionic acid are discussed. Further developments and future perspectives in the production of these organic acids from agro-industrial wastes from the dairy, sugar, and biodiesel industries are also highlighted to demonstrate the importance of waste-based biorefineries for organic acid production.
Collapse
Affiliation(s)
- Jina Son
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Kei-Anne Baritugo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seo Hyun Lim
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hye Jin Lim
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seona Jeong
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Ji Yeon Lee
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jong-Il Choi
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 61186, Korea
| | - Jeong Chan Joo
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Jeong-Geol Na
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
37
|
Liu X, Zhao G, Sun S, Fan C, Feng X, Xiong P. Biosynthetic Pathway and Metabolic Engineering of Succinic Acid. Front Bioeng Biotechnol 2022; 10:843887. [PMID: 35350186 PMCID: PMC8957974 DOI: 10.3389/fbioe.2022.843887] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/16/2022] [Indexed: 11/25/2022] Open
Abstract
Succinic acid, a dicarboxylic acid produced as an intermediate of the tricarboxylic acid (TCA) cycle, is one of the most important platform chemicals for the production of various high value-added derivatives. As traditional chemical synthesis processes suffer from nonrenewable resources and environment pollution, succinic acid biosynthesis has drawn increasing attention as a viable, more environmentally friendly alternative. To date, several metabolic engineering approaches have been utilized for constructing and optimizing succinic acid cell factories. In this review, different succinic acid biosynthesis pathways are summarized, with a focus on the key enzymes and metabolic engineering approaches, which mainly include redirecting carbon flux, balancing NADH/NAD+ ratios, and optimizing CO2 supplementation. Finally, future perspectives on the microbial production of succinic acid are discussed.
Collapse
Affiliation(s)
- Xiutao Liu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Guang Zhao
- State Key Lab of Microbial Technology, Shandong University, Qingdao, China
| | - Shengjie Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Chuanle Fan
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Xinjun Feng
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Peng Xiong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| |
Collapse
|
38
|
Ye Z, Huang Y, Shi B, Xiang Z, Tian Z, Huang M, Wu L, Deng Z, Shen K, Liu T. Coupling cell growth and biochemical pathway induction in Saccharomyces cerevisiae for production of (+)-valencene and its chemical conversion to (+)-nootkatone. Metab Eng 2022; 72:107-115. [DOI: 10.1016/j.ymben.2022.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/05/2022] [Accepted: 03/10/2022] [Indexed: 11/29/2022]
|
39
|
Zhou D, Quiroga-Sánchez DL, Zhang X, Chang Y, Luo H. Coupled synthetic pathways improve the production of 3-hydroxypropionic acid in recombinant Escherichia coli strains. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2022; 3:25-31. [PMID: 39416444 PMCID: PMC11446351 DOI: 10.1016/j.biotno.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 10/19/2024]
Abstract
To improve the production of 3-HP with glucose as a substrate, the malonyl-CoA and propionyl-CoA pathways were coupled to regulate NADP+/NADPH regeneration in the recombinant E. coli. The strain Ec-AM that overexpressed the key enzymes of the malonyl-CoA pathway, acetyl CoA carboxylase (ACC) from Ustilago maydis and malonyl CoA reductase (MCR) from Chloroflexus aurantiacus, produced 0.26 g/L of 3-HP in 25-h shake flask cultivation. The strain Ec-P overexpressing the key enzyme of the propionyl-CoA pathway, propionyl-CoA dehydrogenase (PACD) from Candida rugosa, produced 0.11 g/L of 3-HP. However, 3-HP titer of the strain Ec-PAM overexpressing PACD along with ACC and MCR, via two pathways cooperation, was 1.29 g/L. The addition of biotin and bicarbonate improved the 3-HP production of the strain Ec-PAM. 3-HP titer of strain Ec-ΔY-ΔP-PAM with double deletion of ygfH (encoding propionyl-CoA: succinate-CoA transferase) and prpC (encoding methylcitrate synthase) genes reached 1.94 g/L, which was 1.5-fold higher than that of the strain Ec-PAM cultured under the same conditions.
