1
|
Olatunji G, Kokori E, Yusuf I, Ayanleke E, Damilare O, Afolabi S, Adetunji B, Mohammed S, Akinmoju O, Aboderin G, Aderinto N. Stem cell-based therapies for heart failure management: a narrative review of current evidence and future perspectives. Heart Fail Rev 2024; 29:573-598. [PMID: 37733137 DOI: 10.1007/s10741-023-10351-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/13/2023] [Indexed: 09/22/2023]
Abstract
Heart failure (HF) is a prevalent and debilitating global cardiovascular condition affecting around 64 million individuals, placing significant strain on healthcare systems and diminishing patients' quality of life. The escalating prevalence of HF underscores the urgent need for innovative therapeutic approaches that target the root causes and aim to restore normal cardiac function. Stem cell-based therapies have emerged as promising candidates, representing a fundamental departure from conventional treatments focused primarily on symptom management. This review explores the evolving landscape of stem cell-based therapies for HF management. It delves into the mechanisms of action, clinical evidence from both positive and negative outcomes, ethical considerations, and regulatory challenges. Key findings include the potential for improved cardiac function, enhanced quality of life, and long-term benefits associated with stem cell therapies. However, adverse events and patient vulnerabilities necessitate stringent safety assessments. Future directions in stem cell-based HF therapies include enhancing efficacy and safety through optimized stem cell types, delivery techniques, dosing strategies, and long-term safety assessments. Personalized medicine, combining therapies, addressing ethical and regulatory challenges, and expanding access while reducing costs are crucial aspects of the evolving landscape.
Collapse
Affiliation(s)
- Gbolahan Olatunji
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| | - Emmanuel Kokori
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| | - Ismaila Yusuf
- Department of Medicine and Surgery, Obafemi Awolowo University, Osun, Nigeria
| | - Emmanuel Ayanleke
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| | - Olakanmi Damilare
- Department of Medicine and Surgery, Ladoke Akintola University Teaching Hospital, Ogbomoso, Nigeria
| | - Samson Afolabi
- Department of Medicine and Surgery, Ladoke Akintola University Teaching Hospital, Ogbomoso, Nigeria
| | - Busayo Adetunji
- Department of Medicine and Surgery, Ladoke Akintola University Teaching Hospital, Ogbomoso, Nigeria
| | - Saad Mohammed
- Al-Kindy College of Medicine, University of Baghdad, Baghdad, Iraq
| | | | - Gbolahan Aboderin
- Department of Medicine and Surgery, Ladoke Akintola University Teaching Hospital, Ogbomoso, Nigeria
| | - Nicholas Aderinto
- Department of Medicine and Surgery, Ladoke Akintola University Teaching Hospital, Ogbomoso, Nigeria.
| |
Collapse
|
2
|
Sacco AM, Castaldo C, Di Meglio FD, Nurzynska D, Palermi S, Spera R, Gnasso R, Zinno G, Romano V, Belviso I. The Long and Winding Road to Cardiac Regeneration. APPLIED SCIENCES 2023; 13:9432. [DOI: 10.3390/app13169432] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Cardiac regeneration is a critical endeavor in the treatment of heart diseases, aimed at repairing and enhancing the structure and function of damaged myocardium. This review offers a comprehensive overview of current advancements and strategies in cardiac regeneration, with a specific focus on regenerative medicine and tissue engineering-based approaches. Stem cell-based therapies, which involve the utilization of adult stem cells and pluripotent stem cells hold immense potential for replenishing lost cardiomyocytes and facilitating cardiac tissue repair and regeneration. Tissue engineering also plays a prominent role employing synthetic or natural biomaterials, engineering cardiac patches and grafts with suitable properties, and fabricating upscale bioreactors to create functional constructs for cardiac recovery. These constructs can be transplanted into the heart to provide mechanical support and facilitate tissue healing. Additionally, the production of organoids and chips that accurately replicate the structure and function of the whole organ is an area of extensive research. Despite significant progress, several challenges persist in the field of cardiac regeneration. These include enhancing cell survival and engraftment, achieving proper vascularization, and ensuring the long-term functionality of engineered constructs. Overcoming these obstacles and offering effective therapies to restore cardiac function could improve the quality of life for individuals with heart diseases.
Collapse
Affiliation(s)
- Anna Maria Sacco
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Clotilde Castaldo
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Franca Di Di Meglio
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Daria Nurzynska
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, 84081 Baronissi, Italy
| | - Stefano Palermi
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Rocco Spera
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Rossana Gnasso
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Giorgio Zinno
- Department of Clinical and Surgical Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Veronica Romano
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Immacolata Belviso
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
3
|
Bioactive Scaffolds in Stem Cell-Based Therapies for Myocardial Infarction: a Systematic Review and Meta-Analysis of Preclinical Trials. Stem Cell Rev Rep 2021; 18:2104-2136. [PMID: 34463903 DOI: 10.1007/s12015-021-10186-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2021] [Indexed: 10/20/2022]
Abstract
The use of bioactive scaffolds in conjunction with stem cell therapies for cardiac repair after a myocardial infarction shows significant promise for clinical translation. We performed a systematic review and meta-analysis of preclinical trials that investigated the use of bioactive scaffolds to support stem cell-aided cardiac regeneration, in comparison to stem cell treatment alone. Cochrane Library, Medline, Embase, PubMed, Scopus, Web of Science, and grey literature were searched through April 23, 2020 and 60 articles were included in the final analysis. The overall effect size observed in scaffold and stem cell-treated small animals compared to stem cell-treated controls for ejection fraction (EF) was 7.98 [95% confidence interval (CI): 6.36, 9.59] and for fractional shortening (FS) was 5.50 [95% CI: 4.35, 6.65] in small animal models. The largest improvements in EF and FS were observed when hydrogels were used (MD = 8.45 [95% CI: 6.46, 10.45] and MD = 5.76 [95% CI: 4.46, 7.05], respectively). Subgroup analysis revealed that cardiac progenitor cells had the largest effect size for FS, and was significant from pluripotent, mesenchymal and endothelial stem cell types. In large animal studies, the overall improvement of EF favoured the use of stem cell-embedded scaffolds compared to direct injection of cells (MD = 10.49 [95% CI: 6.30, 14.67]). Significant publication bias was present in the small animal trials for EF and FS. This study supports the use of bioactive scaffolds to aid in stem cell-based cardiac regeneration. Hydrogels should be further investigated in larger animal models for clinical translation.
