1
|
Chen G, Li L, Sun T, Jiang C, Xu W, Chen S, Hu C, Yue Y, Wang T, Jiang W, Yuan Y. The Interaction of LAMA2 and Duration of Illness Affects the Thickness of the Right Transverse Temporal Gyrus in Major Depressive Disorder. Neuropsychiatr Dis Treat 2023; 19:2807-2816. [PMID: 38144699 PMCID: PMC10749177 DOI: 10.2147/ndt.s435025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/14/2023] [Indexed: 12/26/2023] Open
Abstract
Background Depression is a heritable brain disorder. Laminin genes were recently identified to affect the brain's overall thickness through neurogenesis, differentiation, and migration in depression. This study aims to explore the effects of the LAMA2's single nucleotide polymorphisms (SNP), a subunit gene of laminin, on the detected brain regions of patients with major depressive disorder (MDD). Methods The study included 89 patients with MDD and 60 healthy controls with T1-weighted structural magnetic resonance imaging and blood samples for genotyping. The interactions between LAMA2 gene SNPs and diagnosis as well as duration of illness (DOI) were explored on brain measures controlled for age, gender, and site. Results The right transverse temporal gyrus and right parahippocampal gyrus showed reduced thickness in MDD. Almost all seven LAMA2 SNPs showed significant interactions with diagnosis on both gyrus (corrected p < 0.05 or trending). In MDD, rs6569604, rs2229848, rs2229849, rs2229850, and rs2784895 interacted with DOI on the right transverse temporal gyrus (corrected p < 0.05), but not the right parahippocampal gyrus. Conclusion The thickness of the right transverse temporal gyrus in patients with MDD may be affected by LAMA2 gene and DOI.
Collapse
Affiliation(s)
- Gang Chen
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People’s Republic of China
- Institute of Psychosomatics, School of Medicine, Southeast University, Nanjing, Jiangsu, People’s Republic of China
- Department of Medical Psychology, Huai’an NO 3 People’s Hospital, Huaian, People’s Republic of China
| | - Lei Li
- Institute of Psychosomatics, School of Medicine, Southeast University, Nanjing, Jiangsu, People’s Republic of China
- Department of Sleep Medicine, The Fourth People’s Hospital of Lianyungang, Lianyungang, People’s Republic of China
| | - Taipeng Sun
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People’s Republic of China
- Institute of Psychosomatics, School of Medicine, Southeast University, Nanjing, Jiangsu, People’s Republic of China
- Department of Medical Psychology, Huai’an NO 3 People’s Hospital, Huaian, People’s Republic of China
| | - Chenguang Jiang
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People’s Republic of China
- Institute of Psychosomatics, School of Medicine, Southeast University, Nanjing, Jiangsu, People’s Republic of China
| | - Wei Xu
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People’s Republic of China
- Institute of Psychosomatics, School of Medicine, Southeast University, Nanjing, Jiangsu, People’s Republic of China
| | - Suzhen Chen
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People’s Republic of China
- Institute of Psychosomatics, School of Medicine, Southeast University, Nanjing, Jiangsu, People’s Republic of China
| | - Changchun Hu
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People’s Republic of China
| | - Yingying Yue
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People’s Republic of China
- Institute of Psychosomatics, School of Medicine, Southeast University, Nanjing, Jiangsu, People’s Republic of China
| | - Tianyu Wang
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People’s Republic of China
- Institute of Psychosomatics, School of Medicine, Southeast University, Nanjing, Jiangsu, People’s Republic of China
| | - Wenhao Jiang
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People’s Republic of China
- Institute of Psychosomatics, School of Medicine, Southeast University, Nanjing, Jiangsu, People’s Republic of China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People’s Republic of China
- Institute of Psychosomatics, School of Medicine, Southeast University, Nanjing, Jiangsu, People’s Republic of China
| |
Collapse
|
2
|
Zhang L, Zhang X, Ji R, Ji Y, Wu Y, Ding X, Shang Z, Liu X, Li W, Guo J, Wang J, Cheng X, Qin J, Tian M, Jin G, Zhang X. Lama2 And Samsn1 Mediate the Effects of Brn4 on Hippocampal Neural Stem Cell Proliferation and Differentiation. Stem Cells Int 2023; 2023:7284986. [PMID: 37091532 PMCID: PMC10118897 DOI: 10.1155/2023/7284986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/14/2023] [Accepted: 03/20/2023] [Indexed: 04/25/2023] Open
Abstract
The transcription factor Brn4 exhibits vital roles in the embryonic development of the neural tube, inner ear, pancreas islet, and neural stem cell differentiation. Our previous studies have shown that Brn4 promotes neuronal differentiation of hippocampal neural stem cells (NSCs). However, its mechanism is still unclear. Here, starting from the overlapping genes between RNA-seq and ChIP-seq results, we explored the downstream target genes that mediate Brn4-induced hippocampal neurogenesis. There were 16 genes at the intersection of RNA-seq and ChIP-seq, among which the Lama2 and Samsn1 levels can be upregulated by Brn4, and the combination between their promoters and Brn4 was further determined using ChIP and dual luciferase reporter gene assays. EdU incorporation, cell cycle analysis, and CCK-8 assay indicated that Lama2 and Samsn1 mediated the inhibitory effect of Brn4 on the proliferation of hippocampal NSCs. Immunofluorescence staining, RT-qPCR, and Western blot suggested that Lama2 and Samsn1 mediated the promoting effect of Brn4 on the differentiation of hippocampal NSCs into neurons. In conclusion, our study demonstrates that Brn4 binds to the promoters of Lama2 and Samsn1, and they partially mediate the regulation of Brn4 on the proliferation inhibition and neuronal differentiation promotion of hippocampal NSCs.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xunrui Zhang
- Faculty of Medicine, Xinglin College, Nantong University, Nantong, China
| | - Ruijie Ji
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yaya Ji
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yuhang Wu
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xiuyu Ding
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Zhiying Shang
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xueyuan Liu
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Wen Li
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jingjing Guo
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jue Wang
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xiang Cheng
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jianbing Qin
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Meiling Tian
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Guohua Jin
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xinhua Zhang
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Central Lab, Yancheng Third People's Hospital, The Sixth Affiliated Hospital of Nantong University, Yancheng 224002, China
| |
Collapse
|
3
|
Kastian RF, Minegishi T, Baba K, Saneyoshi T, Katsuno-Kambe H, Saranpal S, Hayashi Y, Inagaki N. Shootin1a-mediated actin-adhesion coupling generates force to trigger structural plasticity of dendritic spines. Cell Rep 2021; 35:109130. [PMID: 34010643 DOI: 10.1016/j.celrep.2021.109130] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/09/2021] [Accepted: 04/22/2021] [Indexed: 12/19/2022] Open
Abstract
Dendritic spines constitute the major compartments of excitatory post-synapses. They undergo activity-dependent enlargement, which is thought to increase the synaptic efficacy underlying learning and memory. The activity-dependent spine enlargement requires activation of signaling pathways leading to promotion of actin polymerization within the spines. However, the molecular machinery that suffices for that structural plasticity remains unclear. Here, we demonstrate that shootin1a links polymerizing actin filaments in spines with the cell-adhesion molecules N-cadherin and L1-CAM, thereby mechanically coupling the filaments to the extracellular environment. Synaptic activation enhances shootin1a-mediated actin-adhesion coupling in spines. Promotion of actin polymerization is insufficient for the plasticity; the enhanced actin-adhesion coupling is required for polymerizing actin filaments to push against the membrane for spine enlargement. By integrating cell signaling, cell adhesion, and force generation into the current model of actin-based machinery, we propose molecular machinery that is sufficient to trigger the activity-dependent spine structural plasticity.
Collapse
Affiliation(s)
- Ria Fajarwati Kastian
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Takunori Minegishi
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Kentarou Baba
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Takeo Saneyoshi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Hiroko Katsuno-Kambe
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Singh Saranpal
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Yasunori Hayashi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Naoyuki Inagaki
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan.
| |
Collapse
|
4
|
Arreguin AJ, Colognato H. Brain Dysfunction in LAMA2-Related Congenital Muscular Dystrophy: Lessons From Human Case Reports and Mouse Models. Front Mol Neurosci 2020; 13:118. [PMID: 32792907 PMCID: PMC7390928 DOI: 10.3389/fnmol.2020.00118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/09/2020] [Indexed: 12/26/2022] Open
Abstract
Laminin α2 gene (LAMA2)-related Congenital Muscular Dystrophy (CMD) was distinguished by a defining central nervous system (CNS) abnormality—aberrant white matter signals by MRI—when first described in the 1990s. In the past 25 years, researchers and clinicians have expanded our knowledge of brain involvement in LAMA2-related CMD, also known as Congenital Muscular Dystrophy Type 1A (MDC1A). Neurological changes in MDC1A can be structural, including lissencephaly and agyria, as well as functional, including epilepsy and intellectual disability. Mouse models of MDC1A include both spontaneous and targeted LAMA2 mutations and range from a partial loss of LAMA2 function (e.g., dy2J/dy2J), to a complete loss of LAMA2 expression (dy3K/dy3K). Diverse cellular and molecular changes have been reported in the brains of MDC1A mouse models, including blood-brain barrier dysfunction, altered neuro- and gliogenesis, changes in synaptic plasticity, and decreased myelination, providing mechanistic insight into potential neurological dysfunction in MDC1A. In this review article, we discuss selected studies that illustrate the potential scope and complexity of disturbances in brain development in MDC1A, and as well as highlight mechanistic insights that are emerging from mouse models.