Collapse
Affiliation(s)
- Dafeng Zhou
- Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Diego Leandro Quiroga-Sánchez
- Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xuan Zhang
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yanhong Chang
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Hui Luo
- Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
40
|
Chang Z, Dai W, Mao Y, Cui Z, Zhang Z, Wang Z, Ma H, Chen T. Enhanced 3-Hydroxypropionic Acid Production From Acetate via the Malonyl-CoA Pathway in Corynebacterium glutamicum. Front Bioeng Biotechnol 2022; 9:808258. [PMID: 35096794 PMCID: PMC8790568 DOI: 10.3389/fbioe.2021.808258] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/16/2021] [Indexed: 11/20/2022] Open
Abstract
Acetate is an economical and environmental-friendly alternative carbon source. Herein, the potential of harnessing Corynebacterium glutamicum as a host to produce 3-hydroxypropionic acid (3-HP) from acetate was explored. First, the expression level of malonyl-CoA reductase from Chloroflexus aurantiacus was optimized through several strategies, strain Cgz2/sod-N-C* showed an MCR enzyme activity of 63 nmol/mg/min and a 3-HP titer of 0.66 g/L in flasks. Next, the expression of citrate synthase in Cgz2/sod-N-C* was weakened to reduce the acetyl-CoA consumption in the TCA cycle, and the resulting strain Cgz12/sod-N-C* produced 2.39 g/L 3-HP from 9.32 g/L acetate. However, the subsequent deregulation of the expression of acetyl-CoA carboxylase genes in Cgz12/sod-N-C* resulted in an increased accumulation of intracellular fatty acids, instead of 3-HP. Accordingly, cerulenin was used to inhibit fatty acid synthesis in Cgz14/sod-N-C*, and its 3-HP titer was further increased to 4.26 g/L, with a yield of 0.50 g 3-HP/g-acetate. Finally, the engineered strain accumulated 17.1 g/L 3-HP in a bioreactor without cerulenin addition, representing the highest titer achieved using acetate as substrate. The results demonstrated that Corynebacterium glutamicum is a promising host for 3-HP production from acetate.
Collapse
Affiliation(s)
- Zhishuai Chang
- Frontier Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Department of Biochemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Wei Dai
- Frontier Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Department of Biochemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yufeng Mao
- Frontier Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Department of Biochemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Zhenzhen Cui
- Frontier Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Department of Biochemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Zhidan Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Zhiwen Wang
- Frontier Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Department of Biochemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Hongwu Ma
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- *Correspondence: Hongwu Ma, ; Tao Chen,
| | - Tao Chen
- Frontier Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Department of Biochemical Engineering and Technology, Tianjin University, Tianjin, China
- *Correspondence: Hongwu Ma, ; Tao Chen,
| |
Collapse
|
41
|
Lai N, Luo Y, Fei P, Hu P, Wu H. One stone two birds: Biosynthesis of 3-hydroxypropionic acid from CO 2 and syngas-derived acetic acid in Escherichia coli. Synth Syst Biotechnol 2021; 6:144-152. [PMID: 34278012 PMCID: PMC8255177 DOI: 10.1016/j.synbio.2021.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/11/2021] [Accepted: 06/20/2021] [Indexed: 10/31/2022] Open
Abstract
Syngas, which contains large amount of CO2 as well as H2 and CO, can be convert to acetic acid chemically or biologically. Nowadays, acetic acid become a cost-effective nonfood-based carbon source for value-added biochemical production. In this study, acetic acid and CO2 were used as substrates for the biosynthesis of 3-hydroxypropionic acid (3-HP) in metabolically engineered Escherichia coli carrying heterogeneous acetyl-CoA carboxylase (Acc) from Corynebacterium glutamicum and codon-optimized malonyl-CoA reductase (MCR) from Chloroflexus aurantiacus. Strategies of metabolic engineering included promoting glyoxylate shunt pathway, inhibiting fatty acid synthesis, dynamic regulating of TCA cycle, and enhancing the assimilation of acetic acid. The engineered strain LNY07(M*DA) accumulated 15.8 g/L of 3-HP with the yield of 0.71 g/g in 48 h by whole-cell biocatalysis. Then, syngas-derived acetic acid was used as substrate instead of pure acetic acid. The concentration of 3-HP reached 11.2 g/L with the yield of 0.55 g/g in LNY07(M*DA). The results could potentially contribute to the future development of an industrial bioprocess of 3-HP production from syngas-derived acetic acid.