Collapse
|
4
|
Galow AM, Goldammer T, Hoeflich A. Xenogeneic and Stem Cell-Based Therapy for Cardiovascular Diseases: Genetic Engineering of Porcine Cells and Their Applications in Heart Regeneration. Int J Mol Sci 2020; 21:ijms21249686. [PMID: 33353186 PMCID: PMC7766969 DOI: 10.3390/ijms21249686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 12/25/2022] Open
Abstract
Cardiovascular diseases represent a major health concern worldwide with few therapy options for ischemic injuries due to the limited regeneration potential of affected cardiomyocytes. Innovative cell replacement approaches could facilitate efficient regenerative therapy. However, despite extensive attempts to expand primary human cells in vitro, present technological limitations and the lack of human donors have so far prevented their broad clinical use. Cell xenotransplantation might provide an ethically acceptable unlimited source for cell replacement therapies and bridge the gap between waiting recipients and available donors. Pigs are considered the most suitable candidates as a source for xenogeneic cells and tissues due to their anatomical and physiological similarities with humans. The potential of porcine cells in the field of stem cell-based therapy and regenerative medicine is under intensive investigation. This review outlines the current progress and highlights the most promising approaches in xenogeneic cell therapy with a focus on the cardiovascular system.
Collapse
Affiliation(s)
- Anne-Marie Galow
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology, 18196 Dummerstorf, Germany; (T.G.); (A.H.)
- Correspondence: ; Tel.: +49-38208-68-723
| | - Tom Goldammer
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology, 18196 Dummerstorf, Germany; (T.G.); (A.H.)
- Molecular Biology and Fish Genetics Unit, Faculty of Agriculture and Environmental Sciences, University of Rostock, 18059 Rostock, Germany
| | - Andreas Hoeflich
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology, 18196 Dummerstorf, Germany; (T.G.); (A.H.)
| |
Collapse
|
5
|
Preferential growth of skeletal myoblasts and fibroblasts in co-culture on a dendrimer-immobilized surface. J Biosci Bioeng 2013; 115:96-9. [DOI: 10.1016/j.jbiosc.2012.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 08/10/2012] [Accepted: 08/18/2012] [Indexed: 12/12/2022]
|
6
|
Nakamura Y, Asakura Y, Piras BA, Hirai H, Tastad CT, Verma M, Christ AJ, Zhang J, Yamazaki T, Yoshiyama M, Asakura A. Increased angiogenesis and improved left ventricular function after transplantation of myoblasts lacking the MyoD gene into infarcted myocardium. PLoS One 2012; 7:e41736. [PMID: 22848585 PMCID: PMC3404994 DOI: 10.1371/journal.pone.0041736] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 06/28/2012] [Indexed: 01/05/2023] Open
Abstract
Skeletal myoblast transplantation has therapeutic potential for repairing damaged heart. However, the optimal conditions for this transplantation are still unclear. Recently, we demonstrated that satellite cell-derived myoblasts lacking the MyoD gene (MyoD(-/-)), a master transcription factor for skeletal muscle myogenesis, display increased survival and engraftment compared to wild-type controls following transplantation into murine skeletal muscle. In this study, we compare cell survival between wild-type and MyoD(-/-) myoblasts after transplantation into infarcted heart. We demonstrate that MyoD(-/-) myoblasts display greater resistance to hypoxia, engraft with higher efficacy, and show a larger improvement in ejection fraction than wild-type controls. Following transplantation, the majority of MyoD(-/-) and wild-type myoblasts form skeletal muscle fibers while cardiomyocytes do not. Importantly, the transplantation of MyoD(-/-) myoblasts induces a high degree of angiogenesis in the area of injury. DNA microarray data demonstrate that paracrine angiogenic factors, such as stromal cell-derived factor-1 (SDF-1) and placental growth factor (PlGF), are up-regulated in MyoD(-/-) myoblasts. In addition, over-expression and gene knockdown experiments demonstrate that MyoD negatively regulates gene expression of these angiogenic factors. These results indicate that MyoD(-/-) myoblasts impart beneficial effects after transplantation into an infarcted heart, potentially due to the secretion of paracrine angiogenic factors and enhanced angiogenesis in the area of injury. Therefore, our data provide evidence that a genetically engineered myoblast cell type with suppressed MyoD function is useful for therapeutic stem cell transplantation.
Collapse
Affiliation(s)
- Yasuhiro Nakamura
- Cardiovascular Division Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Department of Internal Medicine and Cardiology, Osaka City University Medical School, Osaka, Japan
| | - Yoko Asakura
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Department of Neurology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Bryan A. Piras
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Department of Neurology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Hiroyuki Hirai
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Department of Neurology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Christopher T. Tastad
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Department of Neurology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Mayank Verma
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Department of Neurology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Amanda J. Christ
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Department of Neurology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Jianyi Zhang
- Cardiovascular Division Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Takanori Yamazaki
- Department of Internal Medicine and Cardiology, Osaka City University Medical School, Osaka, Japan
| | - Minoru Yoshiyama
- Department of Internal Medicine and Cardiology, Osaka City University Medical School, Osaka, Japan
| | - Atsushi Asakura
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Department of Neurology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| |
Collapse
|
7
|
Haider KH, Ashraf M. Preconditioning approach in stem cell therapy for the treatment of infarcted heart. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 111:323-56. [PMID: 22917238 DOI: 10.1016/b978-0-12-398459-3.00015-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nearly two decades of research in regenerative medicine have been focused on the development of stem cells as a therapeutic option for treatment of the ischemic heart. Given the ability of stem cells to regenerate the damaged tissue, stem-cell-based therapy is an ideal approach for cardiovascular disorders. Preclinical studies in experimental animal models and clinical trials to determine the safety and efficacy of stem cell therapy have produced encouraging results that promise angiomyogenic repair of the ischemically damaged heart. Despite these promising results, stem cell therapy is still confronted with issues ranging from uncertainty about the as-yet-undetermined "ideal" donor cell type to the nonoptimized cell delivery strategies to harness optimal clinical benefits. Moreover, these lacunae have significantly hampered the progress of the heart cell therapy approach from bench to bedside for routine clinical applications. Massive death of donor cells in the infarcted myocardium during acute phase postengraftment is one of the areas of prime concern, which immensely lowers the efficacy of the procedure. An overview of the published data relevant to stem cell therapy is provided here and the various strategies that have been adopted to develop and optimize the protocols to enhance donor stem cell survival posttransplantation are discussed, with special focus on the preconditioning approach.