Collapse
Affiliation(s)
- Andrea J Arreguin
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States.,Medical Scientist Training Program (MSTP), Stony Brook University, Stony Brook, NY, United States
| | - Holly Colognato
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
5
|
Rodin S, Kozin SA, Kechko OI, Mitkevich VA, Makarov AA. Aberrant interactions between amyloid-beta and alpha5 laminins as possible driver of neuronal disfunction in Alzheimer's disease. Biochimie 2020; 174:44-48. [PMID: 32311425 DOI: 10.1016/j.biochi.2020.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/12/2020] [Accepted: 04/12/2020] [Indexed: 12/28/2022]
Abstract
It has been widely accepted that laminins are involved in pathogenesis of Alzheimer's disease (AD). Amyloid plaques in AD patients are associated with immunostaining using antibodies raised against laminin-111, and laminin-111 has been shown to prevent aggregation of amyloid peptides. Although numerous articles describe small peptides from laminin-111 that are capable to disaggregate amyloid buildups and reduce neurotoxicity in in vitro and in vivo models, there is no approved laminin-111-based therapeutic approaches for treatment of AD. Also, it has been shown that immunoreactivity to laminin-111 appears late in development of cerebral amyloidosis. Based on the published data, we hypothesize that aberrant interaction between amyloid-beta and α5-laminins such as laminin-511 prevents the necessary laminin signaling into neurons leading to neurodegeneration and contributing to the early development of AD. Laminin-511 is the key extracellular protein that protects neurons from anoikis, inhibits excitoxicity and provides signaling that stabilizes dendritic spines and synapses in the developed brain. Absence of the signaling from laminin-511 leads to behavioral defects in mice. Laminin-511 and hippocampal neurons are in direct contact and accumulation of amyloid-beta that has been shown to avidly bind laminin-511 may physically decouple the interaction between α5-laminins and the neuronal membrane receptors inhibiting the signaling. Under this hypothesis, protein domains and peptides from laminin α5 chain may have a therapeutic potential in treatment of AD and the appearance of laminin-111 in the amyloid plaques is simply a consequence of the disease.
Collapse
Affiliation(s)
- Sergey Rodin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia; Department of Surgical Sciences, Ångström Laboratory, Uppsala University, 752 37, Uppsala, Sweden.
| | - Sergey A Kozin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Olga I Kechko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Vladimir A Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Alexander A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| |
Collapse
|
6
|
Early skeletal muscle pathology and disease progress in the dy 3K/dy 3K mouse model of congenital muscular dystrophy with laminin α2 chain-deficiency. Sci Rep 2019; 9:14324. [PMID: 31586140 PMCID: PMC6778073 DOI: 10.1038/s41598-019-50550-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 09/12/2019] [Indexed: 11/09/2022] Open
Abstract
Deficiency of laminin α2 chain leads to a severe form of congenital muscular dystrophy (LAMA2-CMD), and dystrophic symptoms progress rapidly in early childhood. Currently, there is no treatment for this detrimental disorder. Development of therapies is largely hindered by lack of understanding of mechanisms involved in the disease initiation and progress, both in patients but also in mouse models that are commonly used in the preclinical setup. Here, we unveil the first pathogenic events and characterise the disease development in a mouse model for LAMA2-CMD (dy3K/dy3K), by analysing muscles at perinatal, neonatal and postnatal stages. We found that apoptotic muscle fibres were present as early as postnatal day 1. Other typical dystrophic hallmarks (muscle degeneration, inflammation, and extensive production of the extracellular matrix proteins) were clearly evident already at postnatal day 4, and the highest degree of muscle deterioration was reached by day 7. Interestingly, the severe phenotype of limb muscles partially recovered on days 14 and 21, despite worsening of the general condition of the dy3K/dy3K mouse by that age. We found that masticatory muscles were severely affected in dy3K/dy3K mice and this may be an underlying cause of their malnutrition, which contributes to death around day 21. We also showed that several signalling pathways were affected already in 1-day-old dy3K/dy3K muscle. Therapeutic tests in the dy3K/dy3K mouse model should therefore be initiated shortly after birth, but should also take into account timing and correlation between regenerative and pathogenic events.
Collapse
|
7
|
Rao SNR, Pearse DD. Regulating Axonal Responses to Injury: The Intersection between Signaling Pathways Involved in Axon Myelination and The Inhibition of Axon Regeneration. Front Mol Neurosci 2016; 9:33. [PMID: 27375427 PMCID: PMC4896923 DOI: 10.3389/fnmol.2016.00033] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/02/2016] [Indexed: 01/06/2023] Open
Abstract
Following spinal cord injury (SCI), a multitude of intrinsic and extrinsic factors adversely affect the gene programs that govern the expression of regeneration-associated genes (RAGs) and the production of a diversity of extracellular matrix molecules (ECM). Insufficient RAG expression in the injured neuron and the presence of inhibitory ECM at the lesion, leads to structural alterations in the axon that perturb the growth machinery, or form an extraneous barrier to axonal regeneration, respectively. Here, the role of myelin, both intact and debris, in antagonizing axon regeneration has been the focus of numerous investigations. These studies have employed antagonizing antibodies and knockout animals to examine how the growth cone of the re-growing axon responds to the presence of myelin and myelin-associated inhibitors (MAIs) within the lesion environment and caudal spinal cord. However, less attention has been placed on how the myelination of the axon after SCI, whether by endogenous glia or exogenously implanted glia, may alter axon regeneration. Here, we examine the intersection between intracellular signaling pathways in neurons and glia that are involved in axon myelination and axon growth, to provide greater insight into how interrogating this complex network of molecular interactions may lead to new therapeutics targeting SCI.
Collapse
Affiliation(s)
- Sudheendra N R Rao
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine Miami, FL, USA
| | - Damien D Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of MedicineMiami, FL, USA; The Department of Neurological Surgery, University of Miami Miller School of MedicineMiami, FL, USA; The Neuroscience Program, University of Miami Miller School of MedicineMiami, FL, USA; The Interdisciplinary Stem Cell Institute, University of Miami Miller School of MedicineMiami, FL, USA; Bruce W. Carter Department of Veterans Affairs Medical CenterMiami, FL, USA
| |
Collapse
|
8
|
Phinney DG, Isakova IA. Mesenchymal stem cells as cellular vectors for pediatric neurological disorders. Brain Res 2014; 1573:92-107. [PMID: 24858930 DOI: 10.1016/j.brainres.2014.05.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/07/2014] [Accepted: 05/16/2014] [Indexed: 12/15/2022]
Abstract
Lysosomal storage diseases are a heterogeneous group of hereditary disorders characterized by a deficiency in lysosomal function. Although these disorders differ in their etiology and phenotype those that affect the nervous system generally manifest as a profound deterioration in neurologic function with age. Over the past several decades implementation of various treatment regimens including bone marrow and cord blood cell transplantation, enzyme replacement, and substrate reduction therapy have proved effective for managing some clinical manifestations of these diseases but their ability to ameliorate neurologic complications remains unclear. Consequently, there exists a need to develop alternative therapies that more effectively target the central nervous system. Recently, direct intracranial transplantation of tissue-specific stem and progenitor cells has been explored as a means to reconstitute metabolic deficiencies in the CNS. In this chapter we discuss the merits of bone marrow-derived mesenchymal stem cells (MSCs) for this purpose. Originally identified as progenitors of connective tissue cell lineages, recent findings have revealed several novel aspects of MSC biology that make them attractive as therapeutic agents in the CNS. We relate these advances in MSC biology to their utility as cellular vectors for treating neurologic sequelae associated with pediatric neurologic disorders.
