1
|
Tachiya D, Sato T, Ichikawa H. Nerve Injury Increases the Expression of Alpha-2/Delta-1 Subunit of L-Type Calcium Channel in Sensory Neurons of Rat Spinal and Trigeminal Nerves. Ann Neurosci 2017; 24:191-200. [PMID: 29849442 DOI: 10.1159/000477604] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 05/13/2017] [Indexed: 12/19/2022] Open
Abstract
By immunohistochemistry, an effect of nerve injury on distribution of alpha-2/delta-1 subunit of L-type calcium channel was investigated in rat's 4th and 5th lumbar dorsal root ganglia (DRGs), trigeminal ganglion (TG), and mesencephalic trigeminal nucleus (Mes5). The immunoreactivity was expressed by 52.2% of DRG neurons and 31.4% of TG neurons in intact animals. These neurons mostly had small-to-medium-sized cell bodies. In the DRG and TG, alpha-2/delta-1 subunit-positive neurons were lightly or moderately stained. However, the number of alpha-2/delta-1 subunit-immunoreactive (-IR) neurons dramatically increased in the ipsilateral DRG at 3-28 days after sciatic nerve transection (75.3-79.5%) and in the ipsilateral TG at 7 days after infraorbital nerve transection (66.3%). The IR density of alpha-2/delta-1 subunit in DRG and TG neurons was also elevated by the transection. In the injured DRG and TG, many sensory neurons with small-to-medium-sized cell bodies were strongly stained. Some large DRG and TG neurons showing strong staining intensity also appeared after the treatment. In the intact Mes5, sensory neurons were mostly devoid of alpha-2/delta-1 subunit-immunoreactivity (0.4%). However, alpha-2/delta-1-IR sensory neurons on the ipsilateral side of the Mes5 dramatically increased at 7 days after masseteric nerve transection (31.3%). A double immunofluorescence method also demonstrated that c-Jun activating transcription factor 3 (ATF3)-positive DRG (98.3-99.9%) and Mes5 (81.8%) neurons mostly co-expressed alpha-2/delta-1 subunit after the nerve injuries. However, alpha-2/delta-1 subunit immunoreactivity was relatively infrequent among ATF3-immunonegative DRG neurons (51.6-74.1%) and Mes5 neurons (<1%). The present study indicates that the nerve injury increases the protein level of alpha-2/delta-1 subunit among several types of axotomized sensory neurons in the spinal and trigeminal nervous systems.
Collapse
Affiliation(s)
- Daisuke Tachiya
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Tadasu Sato
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Hiroyuki Ichikawa
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| |
Collapse
|
2
|
Shimada Y, Sato T, Yajima T, Fujita M, Hashimoto N, Shoji N, Sasano T, Ichikawa H. SCN2B in the Rat Trigeminal Ganglion and Trigeminal Sensory Nuclei. Cell Mol Neurobiol 2016; 36:1399-1408. [PMID: 26852328 PMCID: PMC11482371 DOI: 10.1007/s10571-016-0340-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/28/2016] [Indexed: 12/21/2022]
Abstract
The beta-2 subunit of the mammalian brain voltage-gated sodium channel (SCN2B) was examined in the rat trigeminal ganglion (TG) and trigeminal sensory nuclei. In the TG, 42.6 % of sensory neurons were immunoreactive (IR) for SCN2B. These neurons had various cell body sizes. In facial skins and oral mucosae, corpuscular nerve endings contained SCN2B-immunoreactivity. SCN2B-IR nerve fibers formed nerve plexuses beneath taste buds in the tongue and incisive papilla. However, SCN2B-IR free nerve endings were rare in cutaneous and mucosal epithelia. Tooth pulps, muscle spindles and major salivary glands were also innervated by SCN2B-IR nerve fibers. A double immunofluorescence method revealed that about 40 % of SCN2B-IR neurons exhibited calcitonin gene-related peptide (CGRP)-immunoreactivity. However, distributions of SCN2B- and CGRP-IR nerve fibers were mostly different in facial, oral and cranial structures. By retrograde tracing method, 60.4 and 85.3 % of TG neurons innervating the facial skin and tooth pulp, respectively, showed SCN2B-immunoreactivity. CGRP-immunoreactivity was co-localized by about 40 % of SCN2B-IR cutaneous and tooth pulp TG neurons. In trigeminal sensory nuclei of the brainstem, SCN2B-IR neuronal cell bodies were common in deep laminae of the subnucleus caudalis, and the subnuclei interpolaris and oralis. In the mesencephalic trigeminal tract nucleus, primary sensory neurons also exhibited SCN2B-immunoreactivity. In other regions of trigeminal sensory nuclei, SCN2B-IR cells were very infrequent. SCN2B-IR neuropil was detected in deep laminae of the subnucleus caudalis as well as in the subnuclei interpolaris, oralis and principalis. These findings suggest that SCN2B is expressed by various types of sensory neurons in the TG. There appears to be SCN2B-containing pathway in the TG and trigeminal sensory nuclei.