Collapse
Affiliation(s)
- Ningyu Lai
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yuanchan Luo
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Peng Fei
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Peng Hu
- Shanghai GTL Biotech Co., Ltd., 1688 North Guoquan Road, Shanghai, 200438, China
| | - Hui Wu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai, 200237, China
- Key Laboratory of Bio-based Material Engineering of China National Light Industry Council, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
42
|
Lee JY, Cha S, Lee JH, Lim HG, Noh MH, Kang CW, Jung GY. Plug-in repressor library for precise regulation of metabolic flux in Escherichia coli. Metab Eng 2021; 67:365-372. [PMID: 34333137 DOI: 10.1016/j.ymben.2021.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/10/2021] [Accepted: 07/28/2021] [Indexed: 10/20/2022]
Abstract
In metabolic engineering, enhanced production of value-added chemicals requires precise flux control between growth-essential competing and production pathways. Although advances in synthetic biology have facilitated the exploitation of a number of genetic elements for precise flux control, their use requires expensive inducers, or more importantly, needs complex and time-consuming processes to design and optimize appropriate regulator components, case-by-case. To overcome this issue, we devised the plug-in repressor libraries for target-specific flux control, in which expression levels of the repressors were diversified using degenerate 5' untranslated region (5' UTR) sequences employing the UTR Library Designer. After we validated a wide expression range of the repressor libraries, they were applied to improve the production of lycopene from glucose and 3-hydroxypropionic acid (3-HP) from acetate in Escherichia coli via precise flux rebalancing to enlarge precursor pools. Consequently, we successfully achieved optimal carbon fluxes around the precursor nodes for efficient production. The most optimized strains were observed to produce 2.59 g/L of 3-HP and 11.66 mg/L of lycopene, which were improved 16.5-fold and 2.82-fold, respectively, compared to those produced by the parental strains. These results indicate that carbon flux rebalancing using the plug-in library is a powerful strategy for efficient production of value-added chemicals in E. coli.
Collapse
Affiliation(s)
- Ji Yeon Lee
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Sanghak Cha
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Ji Hoon Lee
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Hyun Gyu Lim
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Myung Hyun Noh
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Chae Won Kang
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Gyoo Yeol Jung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea; Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea.
| |
Collapse
|
43
|
Fina A, Brêda GC, Pérez‐Trujillo M, Freire DMG, Almeida RV, Albiol J, Ferrer P. Benchmarking recombinant Pichia pastoris for 3-hydroxypropionic acid production from glycerol. Microb Biotechnol 2021; 14:1671-1682. [PMID: 34081409 PMCID: PMC8313290 DOI: 10.1111/1751-7915.13833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 11/28/2022] Open
Abstract
The use of the methylotrophic yeast Pichia pastoris (Komagataella phaffi) to produce heterologous proteins has been largely reported. However, investigations addressing the potential of this yeast to produce bulk chemicals are still scarce. In this study, we have studied the use of P. pastoris as a cell factory to produce the commodity chemical 3-hydroxypropionic acid (3-HP) from glycerol. 3-HP is a chemical platform which can be converted into acrylic acid and to other alternatives to petroleum-based products. To this end, the mcr gene from Chloroflexus aurantiacus was introduced into P. pastoris. This single modification allowed the production of 3-HP from glycerol through the malonyl-CoA pathway. Further enzyme and metabolic engineering modifications aimed at increasing cofactor and metabolic precursors availability allowed a 14-fold increase in the production of 3-HP compared to the initial strain. The best strain (PpHP6) was tested in a fed-batch culture, achieving a final concentration of 3-HP of 24.75 g l-1 , a product yield of 0.13 g g-1 and a volumetric productivity of 0.54 g l-1 h-1 , which, to our knowledge, is the highest volumetric productivity reported in yeast. These results benchmark P. pastoris as a promising platform to produce bulk chemicals for the revalorization of crude glycerol and, in particular, to produce 3-HP.