Collapse
Affiliation(s)
- Khawaja Husnain Haider
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | | |
Collapse
|
8
|
Durrani S, Konoplyannikov M, Ashraf M, Haider KH. Skeletal myoblasts for cardiac repair. Regen Med 2011; 5:919-32. [PMID: 21082891 DOI: 10.2217/rme.10.65] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Stem cells provide an alternative curative intervention for the infarcted heart by compensating for the cardiomyocyte loss subsequent to myocardial injury. The presence of resident stem and progenitor cell populations in the heart, and nuclear reprogramming of somatic cells with genetic induction of pluripotency markers are the emerging new developments in stem cell-based regenerative medicine. However, until safety and feasibility of these cells are established by extensive experimentation in in vitro and in vivo experimental models, skeletal muscle-derived myoblasts, and bone marrow cells remain the most well-studied donor cell types for myocardial regeneration and repair. This article provides a critical review of skeletal myoblasts as donor cells for transplantation in the light of published experimental and clinical data, and indepth discussion of the advantages and disadvantages of skeletal myoblast-based therapeutic intervention for augmentation of myocardial function in the infarcted heart. Furthermore, strategies to overcome the problems of arrhythmogenicity and failure of the transplanted skeletal myoblasts to integrate with the host cardiomyocytes are discussed.
Collapse
Affiliation(s)
- Shazia Durrani
- Department of Pathology & Laboratory Medicine, 231 Albert Sabin Way, University of Cincinnati, OH 45267-0529, USA
| | | | | | | |
Collapse
|
9
|
D'Atri LP, Etulain J, Romaniuk MA, Torres O, Negrotto S, Schattner M. The low viability of human CD34+ cells under acidic conditions is improved by exposure to thrombopoietin, stem cell factor, interleukin-3, or increased cyclic adenosine monophosphate levels. Transfusion 2011; 51:1784-95. [PMID: 21332728 DOI: 10.1111/j.1537-2995.2010.03051.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Transplanted hematopoietic progenitor cells (CD34+) have shown great promise in regenerative medicine. However, the therapeutic potential of transplanted cells is limited by their poor viability. It is well known that the microenvironment in which progenitors reside substantially affects their behavior. Because extracellular acidosis is a common feature of injured tissues or the tumor microenvironment and is a critical regulator of cell survival and activation, we evaluated the impact of acidosis on CD34+ cell biology. STUDY DESIGN AND METHODS Apoptosis was evaluated by fluorescence microscopy and binding of annexin V, hypodiploid cells, Bcl-xL expression, active caspase-3, and mitochondrial membrane potential was determined by flow cytometry. Colony-forming units were studied by clonogenic assays, and cell cycle was evaluated by flow cytometry. RESULTS Exposure of CD34+ cells to low pH (7.0-6.5) caused intracellular acidification, decreased cell proliferation, and triggered apoptosis via the mitochondrial pathway. Whereas exposure to thrombopoietin (TPO), stem cell factor (SCF), interleukin (IL)-3 or increases in cyclic adenosine monophosphate (cAMP) levels prevented CD34+ cell death induced by acidic conditions, granulocyte-macrophage-colony-stimulating factor, FMS-like tyrosine kinase 3-ligand, erythropoietin, and vascular endothelial growth factor had no effect. Despite their cytoprotective effect, CD34+ cell expansion triggered by TPO, SCF, or IL-3 was significantly impaired at low pH. However, a cocktail of these three cytokines synergistically supported proliferation, cell cycle progression, and colony formation. DISCUSSION Our findings indicate that an acidic milieu is deleterious for CD34+ cells and that a combination of certain cytokines and cAMP donors may improve cell viability and function. These data may be useful to develop new therapeutic strategies or to optimize protocols for regenerative medicine.
Collapse
Affiliation(s)
- Lina Paola D'Atri
- Thrombosis I Laboratory, Hematological Research Institute Mariano R. Castex, National Academy of Medicine, CONICET, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
10
|
Chachques JC. Development of bioartificial myocardium using stem cells and nanobiotechnology templates. Cardiol Res Pract 2010; 2011:806795. [PMID: 21253535 PMCID: PMC3021848 DOI: 10.4061/2011/806795] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 11/16/2010] [Indexed: 12/12/2022] Open
Abstract
Cell-based regenerative therapy is undergoing experimental and clinical trials in cardiology, in order to limit the consequences of decreased contractile function and compliance of damaged ventricles following myocardial infarction. Over 1000 patients have been treated worldwide with cell-based procedures for myocardial regeneration. Cellular cardiomyoplasty seems to reduce the size and fibrosis of infarct scars, limit adverse postischemic remodelling, and improve diastolic function. The development of a bioartificial myocardium is a new challenge; in this approach, tissue-engineered procedures are associated with cell therapy. Organ decellularization for bioscaffolds fabrication is a new investigated concept. Nanomaterials are emerging as the main candidates to ensure the achievement of a proper instructive cellular niche with good drug release/administration properties. Investigating the electrophysiological properties of bioartificial myocardium is the challenging objective of future research, associating a multielectrode network to provide electrical stimulation could improve the coupling of grafted cells and scaffolds with host cardiomyocytes. In summary, until now stem cell transplantation has not achieved clear hemodynamic benefits for myocardial diseases. Supported by relevant scientific background, the development of myocardial tissue engineering may constitute a new avenue and hope for the treatment of myocardial diseases.
Collapse
Affiliation(s)
- Juan Carlos Chachques
- Department of Cardiovascular Surgery and Laboratory of Biosurgical Research, Pompidou Hospital, University Paris Descartes, 20 rue Leblanc, 75015 Paris, France
| |
Collapse
|
11
|
Chowdhury SR, Muneyuki Y, Takezawa Y, Kino-oka M, Saito A, Sawa Y, Taya M. Growth and differentiation potentials in confluent state of culture of human skeletal muscle myoblasts. J Biosci Bioeng 2010; 109:310-3. [PMID: 20159584 DOI: 10.1016/j.jbiosc.2009.09.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 09/03/2009] [Accepted: 09/08/2009] [Indexed: 12/11/2022]
Abstract
The transitional behaviors of myoblasts toward differentiation were investigated in the cultures at the low and high seeding densities (respectively, X(0)=1.0x10(3) and 2.0x10(5) cells/cm(2)). In the culture at the low seeding density, an increase in confluence degree accompanied a decrease in growth potential (R(p)), being R(p)=0.85 and 0.11 at t=48 and 672 h, respectively. Myoblasts seeded at the high density resulted in the immediate cessation of growth with keeping the low range of R(p)=0.02-0.09 throughout the culture. The reduction of R(p) led to the generation of three subpopulations of cells in proliferative, quiescent and differentiated states. Close cell contacts in the confluent state of high seeding culture induced cell quiescence to a higher extent with suppressing differentiation.