Collapse
Affiliation(s)
- Donald G Phinney
- Department of Molecular Therapeutics, The Scripps Research Institute, 130 Scripps Way, A213, Jupiter, FL 33458, USA.
| | - Iryna A Isakova
- Division of Clinical Laboratory Diagnostics, Biology Department, National Dnepropetrovsk University, Dnepropetrovsk, Ukraine
| |
Collapse
|
9
|
Michaud JL, Lachance M, Hamdan FF, Carmant L, Lortie A, Diadori P, Major P, Meijer IA, Lemyre E, Cossette P, Mefford HC, Rouleau GA, Rossignol E. The genetic landscape of infantile spasms. Hum Mol Genet 2014; 23:4846-58. [PMID: 24781210 DOI: 10.1093/hmg/ddu199] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Infantile spasms (IS) is an early-onset epileptic encephalopathy of unknown etiology in ∼40% of patients. We hypothesized that unexplained IS cases represent a large collection of rare single-gene disorders. We investigated 44 children with unexplained IS using comparative genomic hybridisation arrays (aCGH) (n = 44) followed by targeted sequencing of 35 known epilepsy genes (n = 8) or whole-exome sequencing (WES) of familial trios (n = 18) to search for rare inherited or de novo mutations. aCGH analysis revealed de novo variants in 7% of patients (n = 3/44), including a distal 16p11.2 duplication, a 15q11.1q13.1 tetrasomy and a 2q21.3-q22.2 deletion. Furthermore, it identified a pathogenic maternally inherited Xp11.2 duplication. Targeted sequencing was informative for ARX (n = 1/14) and STXBP1 (n = 1/8). In contrast, sequencing of a panel of 35 known epileptic encephalopathy genes (n = 8) did not identify further mutations. Finally, WES (n = 18) was very informative, with an excess of de novo mutations identified in genes predicted to be involved in neurodevelopmental processes and/or known to be intolerant to functional variations. Several pathogenic mutations were identified, including de novo mutations in STXBP1, CASK and ALG13, as well as recessive mutations in PNPO and ADSL, together explaining 28% of cases (5/18). In addition, WES identified 1-3 de novo variants in 64% of remaining probands, pointing to several interesting candidate genes. Our results indicate that IS are genetically heterogeneous with a major contribution of de novo mutations and that WES is significantly superior to targeted re-sequencing in identifying detrimental genetic variants involved in IS.
Collapse
Affiliation(s)
- Jacques L Michaud
- Department of Pediatrics and Department of Neurosciences, Université de Montréal, Montréal, QC, Canada, CHU Ste-Justine Research Center, Montréal, QC, Canada
| | | | - Fadi F Hamdan
- CHU Ste-Justine Research Center, Montréal, QC, Canada
| | - Lionel Carmant
- Department of Pediatrics and Department of Neurosciences, Université de Montréal, Montréal, QC, Canada, CHU Ste-Justine Research Center, Montréal, QC, Canada
| | - Anne Lortie
- Department of Pediatrics and Department of Neurosciences, Université de Montréal, Montréal, QC, Canada, CHU Ste-Justine Research Center, Montréal, QC, Canada
| | - Paola Diadori
- Department of Pediatrics and Department of Neurosciences, Université de Montréal, Montréal, QC, Canada, CHU Ste-Justine Research Center, Montréal, QC, Canada
| | - Philippe Major
- Department of Pediatrics and Department of Neurosciences, Université de Montréal, Montréal, QC, Canada, CHU Ste-Justine Research Center, Montréal, QC, Canada
| | - Inge A Meijer
- CHU Ste-Justine Research Center, Montréal, QC, Canada
| | - Emmanuelle Lemyre
- Department of Pediatrics and CHU Ste-Justine Research Center, Montréal, QC, Canada
| | - Patrick Cossette
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada, CHUM, Montréal, QC, Canada
| | - Heather C Mefford
- Department of Pediatrics, University of Washington, Seattle, WA, USA and
| | - Guy A Rouleau
- Department of Neurosciences, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Elsa Rossignol
- Department of Pediatrics and Department of Neurosciences, Université de Montréal, Montréal, QC, Canada, CHU Ste-Justine Research Center, Montréal, QC, Canada,
| |
Collapse
|
10
|
Colognato H, Tzvetanova ID. Glia unglued: how signals from the extracellular matrix regulate the development of myelinating glia. Dev Neurobiol 2012; 71:924-55. [PMID: 21834081 DOI: 10.1002/dneu.20966] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The health and function of the nervous system relies on glial cells that ensheath neuronal axons with a specialized plasma membrane termed myelin. The molecular mechanisms by which glial cells target and enwrap axons with myelin are only beginning to be elucidated, yet several studies have implicated extracellular matrix proteins and their receptors as being important extrinsic regulators. This review provides an overview of the extracellular matrix proteins and their receptors that regulate multiple steps in the cellular development of Schwann cells and oligodendrocytes, the myelinating glia of the PNS and CNS, respectively, as well as in the construction and maintenance of the myelin sheath itself. The first part describes the relevant cellular events that are influenced by particular extracellular matrix proteins and receptors, including laminins, collagens, integrins, and dystroglycan. The second part describes the signaling pathways and effector molecules that have been demonstrated to be downstream of Schwann cell and oligodendroglial extracellular matrix receptors, including FAK, small Rho GTPases, ILK, and the PI3K/Akt pathway, and the roles that have been ascribed to these signaling mediators. Throughout, we emphasize the concept of extracellular matrix proteins as environmental sensors that act to integrate, or match, cellular responses, in particular to those downstream of growth factors, to appropriate matrix attachment.
Collapse
Affiliation(s)
- Holly Colognato
- Department of Pharmacology, Stony Brook University, Stony Brook, New York 11794, USA.
| | | |
Collapse
|
11
|
Abstract
Dendritic spines are dynamic structures that accommodate the majority of excitatory synapses in the brain and are influenced by extracellular signals from presynaptic neurons, glial cells, and the extracellular matrix (ECM). The ECM surrounds dendritic spines and extends into the synaptic cleft, maintaining synapse integrity as well as mediating trans-synaptic communications between neurons. Several scaffolding proteins and glycans that compose the ECM form a lattice-like network, which serves as an attractive ground for various secreted glycoproteins, lectins, growth factors, and enzymes. ECM components can control dendritic spines through the interactions with their specific receptors or by influencing the functions of other synaptic proteins. In this review, we focus on ECM components and their receptors that regulate dendritic spine development and plasticity in the normal and diseased brain.
Collapse
Affiliation(s)
- Lorraine E. Dansie
- Division of Biomedical Sciences, Biochemistry and Molecular Biology Program, University of California Riverside, Riverside, California 92521
| | - Iryna M. Ethell
- Division of Biomedical Sciences, Biochemistry and Molecular Biology Program, University of California Riverside, Riverside, California 92521
| |
Collapse
|
12
|
Integrin signaling in oligodendrocytes and its importance in CNS myelination. JOURNAL OF SIGNAL TRANSDUCTION 2010; 2011:354091. [PMID: 21637375 PMCID: PMC3101883 DOI: 10.1155/2011/354091] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 10/28/2010] [Indexed: 12/22/2022]
Abstract
Multiple sclerosis is characterized by repeated demyelinating attacks of the central nervous system (CNS) white matter tracts. To tailor novel therapeutics to halt or reverse disease process, we require a better understanding of oligodendrocyte biology and of the molecular mechanisms that initiate myelination. Cell extrinsic mechanisms regulate CNS myelination through the interaction of extracellular matrix proteins and their transmembrane receptors. The engagement of one such receptor family, the integrins, initiates intracellular signaling cascades that lead to changes in cell phenotype. Oligodendrocytes express a diverse array of integrins, and the expression of these receptors is developmentally regulated. Integrin-mediated signaling is crucial to the proliferation, survival, and maturation of oligodendrocytes through the activation of downstream signaling pathways involved in cytoskeletal remodeling. Here, we review the current understanding of this important signaling axis and its role in oligodendrocyte biology and ultimately in the myelination of axons within the CNS.
Collapse
|
13
|
Abstract
Successful treatment of neurodegenerative diseases and CNS trauma are the most intractable problems in modern medicine. Numerous reports have shown the strong role that laminins have on the survival, regeneration and development of various types of cells, including neural cells. It would be desirable to take advantage of laminin activities for therapeutic purposes. However, there are at least ten laminin variants and the trimeric molecules are of the order of 800,000 molecular weight. Furthermore, human laminins are not available in quantity. Therefore, we and others have taken the approach of determining which domains of the laminin molecules are functional in the CNS, and whether short peptides from these regions exhibit biological activities with the intent of testing their potential for therapeutic use. Understanding the role of laminins and their small biologically active peptide domains, such as the KDI (lysine–aspartic acid–isoleucine) peptide from γ1 laminin, in neuronal development, CNS trauma (spinal cord injury and stroke) and neurodegenerative disorders (amyotrophic lateral sclerosis, Alzheimer’s disease and Parkinson’s disease) may help to develop clinically applicable methods to treat the presently untreatable CNS diseases and trauma even in the near future.
Collapse
Affiliation(s)
- Päivi Liesi
- The Brain Laboratory, Department of Biological & Environmental Sciences, University of Helsinki, PO Box 65 (Viikinkaari 1), 00014 University of Helsinki, Finland
| |
Collapse
|
14
|
Chen ZL, Yu H, Yu WM, Pawlak R, Strickland S. Proteolytic fragments of laminin promote excitotoxic neurodegeneration by up-regulation of the KA1 subunit of the kainate receptor. J Cell Biol 2008; 183:1299-1313. [PMID: 19114596 PMCID: PMC2606967 DOI: 10.1083/jcb.200803107] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Accepted: 11/26/2008] [Indexed: 01/13/2023] Open
Abstract
Degradation of the extracellular matrix (ECM) protein laminin contributes to excitotoxic cell death in the hippocampus, but the mechanism of this effect is unknown. To study this process, we disrupted laminin gamma1 (lamgamma1) expression in the hippocampus. Lamgamma1 knockout (KO) and control mice had similar basal expression of kainate (KA) receptors, but the lamgamma1 KO mice were resistant to KA-induced neuronal death. After KA injection, KA1 subunit levels increased in control mice but were unchanged in lamgamma1 KO mice. KA1 levels in tissue plasminogen activator (tPA)-KO mice were also unchanged after KA, indicating that both tPA and laminin were necessary for KA1 up-regulation after KA injection. Infusion of plasmin-digested laminin-1 into the hippocampus of lamgamma1 or tPA KO mice restored KA1 up-regulation and KA-induced neuronal degeneration. Interfering with KA1 function with a specific anti-KA1 antibody protected against KA-induced neuronal death both in vitro and in vivo. These results demonstrate a novel pathway for neurodegeneration involving proteolysis of the ECM and KA1 KA receptor subunit up-regulation.