Collapse
Affiliation(s)
- Albert Fina
- Department of Chemical, Biological and Environmental EngineeringUniversitat Autònoma de BarcelonaBellaterraCataloniaSpain
| | - Gabriela Coelho Brêda
- Departamento de Bioquímica, Instituto de QuímicaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
| | - Míriam Pérez‐Trujillo
- Servei de Ressonància Magnètica Nuclear, Facultat de Ciències i BiociènciesUniversitat Autònoma de BarcelonaBellaterraCataloniaSpain
| | | | - Rodrigo Volcan Almeida
- Departamento de Bioquímica, Instituto de QuímicaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
| | - Joan Albiol
- Department of Chemical, Biological and Environmental EngineeringUniversitat Autònoma de BarcelonaBellaterraCataloniaSpain
| | - Pau Ferrer
- Department of Chemical, Biological and Environmental EngineeringUniversitat Autònoma de BarcelonaBellaterraCataloniaSpain
| |
Collapse
|
44
|
Zhao P, Tian P. Biosynthesis pathways and strategies for improving 3-hydroxypropionic acid production in bacteria. World J Microbiol Biotechnol 2021; 37:117. [PMID: 34128152 DOI: 10.1007/s11274-021-03091-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/08/2021] [Indexed: 12/01/2022]
Abstract
3-Hydroxypropionic acid (3-HP) represents an economically important platform compound from which a panel of bulk chemicals can be derived. Compared with petroleum-dependent chemical synthesis, bioproduction of 3-HP has attracted more attention due to utilization of renewable biomass. This review outlines bacterial production of 3-HP, covering aspects of host strains (e.g., Escherichia coli and Klebsiella pneumoniae), metabolic pathways, key enzymes, and hurdles hindering high-level production. Inspired by the state-of-the-art advances in metabolic engineering and synthetic biology, we come up with protocols to overcome the hurdles constraining 3-HP production. The protocols range from rewiring of metabolic networks, alleviation of metabolite toxicity, to dynamic control of cell size and density. Especially, this review highlights the substantial contribution of microbial growth to 3-HP production, as we recognize the synchronization between cell growth and 3-HP formation. Accordingly, we summarize the following growth-promoting strategies: (i) optimization of fermentation conditions; (ii) construction of gene circuits to alleviate feedback inhibition; (iii) recruitment of RNA polymerases to overexpress key enzymes which in turn boost cell growth and 3-HP production. Lastly, we propose metabolic engineering approaches to simplify downstream separation and purification. Overall, this review aims to portray a picture of bacterial production of 3-HP.
Collapse
Affiliation(s)
- Peng Zhao
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Pingfang Tian
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
45
|
Boontip T, Waditee-Sirisattha R, Honda K, Napathorn SC. Strategies for Poly(3-hydroxybutyrate) Production Using a Cold-Shock Promoter in Escherichia coli. Front Bioeng Biotechnol 2021; 9:666036. [PMID: 34150730 PMCID: PMC8211017 DOI: 10.3389/fbioe.2021.666036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/14/2021] [Indexed: 11/13/2022] Open
Abstract
The present study attempted to increase poly(3-hydroxybutyrate) (PHB) production by improving expression of PHB biosynthesis operon derived from Cupriavidus necator strain A-04 using various types of promoters. The intact PHB biosynthesis operon of C. necator A-04, an alkaline tolerant strain isolated in Thailand with a high degree of 16S rRNA sequence similarity with C. necator H16, was subcloned into pGEX-6P-1, pColdI, pColdTF, pBAD/Thio-TOPO, and pUC19 (native promoter) and transformed into Escherichia coli JM109. While the phaCA–04 gene was insoluble in most expression systems tested, it became soluble when it was expressed as a fusion protein with trigger factor (TF), a ribosome associated bacterial chaperone, under the control of a cold shock promoter. Careful optimization indicates that the cold-shock cspA promoter enhanced phaCA–04 protein expression and the chaperone function of TF play critical roles in increasing soluble phaCA–04 protein. Induction strategies and parameters in flask experiments were optimized to obtain high expression of soluble PhaCA–04 protein with high YP/S and PHB productivity. Soluble phaCA–04 was purified through immobilized metal affinity chromatography (IMAC). The results demonstrated that the soluble phaCA–04 from pColdTF-phaCABA–04 was expressed at a level of as high as 47.4 ± 2.4% of total protein and pColdTF-phaCABA–04 enhanced soluble protein formation to approximately 3.09−4.1 times higher than that from pColdI-phaCABA–04 by both conventional method and short induction method developed in this study. Cultivation in a 5-L fermenter led to PHB production of 89.8 ± 2.3% PHB content, a YP/S value of 0.38 g PHB/g glucose and a productivity of 0.43 g PHB/(L.h) using pColdTF-phaCABA–04. The PHB film exhibited high optical transparency and possessed Mw 5.79 × 105 Da, Mn 1.86 × 105 Da, and PDI 3.11 with normal melting temperature and mechanical properties.