Collapse
Affiliation(s)
- Yusuke Shimada
- Division of Oral Diagnosis, Graduate School of Dentistry, Tohoku University, Sendai, 980-8575, Japan
| | - Tadasu Sato
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Sendai, 980-8575, Japan
| | - Takehiro Yajima
- Division of Operative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, 980-8575, Japan
| | - Masatoshi Fujita
- Division of Dental Anesthesiology and Pain Management, Graduate School of Dentistry, Tohoku University, Sendai, 980-8575, Japan
| | - Naoya Hashimoto
- Division of Oral Diagnosis, Graduate School of Dentistry, Tohoku University, Sendai, 980-8575, Japan
| | - Noriaki Shoji
- Division of Oral Diagnosis, Graduate School of Dentistry, Tohoku University, Sendai, 980-8575, Japan
| | - Takashi Sasano
- Division of Oral Diagnosis, Graduate School of Dentistry, Tohoku University, Sendai, 980-8575, Japan
| | - Hiroyuki Ichikawa
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Sendai, 980-8575, Japan.
| |
Collapse
|
3
|
Sakurai K, Akiyama M, Cai B, Scott A, Han BX, Takatoh J, Sigrist M, Arber S, Wang F. The organization of submodality-specific touch afferent inputs in the vibrissa column. Cell Rep 2013; 5:87-98. [PMID: 24120861 DOI: 10.1016/j.celrep.2013.08.051] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 08/08/2013] [Accepted: 08/30/2013] [Indexed: 11/19/2022] Open
Abstract
The rodent tactile vibrissae are innervated by several different types of touch sensory neurons. The central afferents of all touch neurons from one vibrissa collectively project to a columnar structure called a barrelette in the brainstem. Delineating how distinct types of sensors connect to second-order neurons within each barrelette is critical for understanding tactile information coding and processing. Using genetic and viral techniques, we labeled slowly adapting (SA) mechanosensory neurons, rapidly adapting (RA) mechanosensory neurons, afferent synapses, and second-order projection neurons with four different fluorescent markers to examine their connectivity. We discovered that within each vibrissa column, individual sensory neurons project collaterals to multiply distributed locations, inputs from SA and RA afferents are spatially intermixed without any discernible stereotypy or topography, and second-order projection neurons receive convergent SA and RA inputs. Our findings reveal a "one-to-many and many-to-one" connectivity scheme and the circuit architecture for tactile information processing at the first-order synapses.
Collapse
Affiliation(s)
- Katsuyasu Sakurai
- Department of Cell Biology, Box 3709, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Suzuki T, Sato T, Sasaki R, Ichikawa H. Peptide 19-containing neurons in the medullary dorsal horn, subnuclei interpolaris and oralis, and nucleus principalis of the rat. Ann Anat 2011; 194:321-8. [PMID: 22197496 DOI: 10.1016/j.aanat.2011.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 11/01/2011] [Accepted: 11/01/2011] [Indexed: 11/17/2022]
Abstract
Peptide 19 (PEP 19) is a 7.6 kDa polypeptide which can bind to calmodulin and inhibit calcium-calmodulin signaling. In this study, PEP 19-immunoreactivity (ir) was examined in the rat trigeminal sensory nuclei. Numerous PEP 19-immunoreactive (ir) neurons were detected in the medullary dorsal horn (MDH) and rostral parts of the trigeminal sensory nuclei (subnuclei interpolaris and oralis, and nucleus principalis). The mean numbers ± S.D. per section of PEP 19-ir neurons were 104.2 ± 30.4 in the MDH, 137.8 ± 39.5 in the subnucleus interpolaris, 129.2 ± 46.9 in the subnucleus oralis and 157.2 ± 34.1 in the nucleus principalis. In the MDH, small to medium-sized PEP 19-ir neurons were abundant within superficial laminae. PEP 19-ir neurons with various cell body sizes were also distributed in the rostral parts of the trigeminal sensory nuclei. A double immunofluorescence analysis also demonstrated that many PEP 19-ir neurons co-expressed parvalbumin (PV)-ir in the MDH (9.0%), subnucleus oralis (7.7%) and nucleus principalis (19.7%). In the subnucleus interpolaris, such neurons were relatively rare (1.7%). PEP 19-ir neurons were mostly devoid of calbindin D-28k. In addition, a retrograde tracing method revealed that a substantial number of PEP 19-ir neurons projected to the thalamus. PV-ir was common in thalamus-projecting PEP 19-ir neurons. These findings suggest that PEP 19-ir neurons in the MDH may have a function in modulation of nociceptive and thermo-receptive signaling. It is also likely that PEP 19-ir neurons in rostral parts of the trigeminal sensory nuclei are related to transduction of mechano-receptive information from facial regions to the thalamus.