Collapse
Affiliation(s)
- Zu-Lin Chen
- Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
15
|
Yu WM, Yu H, Chen ZL. Laminins in peripheral nerve development and muscular dystrophy. Mol Neurobiol 2008; 35:288-97. [PMID: 17917117 DOI: 10.1007/s12035-007-0026-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 11/30/1999] [Accepted: 11/28/2006] [Indexed: 12/14/2022]
Abstract
Laminins are extracellular matrix (ECM) proteins that play an important role in cellular function and tissue morphogenesis. In the peripheral nervous system (PNS), laminins are expressed in Schwann cells and participate in their development. Mutations in laminin subunits expressed in the PNS and in skeleton muscle may cause peripheral neuropathies and muscular dystrophy in both humans and mice. Recent studies using gene knockout technology, such as cell-type specific gene targeting techniques, revealed that laminins and their receptors mediate Schwann cell and axon interactions. Schwann cells with disrupted laminin expression exhibit impaired proliferation and differentiation and also undergo apoptosis. In this review, we focus on the potential molecular mechanisms by which laminins participate in the development of Schwann cells.
Collapse
Affiliation(s)
- Wei-Ming Yu
- Laboratory of Neurobiology and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY, 10021, USA
| | | | | |
Collapse
|
16
|
Ksiazek I, Burkhardt C, Lin S, Seddik R, Maj M, Bezakova G, Jucker M, Arber S, Caroni P, Sanes JR, Bettler B, Ruegg MA. Synapse loss in cortex of agrin-deficient mice after genetic rescue of perinatal death. J Neurosci 2007; 27:7183-95. [PMID: 17611272 PMCID: PMC6794585 DOI: 10.1523/jneurosci.1609-07.2007] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Agrin-deficient mice die at birth because of aberrant development of the neuromuscular junctions. Here, we examined the role of agrin at brain synapses. We show that agrin is associated with excitatory but not inhibitory synapses in the cerebral cortex. Most importantly, we examined the brains of agrin-deficient mice whose perinatal death was prevented by the selective expression of agrin in motor neurons. We find that the number of presynaptic and postsynaptic specializations is strongly reduced in the cortex of 5- to 7-week-old mice. Consistent with a reduction in the number of synapses, the frequency of miniature postsynaptic currents was greatly decreased. In accordance with the synaptic localization of agrin to excitatory synapses, changes in the frequency were only detected for excitatory but not inhibitory synapses. Moreover, we find that the muscle-specific receptor tyrosine kinase MuSK, which is known to be an essential component of agrin-induced signaling at the neuromuscular junction, is also localized to a subset of excitatory synapses. Finally, some components of the mitogen-activated protein (MAP) kinase pathway, which has been shown to be activated by agrin in cultured neurons, are deregulated in agrin-deficient mice. In summary, our results provide strong evidence that agrin plays an important role in the formation and/or the maintenance of excitatory synapses in the brain, and we provide evidence that this function involves MAP kinase signaling.
Collapse
Affiliation(s)
| | | | | | - Riad Seddik
- Institute of Physiology, Department of Clinical-Biological Sciences, University of Basel, CH-4056 Basel, Switzerland
| | | | | | - Mathias Jucker
- Department of Cellular Neurology, Hertie-Institute of Clinical Brain Research, D-72076 Tübingen, Germany
| | - Silvia Arber
- Biozentrum and
- Friedrich Miescher Institute, CH-4058 Basel, Switzerland, and
| | - Pico Caroni
- Friedrich Miescher Institute, CH-4058 Basel, Switzerland, and
| | - Joshua R. Sanes
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 01238
| | - Bernhard Bettler
- Institute of Physiology, Department of Clinical-Biological Sciences, University of Basel, CH-4056 Basel, Switzerland
| | | |
Collapse
|
17
|
Colognato H, Galvin J, Wang Z, Relucio J, Nguyen T, Harrison D, Yurchenco PD, Ffrench-Constant C. Identification of dystroglycan as a second laminin receptor in oligodendrocytes, with a role in myelination. Development 2007; 134:1723-36. [PMID: 17395644 DOI: 10.1242/dev.02819] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Developmental abnormalities of myelination are observed in the brains of laminin-deficient humans and mice. The mechanisms by which these defects occur remain unknown. It has been proposed that, given their central role in mediating extracellular matrix (ECM) interactions, integrin receptors are likely to be involved. However, it is a non-integrin ECM receptor, dystroglycan, that provides the key linkage between the dystrophin-glycoprotein complex (DGC) and laminin in skeletal muscle basal lamina, such that disruption of this bridge results in muscular dystrophy. In addition, the loss of dystroglycan from Schwann cells causes myelin instability and disorganization of the nodes of Ranvier. To date, it is unknown whether dystroglycan plays a role during central nervous system (CNS) myelination. Here, we report that the myelinating glia of the CNS, oligodendrocytes, express and use dystroglycan receptors to regulate myelin formation. In the absence of normal dystroglycan expression, primary oligodendrocytes showed substantial deficits in their ability to differentiate and to produce normal levels of myelin-specific proteins. After blocking the function of dystroglycan receptors, oligodendrocytes failed both to produce complex myelin membrane sheets and to initiate myelinating segments when co-cultured with dorsal root ganglion neurons. By contrast, enhanced oligodendrocyte survival in response to the ECM, in conjunction with growth factors, was dependent on interactions with beta-1 integrins and did not require dystroglycan. Together, these results indicate that laminins are likely to regulate CNS myelination by interacting with both integrin receptors and dystroglycan receptors, and that oligodendrocyte dystroglycan receptors may have a specific role in regulating terminal stages of myelination, such as myelin membrane production, growth, or stability.
Collapse
Affiliation(s)
- Holly Colognato
- Department of Pharmacology, State University of New York, Stony Brook, NY 11794, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Benninger Y, Colognato H, Thurnherr T, Franklin RJM, Leone DP, Atanasoski S, Nave KA, ffrench-Constant C, Suter U, Relvas JB. Beta1-integrin signaling mediates premyelinating oligodendrocyte survival but is not required for CNS myelination and remyelination. J Neurosci 2006; 26:7665-73. [PMID: 16855094 PMCID: PMC6674273 DOI: 10.1523/jneurosci.0444-06.2006] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Previous reports, including transplantation experiments using dominant-negative inhibition of beta1-integrin signaling in oligodendrocyte progenitor cells, suggested that beta1-integrin signaling is required for myelination. Here, we test this hypothesis using conditional ablation of the beta1-integrin gene in oligodendroglial cells during the development of the CNS. This approach allowed us to study oligodendroglial beta1-integrin signaling in the physiological environment of the CNS, circumventing the potential drawbacks of a dominant-negative approach. We found that beta1-integrin signaling has a much more limited role than previously expected. Although it was involved in stage-specific oligodendrocyte cell survival, beta1-integrin signaling was not required for axon ensheathment and myelination per se. We also found that, in the spinal cord, remyelination occurred normally in the absence of beta1-integrin. We conclude that, although beta1-integrin may still contribute to other aspects of oligodendrocyte biology, it is not essential for myelination and remyelination in the CNS.