Collapse
Affiliation(s)
- Shiplu Roy Chowdhury
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Kino-Oka M, Chowdhury SR, Muneyuki Y, Manabe M, Saito A, Sawa Y, Taya M. Automating the expansion process of human skeletal muscle myoblasts with suppression of myotube formation. Tissue Eng Part C Methods 2010; 15:717-28. [PMID: 19284306 DOI: 10.1089/ten.tec.2008.0429] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
An intelligent culture system accompanied by automated operations (liquid transfer and cell passage) was newly developed to perform serial cultures of human skeletal muscle myoblasts. To realize a desired performance, a laminin-coated surface was applied to myoblast expansion in a culture flask. It was found that the laminin coating enhanced the overall growth ability attributable not to shortening of the doubling time but to prevention of differentiation toward myotube formation, compared with that on a conventional plain surface. In addition, the effects of seeding density and confluence degree on the growth were investigated quantitatively in terms of cell attachment and division as well as proliferative cell population in the culture on the laminin-coated surface. With increasing in seeding density, the number of proliferative cells decreased at the end of culture accompanied by an increase in the confluence degree, which caused poor attachment of the passaged cells on the surface in the subsequent culture. The quantitative analyses of these cell behaviors helped us determine the appropriate seeding density and attainable confluence degree during one passage, which were 1.0 x 10(3) cells/cm(2) and 0.5 as the initial and boundary conditions, respectively. An automated culture system that could manage two serial cultures by monitoring the confluence degree was constructed. The automated operation with the intelligent determination of the time for passage was successfully performed without serious loss of growth activity, compared with manual operation using conventional flasks. These results indicated that the monitoring of confluence degree is effective to perform the culture passage of myoblasts, being contributable to automating the cell expansion process.
Collapse
Affiliation(s)
- Masahiro Kino-Oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University , Osaka, Japan.
| | | | | | | | | | | | | |
Collapse
|
13
|
Haider HK, Ashraf M. Preconditioning and stem cell survival. J Cardiovasc Transl Res 2009; 3:89-102. [PMID: 20560023 DOI: 10.1007/s12265-009-9161-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 11/24/2009] [Indexed: 01/01/2023]
Abstract
The harsh ischemic and cytokine-rich microenvironment in the infarcted myocardium, infiltrated by the inflammatory and immune cells, offers a significant challenge to the transplanted donor stem cells. Massive cell death occurs during transplantation as well as following engraftment which significantly lowers the effectiveness of the heart cell therapy. Various approaches have been adopted to overcome this problem nevertheless with multiple limitations with each of these current approaches. Cellular preconditioning and reprogramming by physical, chemical, genetic, and pharmacological manipulation of the cells has shown promise and "prime" the cells to the "state of readiness" to withstand the rigors of lethal ischemia in vitro as well as posttransplantation. This review summarizes the past and present novel approaches of ischemic preconditioning, pharmacological and genetic manipulation using preconditioning mimetics, recombinant growth factor protein treatment, and reprogramming of stem cells to overexpress survival signaling molecules, microRNAs, and trophic factors for intracrine, autocrine, and paracrine effects on cytoprotection.
Collapse
Affiliation(s)
- Husnain Kh Haider
- Department of Pathology and Laboratory Medicine, University of Cincinnati, 231-Albert, Sabin Way, OH 45267-0529, USA.
| | | |
Collapse
|
14
|
Parenteau NL. Commercial development of cell-based therapeutics: strategic considerations along the drug to tissue spectrum. Regen Med 2009; 4:601-11. [PMID: 19580408 DOI: 10.2217/rme.09.29] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In cell-based therapy, the process defines the product and the biological interaction between implant and host determines the outcome. Developing the optimum combination of process, product and a clinically relevant effect has been a challenge, leaving many potential therapies stalled in early clinical studies. This special report discusses pivotal factors in the development of cell-based technologies, irrespective of where they fit on the spectrum from cell-based drug to tissue construct, and how we can ensure delivery of an effective product to the clinic and the marketplace. Epidermal cell-based therapies serve as an historical lesson.
Collapse
Affiliation(s)
- Nancy L Parenteau
- Parenteau BioConsultants, LLC, PO Box 448, Fair Haven, VT 05743, USA.
| |
Collapse
|
15
|
Synergic stimulation of laminin and epidermal growth factor facilitates the myoblast growth through promoting migration. J Biosci Bioeng 2009; 108:174-7. [PMID: 19619867 DOI: 10.1016/j.jbiosc.2009.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2008] [Revised: 02/21/2009] [Accepted: 03/11/2009] [Indexed: 12/31/2022]
Abstract
The dynamic behaviors of human skeletal muscle myoblasts were investigated in the culture on a laminin-coated surface in the presence of 100 ng/ml epidermal growth factor (EGF) in medium. The coexistence of laminin and EGF caused the enhancement of myoblast migration, giving an average migration rate of 62.0 microm/h, which was 2.7 times that on a plain surface. This encouraged migration could be a driving force to separate the dividing cells from each other, accompanied by shortened disjunction time of daughter cells to complete cytokinesis. In addition, the synergic effect of laminin and EGF led to the promotion of myoblast growth with keeping a relatively high fraction of proliferative cells during the culture for 150 h, which is considered to arise from the reduced frequency of cell-cell contacts during cytokinesis and thereby suppressing the process towards myotube formation after cell division.