Collapse
Affiliation(s)
- Thanawat Boontip
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Kohsuke Honda
- International Center for Biotechnology, Osaka University, Suita, Japan
| | - Suchada Chanprateep Napathorn
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,International Center for Biotechnology, Osaka University, Suita, Japan
| |
Collapse
|
46
|
Yang J, Han YH, Im J, Seo SW. Synthetic protein quality control to enhance full-length translation in bacteria. Nat Chem Biol 2021; 17:421-427. [PMID: 33542534 DOI: 10.1038/s41589-021-00736-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 01/08/2021] [Indexed: 01/30/2023]
Abstract
Coupled transcription and translation processes in bacteria cause indiscriminate translation of intact and truncated messenger RNAs, inevitably generating nonfunctional polypeptides. Here, we devised a synthetic protein quality control (ProQC) system that enables translation only when both ends of mRNAs are present and followed by circularization based on sequence-specific RNA-RNA hybridization. We demonstrate that the ProQC system dramatically improved the fraction of full-length proteins among all synthesized polypeptides by selectively translating intact mRNA and reducing abortive translation. As a result, full-length protein synthesis increased up to 2.5-fold without changing the transcription or translation efficiency. Furthermore, we applied the ProQC system for 3-hydroxypropionic acid, violacein and lycopene production by ensuring full-length expression of enzymes in biosynthetic pathways, resulting in 1.6- to 2.3-fold greater biochemical production. We believe that our ProQC system can be universally applied to improve not only the quality of recombinant protein production but also efficiencies of metabolic pathways.
Collapse
Affiliation(s)
- Jina Yang
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea.,Institute of Chemical Processes, Seoul National University, Seoul, Korea
| | - Yong Hee Han
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Korea
| | - Jongwon Im
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea
| | - Sang Woo Seo
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea. .,Institute of Chemical Processes, Seoul National University, Seoul, Korea. .,Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Korea. .,Bio-MAX Institute, Seoul National University, Seoul, Korea. .,Institute of Engineering Research, Seoul National University, Seoul, Korea.
| |
Collapse
|
47
|
Li Z, Wu Z, Cen X, Liu Y, Zhang Y, Liu D, Chen Z. Efficient Production of 1,3-Propanediol from Diverse Carbohydrates via a Non-natural Pathway Using 3-Hydroxypropionic Acid as an Intermediate. ACS Synth Biol 2021; 10:478-486. [PMID: 33625207 DOI: 10.1021/acssynbio.0c00486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
1,3-Propanediol (1,3-PDO) is a promising platform chemical used to manufacture various polyesters, polyethers, and polyurethanes. Microbial production of 1,3-PDO using non-natural producers often requires adding expensive cofactors such as vitamin B12, which increases the whole production cost. In this study, we proposed and engineered a non-natural 1,3-PDO synthetic pathway derived from acetyl-CoA, enabling efficient accumulation of 1,3-PDO in Escherichia coli without adding expensive cofactors. This functional pathway was established by introducing the malonyl-CoA-dependent 3-hydroxypropionic acid (3-HP) module and screening the key enzymes to convert 3-HP to 1,3-PDO. The best engineered strain can produce 2.93 g/L 1,3-PDO with a yield of 0.35 mol/mol glucose in shake flask cultivation (and 7.98 g/L in fed-batch fermentation), which is significantly higher than previous reports based on homoserine- or malate-derived non-natural pathways. We also demonstrated for the first time the feasibility of producing 1,3-PDO from diverse carbohydrates including xylose, glycerol, and acetate based on the same pathway. Thus, this study provides an alternative route for 1,3-PDO production.
Collapse
Affiliation(s)
- Zihua Li
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Ziyi Wu
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xuecong Cen
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yu Liu
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Ye Zhang
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Dehua Liu
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Tsinghua Innovation Center in Dongguan, Dongguan 523808, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Zhen Chen
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Tsinghua Innovation Center in Dongguan, Dongguan 523808, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
48
|
Jiang XR, Yan X, Yu LP, Liu XY, Chen GQ. Hyperproduction of 3-hydroxypropionate by Halomonas bluephagenesis. Nat Commun 2021; 12:1513. [PMID: 33686068 PMCID: PMC7940609 DOI: 10.1038/s41467-021-21632-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 02/02/2021] [Indexed: 01/31/2023] Open
Abstract
3-Hydroxypropionic acid (3HP), an important three carbon (C3) chemical, is designated as one of the top platform chemicals with an urgent need for improved industrial production. Halomonas bluephagenesis shows the potential as a chassis for competitive bioproduction of various chemicals due to its ability to grow under an open, unsterile and continuous process. Here, we report the strategy for producing 3HP and its copolymer poly(3-hydroxybutyrate-co-3-hydroxypropionate) (P3HB3HP) by the development of H. bluephagenesis. The transcriptome analysis reveals its 3HP degradation and synthesis pathways involving endogenous synthetic enzymes from 1,3-propanediol. Combing the optimized expression of aldehyde dehydrogenase (AldDHb), an engineered H. bluephagenesis strain of whose 3HP degradation pathway is deleted and that overexpresses alcohol dehydrogenases (AdhP) on its genome under a balanced redox state, is constructed with an enhanced 1.3-propanediol-dependent 3HP biosynthetic pathway to produce 154 g L-1 of 3HP with a yield and productivity of 0.93 g g-1 1,3-propanediol and 2.4 g L-1 h-1, respectively. Moreover, the strain could also accumulate 60% poly(3-hydroxybutyrate-co-32-45% 3-hydroxypropionate) in the dry cell mass, demonstrating to be a suitable chassis for hyperproduction of 3HP and P3HB3HP.