Collapse
|
19
|
Polleux F, Anton ES. Neuronal Migration in the Developing Brain. Dev Neurobiol 2006. [DOI: 10.1007/0-387-28117-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Shi Y, Ethell IM. Integrins control dendritic spine plasticity in hippocampal neurons through NMDA receptor and Ca2+/calmodulin-dependent protein kinase II-mediated actin reorganization. J Neurosci 2006; 26:1813-22. [PMID: 16467530 PMCID: PMC6793632 DOI: 10.1523/jneurosci.4091-05.2006] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Revised: 12/30/2005] [Accepted: 12/31/2005] [Indexed: 01/07/2023] Open
Abstract
The formation of dendritic spines during development and their structural plasticity in the adult brain are critical aspects of synaptogenesis and synaptic plasticity. Many different factors and proteins have been shown to control dendritic spine development and remodeling (Ethell and Pasquale, 2005). The extracellular matrix (ECM) components and their cell surface receptors, integrins, have been found in the vicinity of synapses and shown to regulate synaptic efficacy and play an important role in long-term potentiation (Bahr et al., 1997; Chavis and Westbrook, 2001; Chan et al., 2003; Lin et al., 2003; Bernard-Trifilo et al., 2005). Although molecular mechanisms by which integrins affect synaptic efficacy have begun to emerge, their role in structural plasticity is poorly understood. Here, we show that integrins are involved in spine remodeling in cultured hippocampal neurons. The treatment of 14 d in vitro hippocampal neurons with arginine-glycine-aspartate (RGD)-containing peptide, an established integrin ligand, induced elongation of existing dendritic spines and promoted formation of new filopodia. These effects were also accompanied by integrin-dependent actin reorganization and synapse remodeling, which were partially inhibited by function-blocking antibodies against beta1 and beta3 integrins. This actin reorganization was blocked with the NMDA receptor (NMDAR) antagonist MK801 [(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate]. The Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitor KN93 (N-[2-[N-(4-chlorocinnamyl)-N-methylaminomethyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulfonamide) also suppressed RGD-induced actin reorganization and synapse remodeling. Our findings show that integrins control ECM-mediated spine remodeling in hippocampal neurons through NMDAR/CaMKII-dependent actin reorganization.
Collapse
|
21
|
Colognato H, ffrench-Constant C, Feltri ML. Human diseases reveal novel roles for neural laminins. Trends Neurosci 2005; 28:480-6. [PMID: 16043237 DOI: 10.1016/j.tins.2005.07.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Revised: 06/27/2005] [Accepted: 07/14/2005] [Indexed: 11/17/2022]
Abstract
Extracellular matrix molecules such as laminins have a central role in regulating cell behaviour. However, our understanding of their functions in the mammalian nervous system is incomplete. It is important to establish these functions, both for an understanding of normal development and to devise strategies to enhance repair. Here, we review how insights gained from human diseases caused by genetic mutations in laminins or their receptors have revealed significant and sometimes unexpected roles for laminins in neural stem cells, migrating neurons and myelinating glia, in both the PNS and CNS.
Collapse
Affiliation(s)
- Holly Colognato
- Department of Pharmacology, SUNY-Stony Brook, Stony Brook, NY 11794, USA
| | | | | |
Collapse
|
22
|
Anderson JL, Head SI, Morley JW. Synaptic plasticity in the dy2J mouse model of laminin alpha2-deficient congenital muscular dystrophy. Brain Res 2005; 1042:23-8. [PMID: 15823249 DOI: 10.1016/j.brainres.2005.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2004] [Accepted: 02/01/2005] [Indexed: 11/18/2022]
Abstract
Laminin alpha2-deficient congenital muscular dystrophy is a debilitating disease affecting both muscle and neural tissue as a result of mutations in the LAMA2 gene. It presents at or soon after birth with muscle weakness and is further characterised by clinical central nervous system involvement. Laminin alpha2 is part of the extracellular matrix, linked to the cellular cystoskeleton via dystroglycan which is an integral part of the dystrophin-glycoprotein complex (DGC). We examined both short- and long-term synaptic plasticity in the C57BL6J/dy(2J) mouse, an animal model of laminin alpha2 deficient congenital muscular dystrophy. Using a cerebellar slice preparation, we show that the pre-synaptically mediated paired-pulse facilitation (PPF) was no different between dy(2J) and littermate controls. Approximately half (7/12) the dy(2J) Purkinje cells displayed a blunted LTD compared to littermate controls, and one third (4/12) of dy(2J) Purkinje cells displayed LTP. This study demonstrates that a defective laminin alpha2 causes a disruption in long-term synaptic plasticity at the Purkinje cell-parallel fibre synapse.
Collapse
Affiliation(s)
- J L Anderson
- School of Medical Sciences, University of New South Wales, 2052, Australia
| | | | | |
Collapse
|
23
|
Serfaty CA, Campello-Costa P, Linden R. Rapid and long-term plasticity in the neonatal and adult retinotectal pathways following a retinal lesion. Brain Res Bull 2005; 66:128-34. [PMID: 15982529 DOI: 10.1016/j.brainresbull.2005.04.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2004] [Revised: 04/12/2005] [Accepted: 04/12/2005] [Indexed: 11/18/2022]
Abstract
The uncrossed retinotectal projection restricts its terminal fields to the ventral boundary of the visual layers at the rostral tectum during early post natal development. During this critical period, temporal retinal lesions in one eye induce laminar rearrangements in the uncrossed pathway of the intact eye toward the collicular surface previously occupied, almost exclusively, by the crossed retinal axon population. We have compared, using anterograde tracing techniques, the time course and magnitude of the axonal sprouting resulting from retinal lesions in neonates and adults. Early retinal lesions (within the first two post natal weeks) induced extensive and rapid plasticity of the ipsilateral projection 48 h after the lesions. On the third post natal week, similar retinal lesions induced a small reorganization of the intact eye's uncrossed projection within a 3-week survival time. Nevertheless, giving the animals a long-term survival, resulted in an increased plastic capability, suggesting that even after the critical period, intact retinal axons can respond efficiently to injury. The results suggest two phases of axonal reorganization within this subcortical pathway: a rapid plasticity within the critical period and a slow, but continuous plasticity in adulthood.
Collapse
Affiliation(s)
- C A Serfaty
- Programa de Neuroimunologia, Instituto de Biologia, Universidade Federal Fluminense, Brazil, Caixa Postal: 100180, Niterói, RJ, CEP 24001-970, Brazil.
| | | | | |
Collapse
|
24
|
Ethell IM, Pasquale EB. Molecular mechanisms of dendritic spine development and remodeling. Prog Neurobiol 2005; 75:161-205. [PMID: 15882774 DOI: 10.1016/j.pneurobio.2005.02.003] [Citation(s) in RCA: 270] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 01/28/2005] [Accepted: 02/22/2005] [Indexed: 12/19/2022]
Abstract
Dendritic spines are small protrusions that cover the surface of dendrites and bear the postsynaptic component of excitatory synapses. Having an enlarged head connected to the dendrite by a narrow neck, dendritic spines provide a postsynaptic biochemical compartment that separates the synaptic space from the dendritic shaft and allows each spine to function as a partially independent unit. Spines develop around the time of synaptogenesis and are dynamic structures that continue to undergo remodeling over time. Changes in spine morphology and density influence the properties of neural circuits. Our knowledge of the structure and function of dendritic spines has progressed significantly since their discovery over a century ago, but many uncertainties still remain. For example, several different models have been put forth outlining the sequence of events that lead to the genesis of a spine. Although spines are small and apparently simple organelles with a cytoskeleton mainly composed of actin filaments, regulation of their morphology and physiology appears to be quite sophisticated. A multitude of molecules have been implicated in dendritic spine development and remodeling, suggesting that intricate networks of interconnected signaling pathways converge to regulate actin dynamics in spines. This complexity is not surprising, given the likely importance of dendritic spines in higher brain functions. In this review, we discuss the molecules that are currently known to mediate the exquisite sensitivity of spines to perturbations in their environment and we outline how these molecules interface with each other to mediate cascades of signals flowing from the spine surface to the actin cytoskeleton.
Collapse
Affiliation(s)
- Iryna M Ethell
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA 92521, USA
| | | |
Collapse
|
25
|
Lenza RFS, Jones JR, Vasconcelos WL, Hench LL. In vitro release kinetics of proteins from bioactive foams. J Biomed Mater Res A 2004; 67:121-9. [PMID: 14517869 DOI: 10.1002/jbm.a.10042] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study describes an approach to obtaining 3-D scaffolds for tissue engineering that allows the incorporation and release of biologically active proteins to stimulate cell function. Laminin was adsorbed on the textured surfaces of binary 70S30C (70 mol % SiO(2), 30 mol % CaO) and ternary 58S (60 mol % SiO(2), 36 mol % CaO, 4 mol % P(2)O(5)) foams. The covalent bonds between the binding sites of the proteins and the ligands on the scaffolds' surfaces did not denaturate the proteins. In vitro studies show that the foams modified with chemical groups and coated with laminin were bioactive, as demonstrated by the formation of a crystalline hydroxy carbonate apatite (HCA) layer formed on the surfaces of the foams upon exposure to simulated body fluid (SBF). The release of proteins from the foams also was investigated. Sustained and controlled release from the scaffolds over a 30-day period was achieved. Laminin release from the bioactive foams followed the dissolution rate of the material network. These results suggest that bioactive foams have the potential to act as scaffolds for soft-tissue engineering with a controlled release of proteins that can induce tissue formation or regeneration.