Collapse
Affiliation(s)
- Toshihiko Suzuki
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | | | | | | |
Collapse
|
5
|
Mouton-Liger F, Thomas S, Rattenbach R, Magnol L, Larigaldie V, Ledru A, Herault Y, Verney C, Créau N. PCP4 (PEP19) overexpression induces premature neuronal differentiation associated with Ca(2+) /calmodulin-dependent kinase II-δ activation in mouse models of Down syndrome. J Comp Neurol 2011; 519:2779-802. [PMID: 21491429 DOI: 10.1002/cne.22651] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Pcp4/pep19 is a modulator of Ca(2+) -CaM, a key molecule for calcium signaling, expressed in postmitotic neuroectoderm cells during mouse embryogenesis. The PCP4 gene is located on human chromosome 21 and is present in three copies in Down syndrome (DS). To evaluate the consequences of three copies of this gene on the development of these cells in the nervous system, we constructed a transgenic (TgPCP4) mouse model, with one copy of human PCP4, and investigated the effects in this model and in the Ts1Cje, a mouse model of DS. During embryogenesis, we analyzed 1) the level of pcp4 transcript and protein in the two models; 2) the extent of colabeling for markers of neuronal differentiation (βIII-tubulin, Map2c, calbindin, and calretinin) and pcp4 by immunofluorescence analysis and overall protein levels of these markers by Western blotting; and 3) the rate of activation of CaMKII, a Ca(2+) -CaM target, to evaluate the impact of pcp4 overexpression on the Ca(2+) -CaM signaling pathway. We showed that three copies of the pcp4 gene induced the overexpression of transcripts and proteins during embryogenesis. Pcp4 overexpression 1) induced precocious neuronal differentiation, as shown by the distribution and levels of early neuronal markers; and 2) was associated with an increase in CaMKIIδ activation, confirming involvement in neuronal differentiation in vivo via a Pcp4-Ca(2+) -CaM pathway. TgPCP4 and Ts1Cje mice developed similar modifications, demonstrating that these mechanisms may account for abnormal neuronal development in DS.
Collapse
Affiliation(s)
- François Mouton-Liger
- Functional Adaptive Biology (BFA), Centre National de la Recherche Scientifique (CNRS) EAC4413, Université Paris Diderot-Paris7, 75205 Paris Cedex 13, France
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Peptide 19 in the rat superior cervical ganglion. Neuroscience 2009; 161:86-94. [PMID: 19303431 DOI: 10.1016/j.neuroscience.2009.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 03/05/2009] [Accepted: 03/09/2009] [Indexed: 11/23/2022]
Abstract
Peptide 19 is a 7.6 kDa polypeptide which can bind to calmodulin and inhibit calcium-calmodulin signaling. In this study, peptide 19-immunoreactivity was examined in the rat superior cervical ganglion. In the ganglion, 54.8% of postganglionic sympathetic neuron profiles were immunoreactive for peptide 19. These neuron profiles were small- to medium-sized and measured 87-845 microm(2) (mean+/-SD = 343+/-111 microm(2)). Double immunofluorescence method revealed that 99.9% of peptide 19-containing neurons had neuropeptide Y in the superior cervical ganglion. Retrograde neuronal tracing and immunohistochemical studies also demonstrated that peptide 19 was common in postganglionic sympathetic neurons which innervated the facial skin and masseter but not the submandibular gland; 55.6% and 75.2% of cutaneous and muscular neuron profiles, respectively, contained peptide 19. Only 9.8% of glandular neurons were immunoreactive for peptide 19. These findings indicate that the content of peptide 19 in superior cervical ganglion neurons depends on their cell sizes and peripheral projections. On the other hand, colchicine injection into the superior cervical ganglion decreased the number of peptide 19-positive neurons (30.7%) compared to saline injection (53.3%). In contrast, the treatment induced nicotine adenine dinucleotide phosphate diaphorase activity in 12.7% of postganglionic sympathetic neurons. Double stain demonstrated that 56.3% of nicotine adenine dinucleotide phosphate diaphorase-positive neurons co-expressed peptide 19. These findings indicate that colchicine treatment causes decrease of peptide 19 expression and increase of nitric oxide synthase activity.