Collapse
Affiliation(s)
- Xiao-Ran Jiang
- Department of Microbiology, Army Medical University, Chongqing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xu Yan
- School of Life Sciences, Tsinghua University, Beijing, China
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Lin-Ping Yu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xin-Yi Liu
- School of Life Sciences, Tsinghua University, Beijing, China
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing, China.
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China.
- MOE Key Lab for Industrial Biocatalysis, Department of Chemical Engineering, Tsinghua University, Beijing, China.
| |
Collapse
|
49
|
Aduhene AG, Cui H, Yang H, Liu C, Sui G, Liu C. Poly(3-hydroxypropionate): Biosynthesis Pathways and Malonyl-CoA Biosensor Material Properties. Front Bioeng Biotechnol 2021; 9:646995. [PMID: 33748091 PMCID: PMC7978226 DOI: 10.3389/fbioe.2021.646995] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/09/2021] [Indexed: 01/25/2023] Open
Abstract
Many single-use non-degradable plastics are a threat to life today, and several polyhydroxyalkanoates (PHAs) biopolymers have been developed in the bioplastic industry to place petrochemical-based plastics. One of such is the novel biomaterial poly(3-hydroxypropionate) [poly(3HP)] because of its biocompatibility, biodegradability, and high yield synthesis using engineered strains. To date, many bio-polymer-based functional composites have been developed to increase the value of raw microbial-biopolymers obtained from cheap sources. This review article broadly covers poly(3HP), a comprehensive summary of critical biosynthetic production pathways comparing the yields and titers achieved in different Microbial cell Factories. This article also provides extensive knowledge and highlights recent progress on biosensors' use to optimize poly(3HP) production, some bacteria host adopted for production, chemical and physical properties, life cycle assessment for poly(3HP) production using corn oil as carbon source, and some essential medical applications of poly(3HP).
Collapse
Affiliation(s)
- Albert Gyapong Aduhene
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin, China.,College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Hongliang Cui
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin, China.,College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Hongyi Yang
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Chengwei Liu
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Guangchao Sui
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Changli Liu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin, China.,College of Life Sciences, Northeast Forestry University, Harbin, China
| |
Collapse
|
50
|
Oliveira A, Rodrigues J, Ferreira EC, Rodrigues L, Dias O. A kinetic model of the central carbon metabolism for acrylic acid production in Escherichia coli. PLoS Comput Biol 2021; 17:e1008704. [PMID: 33684125 PMCID: PMC7971886 DOI: 10.1371/journal.pcbi.1008704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 03/18/2021] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Abstract
Acrylic acid is a value-added chemical used in industry to produce diapers, coatings, paints, and adhesives, among many others. Due to its economic importance, there is currently a need for new and sustainable ways to synthesise it. Recently, the focus has been laid in the use of Escherichia coli to express the full bio-based pathway using 3-hydroxypropionate as an intermediary through three distinct pathways (glycerol, malonyl-CoA, and β-alanine). Hence, the goals of this work were to use COPASI software to assess which of the three pathways has a higher potential for industrial-scale production, from either glucose or glycerol, and identify potential targets to improve the biosynthetic pathways yields. When compared to the available literature, the models developed during this work successfully predict the production of 3-hydroxypropionate, using glycerol as carbon source in the glycerol pathway, and using glucose as a carbon source in the malonyl-CoA and β-alanine pathways. Finally, this work allowed to identify four potential over-expression targets (glycerol-3-phosphate dehydrogenase (G3pD), acetyl-CoA carboxylase (AccC), aspartate aminotransferase (AspAT), and aspartate carboxylase (AspC)) that should, theoretically, result in higher AA yields.
Collapse
Affiliation(s)
| | - Joana Rodrigues
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | | | - Lígia Rodrigues
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Oscar Dias
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|