Collapse
|
16
|
Sadek H, Latif S, Collins R, Garry MG, Garry DJ. Use of ferumoxides for stem cell labeling. Regen Med 2009; 3:807-16. [PMID: 18947305 DOI: 10.2217/17460751.3.6.807] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
AIM Although numerous clinical trials have shown promising results with regards to the cardiac regenerative capacity of different types of stem cells, there remains virtually no evidence of the fate of stem cells in these human studies, primarily owing to safety concerns associated with the use of cell-labeling strategies. METHODS In this study, we utilized two cell types that are used extensively in cardiac regeneration studies, namely bone marrow-derived human mononuclear cells and C2C12 skeletal myoblasts. The US FDA-approved compounds feridex (ferumoxide) and protamine sulfate (as a transfection agent) were used in combination for cellular labeling. We assessed the effect of this cell labeling strategy on cellular viability, proliferation and differentiation both in vitro and in vivo. RESULTS The ferumoxide-protamine sulfate combination had no effect on cellular viability, proliferation or differentiation. We show that the labeled human mononuclear cells were easily identified within the rat myocardium 1 month following injection into the myocardium. These human cells expressed human-specific cardiac troponin I, whereas the neighboring rat myocardium did not. Furthermore, we demonstrated that this labeling strategy can be used with high accuracy for magnetic separation of the labeled cells based on the intracellular ferumoxide particles. CONCLUSIONS The ferumoxide-protamine sulfate combination can be used safely and effectively to enhance the detection and isolation of cardiogenic stem cell populations.
Collapse
Affiliation(s)
- Hesham Sadek
- Department of Internal Medicine, University of Texas Southwestern Medical Center, TX, USA
| | | | | | | | | |
Collapse
|
17
|
Ye L, Haider HK, Tan R, Toh W, Law PK, Tan W, Su L, Zhang W, Ge R, Zhang Y, Lim Y, Sim EKW. Transplantation of nanoparticle transfected skeletal myoblasts overexpressing vascular endothelial growth factor-165 for cardiac repair. Circulation 2007; 116:I113-20. [PMID: 17846290 DOI: 10.1161/circulationaha.106.680124] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND We investigated the feasibility and efficacy of polyethylenimine (PEI) based human vascular endothelial growth factor-165 (hVEGF165) gene transfer into human skeletal myoblasts (HSM) for cell based delivery to the infarcted myocardium. METHODS AND RESULTS Based on optimized transfection procedure using enhanced green fluorescent protein (pEGFP), HSM were transfected with plasmid-hVEGF165 (phVEGF165) carried by PEI (PEI-phVEGF165) nanoparticles. The transfected HSM were characterized for transfection and expression of hVEGF165 in vitro and transplanted into rat heart model of acute myocardial infarction (AMI): group-1=DMEM injection, group-2= HSM transplantation, group-3= PEI-phVEGF165-transfected HSM (PEI-phVEGF165 myoblast) transplantation. A total of 48 rats received cyclosporine injection from 3 days before and until 4 weeks after cell transplantation. Echocardiography was performed to assess the heart function. Animals were sacrificed for molecular and histological studies on the heart tissue at 4 weeks after treatment. Based on optimized transfection conditions, transfected HSM expressed hVEGF165 for 18 days with >90% cell viability in vitro. Apoptotic index was reduced in group-2 and group-3 as compared with group-1. Blood vessel density (x400) by immunostaining for PECAM-1 in group-3 was significantly higher (P=0.043 for both) as compared with group-1 and group-2 at 4 weeks. Regional blood flow (ml/min/g) in the left ventricular anterior wall was higher in group-3 (P=0.043 for both) as compared with group-1 and group-2. Improved ejection fraction was achieved in group-3 (58.44+/-4.92%) as compared with group-1 (P=0.004). CONCLUSION PEI nanoparticle mediated hVEGF165 gene transfer into HSM is feasible and safe. It may serve as a novel and efficient alternative for angiomyogenesis in cardiac repair.
Collapse
Affiliation(s)
- Lei Ye
- National University Medical Institutes, National University of Singapore, Singapore
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Fredericks S, Da Silva M. A Canadian perception of the nursing practice, research, and theoretical implications associated with autologous cell transplantation. J Cardiovasc Nurs 2007; 22:375-9; quiz 380-1. [PMID: 17724419 DOI: 10.1097/01.jcn.0000287036.77444.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Heart failure is a progressive disorder. An estimated 400,000 Canadians are diagnosed annually with heart failure, and a quarter experience severe heart failure that is unresponsive to medical therapy. Autologous cell transplantation has been proposed as a new approach for cardiac repair and holds enormous potential for the regeneration of injured myocardium cells. Currently, autologous cell transplantation is under investigation in Canada. Its use as a treatment alternative for heart failure patients has been established over the past 5 years across Europe and the United States. This article will present a Canadian perception of the nursing practice, research, and theoretical implications associated with this new and innovative therapy.
Collapse
|
19
|
Abstract
The restoration of functional myocardium following heart failure still remains a formidable challenge among researchers. Irreversible damage caused by myocardial infarction is followed by left ventricular remodeling. The current pharmacologic and interventional strategies fail to regenerate dead myocardium and are usually insufficient to meet the challenge caused by necrotic cardiac myocytes. There is growing evidence, suggesting that the heart has the ability to regenerate through the activation of resident cardiac stem cells or through the recruitment of a stem cell population from other tissues such as bone marrow. These new findings belie the earlier conception about the poor regenerating ability of myocardial tissue. Stem cell therapy is a promising new approach for myocardial repair. However, it has been limited by the paucity of cell sources for functional human cardiomyocytes. Moreover, cells isolated from different sources exhibit idiosyncratic characteristics including modes of isolation, ease of expansion in culture, proliferative ability, characteristic markers, etc., which are the basis for several technical manipulations to achieve successful engraftment. Clinical trials show some evidence for the successful integration of stem cells of extracardiac origin in adult human heart with an improved functional outcome. This may be attributed to the discrepancies in the methods of detection, study subject selection (early or late post transplantation), presence of inflammation, and false identification of infiltrating leukocytes. This review discusses these issues in a comprehensive manner so that their physiological significance in animal as well as in human studies can be better understood.