Collapse
|
7
|
Ichikawa H, Jin HW, Terayama R, Yamaai T, Jacobowitz DM, Sugimoto T. Calretinin-containing neurons which co-express parvalbumin and calbindin D-28k in the rat spinal and cranial sensory ganglia; triple immunofluorescence study. Brain Res 2005; 1061:118-23. [PMID: 16242674 DOI: 10.1016/j.brainres.2005.08.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Revised: 08/09/2005] [Accepted: 08/09/2005] [Indexed: 12/31/2022]
Abstract
The co-expression of calretinin with parvalbumin and calbindin D-28k was examined in the rat cranial and spinal sensory ganglia by triple immunofluorescence method. In the trigeminal and nodose ganglia, 9% and 5% of calretinin-immunoreactive neurons, respectively, also contained both parvalbumin- and calbindin D-28k immunoreactivity. These neurons had large cell bodies. In the trigeminal ganglion, they were restricted to the caudal portion. Such neurons were evenly distributed throughout the nodose ganglion. The co-expression could not be detected in the dorsal root, jugular or petrosal ganglia. Nerve fibers which co-expressed all the three calcium-binding proteins were observed in the inferior alveolar nerve but not the infraorbital nerve or palate. In the periodontal ligament, these nerve fibers formed Ruffini-like endings. These findings suggest that (1) the co-expression in trigeminal neurons is intimately related to their peripheral receptive fields; (2) the three calcium-binding proteins (calretinin, parvalbumin, calbindin D-28k) co-expressed in the trigeminal neurons may have mechanoreceptive function in the periodontal ligament.
Collapse
Affiliation(s)
- H Ichikawa
- Department of Oral Function and Anatomy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8525, Japan.
| | | | | | | | | | | |
Collapse
|
8
|
Ichikawa H, Sugimoto T. Peptide 19 in the rat vagal and glossopharyngeal sensory ganglia. Brain Res 2005; 1038:107-12. [PMID: 15748879 DOI: 10.1016/j.brainres.2005.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Revised: 12/20/2004] [Accepted: 01/01/2005] [Indexed: 01/01/2023]
Abstract
Peptide 19 (PEP 19) is a 7.6-kDa polypeptide which binds to calmodulin and inhibits calcium-calmodulin signaling. In this study, PEP 19-immunoreactivity (PEP 19-IR) was examined in the rat vagal and glossopharyngeal sensory ganglia. Twenty-nine percent, 59%, and 41% of sensory neurons contained PEP 19-IR in the jugular, petrosal, and nodose ganglia, respectively. These neurons were of various sizes (jugular, mean +/- SD = 635.8 +/- 392.6 microm2, range = 105.9-1695.9 microm2; petrosal, mean +/- SD = 370.9 +/- 228.5 microm2, range = 57.7-1662.7 microm2; nodose, mean +/- SD = 380.5 +/- 157 microm2, range = 87.5-950.4 microm2) and scattered throughout these ganglia. Double immunofluorescence method revealed that PEP 19-IR neurons which had parvalbumin-IR were rare in the ganglia (jugular, 4%; petrosal, 10%; nodose, 8%). PEP 19-IR neurons which contained calbindin D-28k were abundant in the petrosal (20%) and nodose (22%) ganglia but not in the jugular ganglion (8%). Retrograde tracing method indicated that many PEP 19-IR neurons projected to the circumvallate papilla and soft palate. In the soft palate, taste buds were innervated by PEP 19-IR nerve fibers. The present study suggests that PEP 19-IR neurons include chemoreceptors in the vagal and glossopharyngeal sensory ganglia.
Collapse
Affiliation(s)
- H Ichikawa
- Department of Oral Function and Anatomy and Biodental Research Center, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, Okayama 700-8525, Japan.
| | | |
Collapse
|
9
|
Ichikawa H, Sugimoto T. Neurocalcin-immunoreactive neurons in the petrosal ganglion innervate the taste bud. Brain Res 2004; 1017:244-7. [PMID: 15261122 DOI: 10.1016/j.brainres.2004.05.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2004] [Indexed: 11/21/2022]
Abstract
The distribution and origin of neurocalcin-immunoreactive (NC-ir) nerve fibers in the taste bud and carotid body were examined by an immunofluorescence method. In the circumvallate papilla of the tongue, NC-ir nerve fibers made subepithelial nerve plexuses and occasionally penetrated the taste bud. However, the carotid body was devoid of ir nerve fibers. In the petrosal ganglion, 32% of neurons were immunoreactive for NC. Such neurons were mostly medium-sized to large, and scattered throughout the ganglion. In the superior cervical and intralingual ganglia, numerous ir varicose fibers surrounded postsynaptic neurons. However, NC-ir could not be detected in cell bodies of these neurons. The retrograde tracing method indicated that NC-ir petrosal neurons innervated taste buds in the circumvallate papilla. NC-ir neurons may have a gustatory function in the petrosal ganglion.
Collapse
Affiliation(s)
- H Ichikawa
- Department of Oral Function and Anatomy and Biodental Research Center, Graduate School of Medicine and Dentistry, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8525, Japan.
| | | |
Collapse
|