Collapse
Affiliation(s)
- R F S Lenza
- Federal University of Minas Gerais, Department of Metallurgical and Materials Engineering, Rua Espírito Santo, 35 - 2nd andar, 30160-030 - Belo Horizonte - MG, Brazil
| | | | | | | |
Collapse
|
26
|
Szabó A, Kálmán M. Disappearance of the post-lesional laminin immunopositivity of brain vessels is parallel with the formation of gliovascular junctions and common basal lamina. A double-labelling immunohistochemical study. Neuropathol Appl Neurobiol 2003; 30:169-77. [PMID: 15043714 DOI: 10.1046/j.0305-1846.2003.00524.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous studies revealed that during development the laminin immunopositivity gradually disappeared from the brain vessels, but temporarily re-appeared in them around lesions. The question of the present study was the correlation between the post-lesional vascular immunopositivity to laminin and the glial reaction. Following stab wounds, double fluorescent immunohistochemical labelling was performed against laminin (using a polyclonal antiserum against laminin 1) and glial fibrillary acidic protein. A number of vessels exhibited intense immunopositivity to laminin within the lesioned tissue. Where these laminin immunopositive vessels entered the perilesional brain substance, the astroglia formed contacts on them, and the separate vascular and glial basal laminae fused. The disappearance of the post-lesional laminin immunopositivity seemed to coincide with these phenomena. When monoclonal antibodies were applied against the beta1 and gamma1 laminin chains, vessels proved to be immunopositive at the lesion, but none in the intact brain tissue. No immunoreactivity was detected in the cases of alpha2 and beta2 chains. The results suggest that the disappearance of laminin immunopositivity may be attributed to that the epitopes become inaccessible for antibodies owing to the formation of gliovascular junctions and common basal lamina between astroglia and vessel. The possible role of an alteration in the laminin composition and the effect of fixation are discussed.
Collapse
Affiliation(s)
- A Szabó
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Tüzoltó, Hungary
| | | |
Collapse
|
27
|
Chen ZL, Indyk JA, Strickland S. The hippocampal laminin matrix is dynamic and critical for neuronal survival. Mol Biol Cell 2003; 14:2665-76. [PMID: 12857855 PMCID: PMC165667 DOI: 10.1091/mbc.e02-12-0832] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Laminins are extracellular matrix proteins that participate in neuronal development, survival, and regeneration. During excitotoxin challenge in the mouse hippocampus, neuron interaction with laminin-10 (alpha5,beta1,gamma1) protects against neuronal death. To investigate how laminin is involved in neuronal viability, we infused laminin-1 (alpha1,beta1,gamma1) into the mouse hippocampus. This infusion specifically disrupted the endogenous laminin layer. This disruption was at least partially due to the interaction of the laminin-1 gamma1 chain with endogenous laminin-10, because infusion of anti-laminin gamma1 antibody had the same effect. The disruption of the laminin layer by laminin-1 1) did not require the intact protein because infusion of plasmin-digested laminin-1 gave similar results; 2) was posttranscriptional, because there was no effect on laminin mRNA expression; and 3) occurred in both tPA(-/-) and plasminogen(-/-) mice, indicating that increased plasmin activity was not responsible. Finally, although tPA(-/-) mice are normally resistant to excitotoxin-induced neurodegeneration, disruption of the endogenous laminin layer by laminin-1 or anti-laminin gamma1 antibody renders the tPA(-/-) hippocampal neurons sensitive to kainate. These results demonstrate that neuron interactions with the deposited matrix are not necessarily recapitulated by interactions with soluble components and that the laminin matrix is a dynamic structure amenable to modification by exogenous molecules.
Collapse
Affiliation(s)
- Zu-Lin Chen
- Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, New York 10021, USA
| | | | | |
Collapse
|
28
|
Yin Y, Kikkawa Y, Mudd JL, Skarnes WC, Sanes JR, Miner JH. Expression of laminin chains by central neurons: analysis with gene and protein trapping techniques. Genesis 2003; 36:114-27. [PMID: 12820173 DOI: 10.1002/gene.10206] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Laminins exert numerous effects on neurons in vitro, but expression of laminin subunit genes by neurons in vivo remains controversial. To reexamine this issue, we generated mice from ES cells in which the laminin alpha1, alpha5, beta1, and gamma1 genes had been "trapped" by insertion of a histochemically detectable selectable marker, betageo (beta-galactosidase fused to neomycin phosphotransferase). The presence of laminin-betageo fusion proteins was assayed histochemically and immunochemically, revealing expression of laminin beta1 and gamma1 genes, but not alpha chain genes, by defined subsets of neurons in brain and retina. We also used the gene traps in a novel way to assay expression of endogenous laminin subunits, which were barely detectable by ordinary immunohistochemical methods. The trapping vector included a transmembrane domain that anchors proteins otherwise destined for secretion. Laminin alpha/beta/gamma heterotrimers are assembled intracellularly, and we show that the trapped laminin gamma1 fusion protein "co-trapped" endogenous beta1 intracellularly. The laminin gamma1 fusion was also able to co-trap transgene-derived alpha chains, but we detected no co-trapped endogenous alpha chains. The co-trapping method may be generally useful for identifying proteins or isolating protein complexes associated with trapped gene products.
Collapse
Affiliation(s)
- Yong Yin
- Department of Anatomy and Neurobiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
29
|
Affiliation(s)
- Alexander Dityatev
- Zentrum für Molekulare Neurobiologie, University of Hamburg, Martinistr. 52, 20246 Hamburg, Germany.
| | | |
Collapse
|
30
|
Indyk JA, Chen ZL, Tsirka SE, Strickland S. Laminin chain expression suggests that laminin-10 is a major isoform in the mouse hippocampus and is degraded by the tissue plasminogen activator/plasmin protease cascade during excitotoxic injury. Neuroscience 2003; 116:359-71. [PMID: 12559092 DOI: 10.1016/s0306-4522(02)00704-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Laminins are important components of the extracellular matrix, and participate in neuronal development, survival and regeneration. The tissue plasminogen activator/plasmin extracellular protease cascade and downstream laminin degradation are implicated in excitotoxin-induced neuronal degeneration. To determine which specific laminin chains are involved, we investigated the expression of laminins in the hippocampus, and the cell types expressing them. Reverse transcription-PCR demonstrated that the messenger RNAs for all laminin chains could be detected in the hippocampus. To determine the localization of laminin chain expression, immunostaining was used. This method showed that alpha5, beta1 and gamma1 are most highly expressed in the neuronal cell layers. Immunoblotting confirmed the hippocampal expression of the chains alpha5, beta1 and gamma1, and RNA in situ hybridization showed a neuronal expression pattern of alpha5, beta1 and gamma1. At early time points following intrahippocampal injection of kainate, alpha5, beta1 and gamma1 chain immunoreactivities were lost. In addition, tissue plasminogen activator-deficient mice, which are resistant to kainate-induced neuronal death, show no significant change in laminins alpha5, beta1 and gamma1 after intrahippocampal kainate injection. Taken together, these results suggest that laminin-10 (alpha5-beta1-gamma1) comprises a major neuronal laminin in the mouse hippocampus, and is degraded before neuronal death during excitotoxic injury by the tissue plasminogen activator/plasmin protease cascade. By identifying a neuronal laminin (laminin-10) that participates in neuronal degeneration after excitotoxic injury, this study clarifies the molecular definition of the extracellular matrix in the hippocampus and further defines a pathway for mechanisms of neuronal death.
Collapse
Affiliation(s)
- J A Indyk
- Department of Pharmacology, University at Stony Brook, Stony Brook, NY 11794-8651, USA
| | | | | | | |
Collapse
|
31
|
Nikonenko I, Toni N, Moosmayer M, Shigeri Y, Muller D, Sargent Jones L. Integrins are involved in synaptogenesis, cell spreading, and adhesion in the postnatal brain. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 140:185-94. [PMID: 12586424 DOI: 10.1016/s0165-3806(02)00590-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Integrins are a major family of heterodimeric surface glycoproteins that act as adhesion molecules, have a spectrum of extracellular matrix (ECM) molecules as their ligands, and regulate a variety of cellular functions. Integrins are known to be critical to embryonic brain development, and recent studies have indicated their essential role in adult brain function, although their role in postnatal brain development and function has not been examined. Here, we used the organotypic slice culture system to investigate the role of integrins in postnatal hippocampal development by exposing the tissue to either an integrin competitive antagonist, the peptide GRGDSP containing Arg-Gly-Asp (RGD) attachment site, or to function-blocking beta(1)-integrin antibodies to disrupt integrin interactions. These experiments revealed that beta(1)-integrin antibodies interfered with spreading of the culture, resulting in a rapid and marked diminution of slice area. beta(1)-integrin antibodies and RGD peptide disrupted cell adhesion, causing cell detachment and migration of glial cells from the explant. The majority of the detached cells were of macroglial origin and switched to expression of the intermediate filament proteins vimentin and nestin, suggesting a developmental regression. The organotypic organization of slice cultures was not affected, although exposure to either integrin antagonist or antibody resulted in a statistically significant reduction in the number of synapses measured in the apical dendrites of CA1 pyramidal neurons. The results demonstrate that integrins markedly affect postnatal CNS development, in both ultrastructural construction and organizational processes.