Collapse
Affiliation(s)
- Rishi Sharma
- Division of Pharmacology, Central Drug Research Institute, POB-173, Lucknow-226001, India
| | | |
Collapse
|
20
|
Sim EKW, Ye L, Haider HK. New strategy for cardiac repair: genetically modified skeletal myoblasts. Asian Cardiovasc Thorac Ann 2007; 15:183-4. [PMID: 17540983 DOI: 10.1177/021849230701500301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Ye L, Haider HK, Jiang S, Tan RS, Toh WC, Ge R, Sim EKW. Angiopoietin-1 for myocardial angiogenesis: A comparison between delivery strategies. Eur J Heart Fail 2007; 9:458-65. [PMID: 17188570 DOI: 10.1016/j.ejheart.2006.10.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 07/26/2006] [Accepted: 10/30/2006] [Indexed: 10/23/2022] Open
Abstract
UNLABELLED We compare the effectiveness of direct adenoviral angiopoietin-1 (Ad-Ang-1) injection with transplantation of skeletal myoblasts (SkMs) over-expressing angiopoietin-1 (Ang-1) for angiogenic response and improvement of heart function in an experimental porcine model of myocardial infarction (MI). METHODS Ad-Ang-1 was used for intramyocardial injection or transduction of SkMs. Three weeks after coronary artery ligation in 32 female pigs, animals were grouped to receive multiple intramyocardial injections of DMEM without cells (group-1; n=7), or containing 3 x 10(8)Lac-z labelled SkMs transduced with Ad-Null vector carrying no gene (group-2; n=7), or 1 x 10(10) PFU Ad-Ang-1 (group-3; n=9), or 3 x 10(8)Lac-z labelled SkMs transduced with Ad-Ang-1 (group-4; n=9). The animals were immunosuppressed for 6-weeks. After euthanasia, their heart tissue was processed for histological studies. RESULTS Extensive survival of Lac-z positive SkMs was observed in and around the infarct 6 and 12-weeks after transplantation. Fluorescent immunostaining for vWF-VIII at 6-weeks revealed increased blood vessel density (x100) in group-4 (p<0.05) as compared with other groups. Regional blood flow (ml/g/min) in the peri-infarct area was improved in group-4 (2.7; p<0.05) as compared with group-1 (1.2+/-0.1), group-2 (1.1+/-0.4) and group-3 (1.7+/-0.1) at 6-weeks. Similarly, ejection fraction was significantly higher in group-4 (49.2+/-5.9%, p=0.03) as compared with group-1 (36.8+/-3%) at 6 weeks. CONCLUSION SkMs mediated Ang-1 delivery is associated with improved angiogenic response, regional myocardial perfusion and heart function as compared with direct Ad-Ang-1 administration.
Collapse
Affiliation(s)
- Lei Ye
- National University Medical Institutes, National University of Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|
22
|
Xu C, Police S, Hassanipour M, Gold JD. Cardiac bodies: a novel culture method for enrichment of cardiomyocytes derived from human embryonic stem cells. Stem Cells Dev 2007; 15:631-9. [PMID: 17105398 DOI: 10.1089/scd.2006.15.631] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human embryonic stem (hES) cell-derived cardiomyocytes hold great promise for cardiovascular regenerative medicine. However, this application faces a number of challenges, including generating cardiomyocytes of adequate purity. With current protocols being used by several laboratories, cardiomyocyte differentiation from hES cells occurs at low frequency and results in a mixture of differentiated cells. Here we describe a novel method for enrichment of cardiomyocytes. Cardiomyocytes were isolated from embryoid body (EB) outgrowths by Percoll separation and then enriched by culturing the aggregates of cells (termed cardiac bodies, CBs) in suspension. The majority of CBs showed contractility after 1 week in culture and were positive for multiple cardiomyocyte- associated proteins. Enrichment of cardiomyocytes was evident by the increase in the expression of cardiac alpha and beta myosin heavy chains (alpha and betaMHC) in CBs in suspension culture compared to unpurified EB outgrowths. Flow cytometry analysis showed that 35-66% of the cells in CBs were positive for sarcomeric myosin heavy chain (sMHC) or cardiac troponin T (cTnT) expression. In addition, dissociated CBs were capable of reassociating into contracting aggregates in suspension and recovering contractility after the individual cells were replated onto matrix-coated surfaces. These data suggest that the CB method is a useful approach for the generation of cardiomyocytes at an adequate purity for cardiovascular therapies.
Collapse
Affiliation(s)
- Chunhui Xu
- Geron Corporation, Menlo Park, CA 94025, USA.
| | | | | | | |
Collapse
|
23
|
Siminiak T, Burchardt P, Kurpisz M. Postinfarction heart failure: surgical and trans-coronary-venous transplantation of autologous myoblasts. ACTA ACUST UNITED AC 2006; 3 Suppl 1:S46-51. [PMID: 16501631 DOI: 10.1038/ncpcardio0403] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Accepted: 10/20/2005] [Indexed: 01/14/2023]
Abstract
Increasing experimental evidence indicates that skeletal myoblasts can be considered as a possible source of cells for regeneration of contractile performance in chronic postinfarction myocardial injury. In experimental models, the observed functional benefit of transplanting skeletal myoblasts into an area of chronic fibrotic myocardial scar has led to the development of clinical trials to evaluate the potential use of autologous skeletal myoblasts for myocardial regeneration in patients with postinfarction heart failure. We conducted an independent, phase I clinical trial to evaluate myoblast transplantation during coronary artery bypass grafting. In addition, to test whether the effect of transplanted cells on myocardial contractility was independent of revascularization, we performed a clinical study of percutaneous transvenous myoblast transplantation-the POZNAN trial. These trials have shown the feasibility of myoblast transplantation during cardiac surgery and via a percutaneous route, as well as the safety of both procedures when performed with concurrent prophylactic administration of amiodarone. Here, we review the details of our observations from both of these phase I clinical trials in the context of the clinical work in cardiovascular cell transplantation performed by others.
Collapse
Affiliation(s)
- Tomasz Siminiak
- Poznań University School of Medical Sciences, Poznań, Poland.
| | | | | |
Collapse
|
24
|
Ye L, Haider HK, Sim EKW. Adult stem cells for cardiac repair: a choice between skeletal myoblasts and bone marrow stem cells. Exp Biol Med (Maywood) 2006; 231:8-19. [PMID: 16380640 DOI: 10.1177/153537020623100102] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The real promise of a stem cell-based approach for cardiac regeneration and repair lies in the promotion of myogenesis and angiogenesis at the site of the cell graft to achieve both structural and functional benefits. Despite all of the progress and promise in this field, many unanswered questions remain; the answers to these questions will provide the much-needed breakthrough to harness the real benefits of cell therapy for the heart in the clinical perspective. One of the major issues is the choice of donor cell type for transplantation. Multiple cell types with varying potentials have been assessed for their ability to repopulate the infarcted myocardium; however, only the adult stem cells, that is, skeletal myoblasts (SkM) and bone marrow-derived stem cells (BMC), have been translated from the laboratory bench to clinical use. Which of these two cell types will provide the best option for clinical application in heart cell therapy remains arguable. With results pouring in from the long-term follow-ups of previously conducted phase I clinical studies, and with the onset of phase II clinical trials involving larger population of patients, transplantation of stem cells as a sole therapy without an adjunct conventional revascularization procedure will provide a deeper insight into the effectiveness of this approach. The present article discusses the pros and cons of using SkM and BMC individually or in combination for cardiac repair, and critically analyzes the progress made with each cell type.