Collapse
Affiliation(s)
- Irina Nikonenko
- Department of Pharmacology, Centre Médical Universitaire, 1211 4, Geneva, Switzerland.
| | | | | | | | | | | |
Collapse
|
32
|
Colognato H, Baron W, Avellana-Adalid V, Relvas JB, Baron-Van Evercooren A, Georges-Labouesse E, ffrench-Constant C. CNS integrins switch growth factor signalling to promote target-dependent survival. Nat Cell Biol 2002; 4:833-41. [PMID: 12379866 DOI: 10.1038/ncb865] [Citation(s) in RCA: 197] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2002] [Revised: 08/02/2002] [Accepted: 08/09/2002] [Indexed: 01/15/2023]
Abstract
Depending on the stage of development, a growth factor can mediate cell proliferation, survival or differentiation. The interaction of cell-surface integrins with extracellular matrix ligands can regulate growth factor responses and thus may influence the effect mediated by the growth factor. Here we show, by using mice lacking the alpha(6) integrin receptor for laminins, that myelin-forming oligodendrocytes activate an integrin-regulated switch in survival signalling when they contact axonal laminins. This switch alters survival signalling mediated by neuregulin from dependence on the phosphatidylinositol-3-OH kinase (PI(3)K) pathway to dependence on the mitogen-activated kinase pathway. The consequent enhanced survival provides a mechanism for target-dependent selection during development of the central nervous system. This integrin-regulated switch reverses the capacity of neuregulin to inhibit the differentiation of precursors, thereby explaining how neuregulin subsequently promotes differentiation and survival in myelinating oligodendrocytes. Our results provide a general mechanism by which growth factors can exert apparently contradictory effects at different stages of development in individual cell lineages.
Collapse
Affiliation(s)
- Holly Colognato
- Department of Medical Genetics and Center for Brain Repair, University of Cambridge, Cambridge CB2 2PY, UK
| | | | | | | | | | | | | |
Collapse
|
33
|
Ying GX, Huang C, Jiang ZH, Liu X, Jing NH, Zhou CF. Up-regulation of cystatin C expression in the murine hippocampus following perforant path transections. Neuroscience 2002; 112:289-98. [PMID: 12044447 DOI: 10.1016/s0306-4522(02)00083-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cystatins are endogenous cysteine protease inhibitors that modulate the turnover of intracellular and extracellular proteins. These inhibitors are strongly implicated in a variety of pathological processes such as tumor metastasis and many degenerating CNS disorders. Here we report the expression of cystatin C, a major cysteine protease inhibitor of mammalian animals, in the murine hippocampus at 3, 7, 15 and 30 days following perforant path transections. Northern blot analysis showed that cystatin C transcripts were up-regulated in a transient manner with a significant increase at 7 and 15 days post-lesion (219% and 185% of control, respectively) in the rat hippocampus after entorhinal deafferentation. In situ hybridization and immunohistochemistry confirmed the time-dependent up-regulation of both cystatin C mRNA and protein expressions in a mouse model which initiated at 3 days post-lesion, reached maximal levels 7-15 days post-lesion, and remained slightly elevated by day 30 post-lesion. The modulation of cystatin C expression was observed to occur specifically in the entorhinally denervated zones: the stratum lacunosum-moleculare of the hippocampus and the outer molecular layer of the dentate gyrus. Double labeling by either a combination of in situ hybridization for cystatin C with immunohistochemistry for glial fibrillary acidic protein or double immunofluorescence staining for both proteins in mouse hippocampus at 7 and 15 days post-lesion revealed that most cystatin C-expressing cells are astrocytes. From these results we suggest that the spatiotemporal up-regulation of cystatin C in the hippocampus is induced by entorhinal deafferentation and that cystatin C may be involved in the astroglia-mediated neural plasticity events in the hippocampus following perforant path transections.
Collapse
Affiliation(s)
- G-X Ying
- Key Laboratory of Neurobiology, Shanghai Institute of Physiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | | | | | | | | | | |
Collapse
|
34
|
Yin Y, Miner JH, Sanes JR. Laminets: laminin- and netrin-related genes expressed in distinct neuronal subsets. Mol Cell Neurosci 2002; 19:344-58. [PMID: 11906208 DOI: 10.1006/mcne.2001.1089] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Laminins and netrins are families of related secreted proteins known to play critical roles in guiding the growth of peripheral and central axons, respectively. Here we report the identification of two novel cell surface glycoproteins that we name laminets because they resemble both laminins and netrins. Laminet-1 and -2 are selectively expressed in neurons, each in a distinct subset that includes populations in forebrain, midbrain, hindbrain, spinal cord, and spinal ganglia. In several forebrain regions, including main relays of the central olfactory pathway, laminet-1 and -2 are expressed in nonoverlapping neuronal subsets. Both laminets are subject to alternative splicing which, in the case of laminet-1, generates at least 10 distinct isoforms, each of which contains a unique combination of potential binding sites for ligands or counterreceptors. Their complex patterns of distribution and isoform diversity, along with their homology to known axon guidance molecules, suggest that laminets contribute to the patterning of neuronal connections.
Collapse
Affiliation(s)
- Yong Yin
- Department of Anatomy and Neurobiology, Washington University Medical School, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
35
|
Fraser JR. What is the basis of transmissible spongiform encephalopathy induced neurodegeneration and can it be repaired? Neuropathol Appl Neurobiol 2002; 28:1-11. [PMID: 11849558 DOI: 10.1046/j.1365-2990.2002.00376.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Once an animal becomes infected with a prion disease, or transmissible spongiform encephalopathy (TSE), the progression of infection is relentless and inevitably fatal, although often with such prolonged incubation periods that an alternative cause of death can intervene. Infection has been compared to 'setting a clock' which then runs inexorably as the disease spreads, usually through the lymphoreticular system and then via peripheral nerves to the central nervous system (CNS), although the mechanism controlling the protracted progression is not known. Clinical disease develops as characteristic degenerative changes in the CNS progress, but the molecular basis for this pathology is not clear, particularly the relationship between the deposition of abnormal PrP and neuronal dysfunction. Recent research has identified several means of slowing (if not stopping) the clock when infection has not yet reached the CNS; although the potential for later stage therapies seems limited, neuroprotective strategies which have been shown to be effective in other neurodegenerative conditions may also ameliorate TSE induced CNS pathology. This review focuses on our current knowledge of the key events following infection of the CNS and the opportunities for intervention once the CNS has become infected.
Collapse
Affiliation(s)
- J R Fraser
- Institute for Animal Health, Neuropathogenesis Unit, Ogston Building, Edinburgh, UK.
| |
Collapse
|
36
|
Huh KH, Fuhrer C. Clustering of nicotinic acetylcholine receptors: from the neuromuscular junction to interneuronal synapses. Mol Neurobiol 2002; 25:79-112. [PMID: 11890459 DOI: 10.1385/mn:25:1:079] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Fast and accurate synaptic transmission requires high-density accumulation of neurotransmitter receptors in the postsynaptic membrane. During development of the neuromuscular junction, clustering of acetylcholine receptors (AChR) is one of the first signs of postsynaptic specialization and is induced by nerve-released agrin. Recent studies have revealed that different mechanisms regulate assembly vs stabilization of AChR clusters and of the postsynaptic apparatus. MuSK, a receptor tyrosine kinase and component of the agrin receptor, and rapsyn, an AChR-associated anchoring protein, play crucial roles in the postsynaptic assembly. Once formed, AChR clusters and the postsynaptic membrane are stabilized by components of the dystrophin/utrophin glycoprotein complex, some of which also direct aspects of synaptic maturation such as formation of postjunctional folds. Nicotinic receptors are also expressed across the peripheral and central nervous system (PNS/CNS). These receptors are localized not only at the pre- but also at the postsynaptic sites where they carry out major synaptic transmission. In neurons, they are found as clusters at synaptic or extrasynaptic sites, suggesting that different mechanisms might underlie this specific localization of nicotinic receptors. This review summarizes the current knowledge about formation and stabilization of the postsynaptic apparatus at the neuromuscular junction and extends this to explore the synaptic structures of interneuronal cholinergic synapses.
Collapse
Affiliation(s)
- Kyung-Hye Huh
- Department of Neurochemistry, Brain Research Institute, University of Zürich, Switzerland
| | | |
Collapse
|
37
|
Keith CH, Wilson MT. Factors controlling axonal and dendritic arbors. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 205:77-147. [PMID: 11336394 DOI: 10.1016/s0074-7696(01)05003-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The sculpting and maintenance of axonal and dendritic arbors is largely under the control of molecules external to the cell. These factors include both substratum-associated and soluble factors that can enhance or inhibit the outgrowth of axons and dendrites. A large number of factors that modulate axonal outgrowth have been identified, and the first stages of the intracellular signaling pathways by which they modify process outgrowth have been characterized. Relatively fewer factors and pathways that affect dendritic outgrowth have been described. The factors that affect axonal arbors form an incompletely overlapping set with those that affect dendritic arbors, allowing selective control of the development and maintenance of these critical aspects of neuronal morphology.