Collapse
Affiliation(s)
- Lei Ye
- National University Medical Institute, National University of Singapore, Singapore 117597
| | | | | |
Collapse
|
25
|
Pleger ST, Remppis A, Heidt B, Völkers M, Chuprun JK, Kuhn M, Zhou RH, Gao E, Szabo G, Weichenhan D, Müller OJ, Eckhart AD, Katus HA, Koch WJ, Most P. S100A1 Gene Therapy Preserves in Vivo Cardiac Function after Myocardial Infarction. Mol Ther 2005; 12:1120-9. [PMID: 16168714 DOI: 10.1016/j.ymthe.2005.08.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Revised: 08/05/2005] [Accepted: 08/07/2005] [Indexed: 01/08/2023] Open
Abstract
Myocardial infarction (MI) represents an enormous clinical challenge as loss of myocardium due to ischemic injury is associated with compromised left ventricular (LV) function often leading to acute cardiac decompensation or chronic heart failure. S100A1 was recently identified as a positive inotropic regulator of myocardial contractility in vitro and in vivo. Here, we explore the strategy of myocardial S100A1 gene therapy either at the time of, or 2 h after, MI to preserve global heart function. Rats underwent cryothermia-induced MI and in vivo intracoronary delivery of adenoviral transgenes (4 x 10(10) pfu). Animals received saline (MI), the S100A1 adenovirus (MI/AdS100A1), a control adenovirus (MI/AdGFP), or a sham operation. S100A1 gene delivery preserved global in vivo LV function 1 week after MI. Preservation of LV function was due mainly to S100A1-mediated gain of contractility of the remaining, viable myocardium since contractile parameters and Ca(2+) transients of isolated MI/AdS100A1 myocytes were significantly enhanced compared to myocytes isolated from both MI/AdGFP and sham groups. Moreover, S100A1 gene therapy preserved the cardiac beta-adrenergic inotropic reserve, which was associated with the attenuation of GRK2 up-regulation. Also, S100A1 overexpression reduced cardiac hypertrophy 1 week post-MI. Overall, our data indicate that S100A1 gene therapy provides a potential novel treatment strategy to maintain contractile performance of the post-MI heart.
Collapse
Affiliation(s)
- Sven T Pleger
- Medizinische Universitätsklinik und Poliklinik III, Otto Meyerhof Zentrum, Universität zu Heidelberg, INF 350, 69115 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Chachques JC, Salanson-Lajos C, Lajos P, Shafy A, Alshamry A, Carpentier A. Cellular cardiomyoplasty for myocardial regeneration. Asian Cardiovasc Thorac Ann 2005; 13:287-96. [PMID: 16113008 DOI: 10.1177/021849230501300322] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The evolving challenge of managing patients with congestive heart failure is the need to develop new therapeutic strategies. The cellular, molecular, and genetic approaches investigated aim to reinforce the weak, failing heart muscle while restoring its functional potential. This approach is principally cellular therapy (i.e. cellular cardiomyoplasty), the preferred therapeutic choice because of its clinical applicability and regenerative capacity. Different stem cells: bone marrow cells, skeletal and smooth muscle cells, vascular endothelial cells, mesothelial cells, adipose tissue stroma cells, dental stem cells, and embryonic and fetal cells, have been proposed for regenerative medicine and biology. Stem cell mobilization with G-CSF cytokine was also proposed as a single therapy for myocardial infarction. We investigated the association of cell therapy with electrostimulation (dynamic cellular cardiomyoplasty), the use of autologous human serum for cell cultures, and a new catheter for simultaneous infarct detection and cell delivery. Our team conducted cell-based myogenic and angiogenic clinical trials for chronic ischemic heart disease. Cellular cardiomyoplasty constitutes a new approach for myocardial regeneration; the ultimate goal is to avoid the progression of ventricular remodeling and heart failure for patients presenting with ischemic and non-ischemic cardiomyopathies.
Collapse
Affiliation(s)
- Juan C Chachques
- Department of Cardiovascular Surgery, Pompidou Hospital, 20 rue Leblanc, Paris 75015, France.
| | | | | | | | | | | |
Collapse
|
27
|
Baj A, Bettaccini AA, Casalone R, Sala A, Cherubino P, Toniolo AQ. Culture of skeletal myoblasts from human donors aged over 40 years: dynamics of cell growth and expression of differentiation markers. J Transl Med 2005; 3:21. [PMID: 15890077 PMCID: PMC1142520 DOI: 10.1186/1479-5876-3-21] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Accepted: 05/12/2005] [Indexed: 01/05/2023] Open
Abstract
Background Local myogenesis, neoangiogenesis and homing of progenitor cells from the bone marrow appear to contribute to repair of the infarcted myocardium. Implantation into heart tissues of autologous skeletal myoblasts has been associated with improved contractile function in animal models and in humans with acute myocardial ischemia. Since heart infarction is most prevalent in individuals of over 40 years of age, we tested whether culture methods available in our laboratory were adequate to obtain sufficient numbers of differentiated skeletal myoblasts from muscle biopsy specimens obtained from patients aged 41 to 91. Methods and results No matter of donor age, differentiated skeletal muscle cells could be produced in vitro in amounts adequate for cellular therapy (≥300 millions). Using desmin as a cytoplasmic marker, about 50% cultured cells were differentiated along myogenic lineages and expressed proteins proper of skeletal muscle (myosin type I and II, actin, actinin, spectrin and dystrophin). Cytogenetic alterations were not detected in cultured muscle cells that had undergone at least 10 population doublings. Molecular methods employed for the screening of persistent viral infections evidenced that HCV failed to replicate in muscle cells cultured from one patient with chronic HCV infection. Conclusion The proposed culture methods appear to hold promise for aged patients not only in the field of cardiovascular medicine, but also in the urologic and orthopedic fields.
Collapse
Affiliation(s)
- Andreina Baj
- Department of Clinical and Biological Sciences, University of Insubria Medical School, 21100 Varese, Italy
| | - Alessia A Bettaccini
- Department of Clinical and Biological Sciences, University of Insubria Medical School, 21100 Varese, Italy
| | - Rosario Casalone
- Department of Clinical and Biological Sciences, University of Insubria Medical School, 21100 Varese, Italy
| | - Andrea Sala
- Department of Surgery, University of Insubria Medical School, 21100 Varese, Italy
| | - Paolo Cherubino
- Department of Orthopedics, University of Insubria Medical School, 21100 Varese, Italy
| | - Antonio Q Toniolo
- Department of Clinical and Biological Sciences, University of Insubria Medical School, 21100 Varese, Italy
| |
Collapse
|
28
|
Brimah K, Ehrhardt J, Mouly V, Butler-Browne GS, Partridge TA, Morgan JE. Human muscle precursor cell regeneration in the mouse host is enhanced by growth factors. Hum Gene Ther 2005; 15:1109-24. [PMID: 15610611 DOI: 10.1089/hum.2004.15.1109] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aim of this study was to optimize human muscle formation in vivo from implanted human muscle precursor cells. We transplanted donor muscle precursor cells (MPCs) prepared from postnatal or fetal human muscle into immunodeficient host mice and showed that irradiation of host muscle significantly enhanced muscle formation by donor cells. The amount of donor muscle formed in cryodamaged host muscle was increased by exposure of donor cells to growth factors before their implantation into injured host muscle. Insulin-like growth factor type I (IGF-I) significantly increased the amount of muscle formed by postnatal human muscle cells, but not by fetal human MPCs. However, treatment of fetal muscle cells with IGF-I, in combination with basic fibroblast growth factor and plasmin, significantly increased the amount of donor muscle formed. In vivo, human MPCs formed mosaic human-mouse muscle fibers, in which each human myonucleus was associated with a zone of human sarcolemmal protein spectrin.
Collapse
Affiliation(s)
- K Brimah
- Muscle Cell Biology Group, MRC Clinical Sciences Centre, Imperial College, London W12 ONN, United Kingdom
| | | | | | | | | | | |
Collapse
|
29
|
Chachques JC, Herreros J, Trainini J, Juffe A, Rendal E, Prosper F, Genovese J. Autologous human serum for cell culture avoids the implantation of cardioverter-defibrillators in cellular cardiomyoplasty. Int J Cardiol 2004; 95 Suppl 1:S29-33. [PMID: 15336842 DOI: 10.1016/s0167-5273(04)90009-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND Current clinical experience with cellular cardiomyoplasty (using serum bovine-cultivated myoblasts) has demonstrated significant malignant ventricular arrhythmias and sudden deaths in patients. In some ongoing clinical trials the implantation of cardioverter-defibrillator is mandatory. We have hypothesized that contact of human cells with fetal bovine serum results after 3-week fixation of animal proteins on the cell surface, representing an antigenic substrate for immunological and inflammatory adverse events. METHODS AND RESULTS Autologous myoblasts were transplanted into infarcted LV in 20 patients (90% males, mean age 62+/-8 years). Cells were cultivated in a complete human medium during 3 weeks, using the patients' own serum obtained from a blood sample or from plasmapheresis. Injections were performed during CABG (2.1 grafts/pt). All patients had an uneventful recovery. At a mean follow-up of 14 +/- 5 months without mortality, no malignant cardiac arrhythmias are reported. LV ejection fraction improved from 28 +/- 3% to 52 +/- 4.7% (p = 0.03), and regional wall motion score index (WMSI) from 3.1 to 1.4 (p = 0.04) in the cell-treated segments. Myocardial viability tests showed areas of regeneration. Patients moved from mean NYHA class 2.5 to class 1.2. CONCLUSIONS A total autologous cell culture procedure was used in cellular cardiomyoplasty reducing the risk of arrhythmia. Human-autologous-serum cell expansion avoids the risk of prion, viral or zoonoses contamination. Since patients treated with noncultivated bone marrow cells are free of arrhythmia, the bovine-culture medium seems to be responsible for this complication. Cellular cardiomyoplasty may be efficient to avoid progression of ventricular remodeling and subsequent heart failure in ischemic heart disease.
Collapse
|
30
|
Cardellach F, Pérez-Villa F. Avances en el tratamiento de la insuficiencia cardíaca. Med Clin (Barc) 2004. [DOI: 10.1016/s0025-7753(04)74440-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Rigatelli G, Rossini K, Vindigni V, Mazzoleni F, Rigatelli G, Carraro U. New perspectives in the treatment of damaged myocardium using autologous skeletal myoblasts. CARDIOVASCULAR RADIATION MEDICINE 2004; 5:84-87. [PMID: 15464945 DOI: 10.1016/j.carrad.2004.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Revised: 05/13/2004] [Accepted: 05/13/2004] [Indexed: 10/26/2022]
Abstract
Autologous skeletal myoblast transplantation may be used to ameliorate the healing process following myocardium infarct and, hopefully, cardiomyopathies. Despite successful animal experimentation, several issues need to be addressed in clinical settings, i.e., the impact of the delivery route, the extent of short- and long-term survival, and differentiation of the injected skeletal myoblasts. The authors offer some new hypotheses resulting from basic research, i.e., where and when to inject the myogenic cells, whatever their source, how to decrease new myofiber atrophy and improve their regeneration. Although these new hypotheses still need to be tested in humans, they may be decisive for future experimental studies and will lead to making endovascular cell implantation a more effective way to treat ischemic heart disease and failure.
Collapse
|
32
|
Chachques JC, Acar C, Herreros J, Trainini JC, Prosper F, D'Attellis N, Fabiani JN, Carpentier AF. Cellular cardiomyoplasty: clinical application. Ann Thorac Surg 2004; 77:1121-30. [PMID: 14992951 DOI: 10.1016/j.athoracsur.2003.09.081] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Myocardial regeneration can be induced with the implantation of a variety of myogenic and angiogenic cell types. More than 150 patients have been treated with cellular cardiomyoplasty worldwide, 18 patients have been treated by our group. Cellular cardiomyoplasty seems to reduce the size and fibrosis of infarct scars, limit postischemic remodelling, and restore regional myocardial contractility. Techniques for skeletal myoblasts culture and ex vivo expansion using autologous patient serum (obtained from plasmapheresis) have been developed by our group. In this article we propose (1) a total autologous cell culture technique and procedures for cell delivery and (2) a clinical trial with appropriate endpoints structured to determine the efficacy of cellular cardiomyoplasty.
Collapse
Affiliation(s)
- Juan C Chachques
- Department of Cardiovascular Surgery, European Hospital Georges Pompidou, University of Paris, Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|