Collapse
Affiliation(s)
- C H Keith
- Department of Cellular Biology. University of Georgia, Athens, 30605, USA
| | | |
Collapse
|
38
|
Buttery PC, ffrench-Constant C. Process extension and myelin sheet formation in maturing oligodendrocytes. PROGRESS IN BRAIN RESEARCH 2001; 132:115-30. [PMID: 11544981 DOI: 10.1016/s0079-6123(01)32070-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- P C Buttery
- Cambridge Centre for Brain Repair and Department of Medical Genetics, University Forvie Site, Robinson Way, Cambridge CB2 2PY, UK
| | | |
Collapse
|
39
|
O'Brien DP, Johnson GC, Liu LA, Guo LT, Engvall E, Powell HC, Shelton GD. Laminin alpha 2 (merosin)-deficient muscular dystrophy and demyelinating neuropathy in two cats. J Neurol Sci 2001; 189:37-43. [PMID: 11535231 DOI: 10.1016/s0022-510x(01)00559-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We report laminin alpha 2 (merosin) deficiency associated with muscular dystrophy and demyelinating neuropathy in two cats. The cats developed progressive muscle weakness, and atrophy. Either hypotonia or contractures resulted in recumbency, necessitating euthanasia. Muscle biopsies showed dystrophic changes including marked endomysial fibrosis, myofiber necrosis, variability of fiber size, and perimysial lipid accumulation. Immunohistochemistry showed that laminin alpha 2 chain was absent or reduced, while dystrophin and all the components of the dystrophin-associated glycoprotein complex were present and normal. One cat was examined in detail. Motor nerve conduction velocity (MNCV) was decreased, and ultrastructurally the peripheral nerves showed Schwann cell degeneration and demyelination. Brain imaging was not performed, but white matter changes were not apparent in the brain at necropsy. The disease in these cats is similar to primary or secondary merosin (laminin alpha 2)-deficient congenital muscular dystrophy (CMD) in humans and to dystrophia muscularis in mice.
Collapse
Affiliation(s)
- D P O'Brien
- Department of Veterinary Medicine and Surgery, University of Missouri, 379 E. Campus Drive, Columbia, MO 65211, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Liesi P, Fried G, Stewart RR. Neurons and glial cells of the embryonic human brain and spinal cord express multiple and distinct isoforms of laminin. J Neurosci Res 2001; 64:144-67. [PMID: 11288143 DOI: 10.1002/jnr.1061] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have identified by immunocytochemistry, Western blotting, and RT-PCR the isoforms of laminin expressed by glial cells and neurons cultured from human embryonic brain and spinal cord. We show that most of the known laminins are present in human neurons and glial cells. Importantly, Western analysis demonstrates that the isoforms of laminin present in embryonic human brain differ from those expressed in human spinal cord. Neurons of the brain and spinal cord also express their distinct and characteristic isoforms of laminin compared to the glial cells of the same CNS regions. These results suggest that, in addition to the known laminins, several novel isoforms may exist in the human embryonic CNS. The observed differences between the isoforms of laminin in brain and spinal cord neurons and glial cells may result from primary structural changes or from posttranslational modifications, e.g., variations in glycosylation. Thus, identification of these novel laminins and determination of their function(s) should further our understanding of the mechanisms of aging, disease, and trauma in the human CNS.
Collapse
Affiliation(s)
- P Liesi
- The Brain Laboratory, Biomedicum Helsinki, Institute of Biomedicine, Department of Anatomy, University of Helsinki, Helsinki, Finland.
| | | | | |
Collapse
|
41
|
Abstract
Nearly all excitatory input in the hippocampus impinges on dendritic spines which serve as multifunctional compartments that can, at the very least, selectively isolate and amplify incoming signals. Their importance to normal brain function is highlighted by the severe mental impairment observed in most individuals having poorly developed spines (Purpura, Science 1974;186:1126-1128). Distinct groups of membrane proteins, cytoskeletal elements, scaffolding proteins, and second messenger-related proteins are concentrated particularly in dendritic spines, but their ability to generate, maintain, and coordinately regulate spine structure or function is poorly understood. Here we review the unique molecular composition of dendritic spines along with the factors known to influence dendritic spine development in order to construct a model of dendritic spine development in relation to synaptogenesis.
Collapse
Affiliation(s)
- W Zhang
- Fishberg Research Center for Neurobiology and Program in Cell Adhesion, Mount Sinai School of Medicine, New York, New York 10029,USA
| | | |
Collapse
|
42
|
Abstract
Agrin controls the formation of the neuromuscular junction. Whether it regulates the differentiation of other types of synapses remains unclear. Therefore, we have studied the role of agrin in cultured hippocampal neurons. Synaptogenesis was severely compromised when agrin expression or function was suppressed by antisense oligonucleotides and specific antibodies. The effects of antisense oligonucleotides were found to be highly specific because they were reversed by adding recombinant agrin and could not be detected in cultures from agrin-deficient animals. Interestingly, the few synapses formed in reduced agrin conditions displayed diminished vesicular turnover, despite a normal appearance at the EM level. Thus, our results demonstrate the necessity of agrin for synaptogenesis in hippocampal neurons.
Collapse
|
43
|
Abstract
The laminins are a family of glycoproteins that provide an integral part of the structural scaffolding of basement membranes in almost every animal tissue. Each laminin is a heterotrimer assembled from alpha, beta, and gamma chain subunits, secreted and incorporated into cell-associated extracellular matrices. The laminins can self-assemble, bind to other matrix macromolecules, and have unique and shared cell interactions mediated by integrins, dystroglycan, and other receptors. Through these interactions, laminins critically contribute to cell differentiation, cell shape and movement, maintenance of tissue phenotypes, and promotion of tissue survival. Recent advances in the characterization of genetic disruptions in humans, mice, nematodes and flies have revealed developmental roles for the different laminin subunits in diverse cell types, affecting differentiation from blastocyst formation to the post-natal period. These genetic defects have challenged some of the previous concepts about basement membranes and have shed new light on the diversity and complexity of laminin functions as well as established the molecular basis of several human diseases.
Collapse
Affiliation(s)
- H Colognato
- Department of Pathology & Laboratory Medicine, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | |
Collapse
|
44
|
|
45
|
Abstract
Merosin (also called as Laminin-2) is an isoform of laminin comprised of the alpha2, beta1 and gamma1 chains. In European populations, half of the patients with classical congenital muscular dystrophy have mutations of the LAMA2 gene (6q22-23) and present reduced or absence of laminin alpha2 chain. This form is generally referred to as merosin-deficient CMD. Merosin-deficient CMD is characterized by involvement of not only skeletal muscle but also central and peripheral nervous systems: Extensive brain white matter abnormalities are found by magnetic resonance imaging (MRI). However, most patients show no mental retardation. Recent case studies reported that some patients have several structural abnormalities such as abnormal cerebral cortical gyration, hypoplasia of cerebellum and pons, and dilation of ventricles. At present, functions of merosin related to muscle degeneration have not been fully elucidated. In addition, the mechanisms responsible for pathogenesis of diffuse brain white matter abnormalities remain to be determined. As mouse models for merosin-deficient CMD, three spontaneous mutants(dy, dy(2J), dy(PAS1)) and two mutants named dy(W) and dy(3K) by targeted gene disruption have been reported. These mice will help to elucidate the pathogenesis of merosin-deficient CMD and serve to develop therapy.
Collapse
Affiliation(s)
- Y Miyagoe-Suzuki
- Department of Molecular Genetics, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan
| | | | | |
Collapse
|
46
|
Abstract
From the elegant studies of Ramon y Cajal (1909) to the current advances in molecular cloning (e.g., Farber and Danciger, 1997), the retina has served as an ideal model for the entire CNS. We have taken advantage of the well described anatomy, physiology, and molecular biology of the retina to begin to examine the role of the laminins, one component of the extracellular matrix, on the processes of neuronal differentiation and synapse formation in the CNS. We have examined the effect of the deletion of one laminin chain, the beta2 chain, on retinal development. The gross development of retinas from laminin beta2 chain-deficient animals appears normal, and photoreceptors are formed. However, these retinas exhibit several pathologies: laminin beta2 chain-deficient mice display abnormal outer segment elongation, abnormal electroretinograms, and abnormal rod photoreceptor synapses. Morphologically, the outer segments are reduced by 50% in length; the outer plexiform layer of mutant animals is disrupted specifically, because only 7% of observed rod invaginating synapses appear normal, whereas the inner plexiform layer is undisturbed; finally, the rate of apoptosis in the mutant photoreceptor layer is twice that of control mice. Physiologically, the electroretinogram is altered; the amplitude of the b-wave and the slope of the b-wave intensity-response function are both decreased, consistent with synaptic disruption in the outer retina. Together, these results emphasize the prominence of the extracellular matrix and, in particular, the laminins in the development and maintenance of synaptic function and morphogenesis in the CNS.
Collapse
|
47
|
Frost EE, Buttery PC, Milner R, ffrench-Constant C. Integrins mediate a neuronal survival signal for oligodendrocytes. Curr Biol 1999; 9:1251-4. [PMID: 10556090 DOI: 10.1016/s0960-9822(99)80506-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Target-dependent survival of newly differentiated cells is an important part of neural development. In the case of myelin-forming oligodendrocytes, it matches the number of oligodendrocytes to the available axons [1]. In addition to growth factors, an axonal signal regulates this survival: when axons are transected, oligodendrocytes die and, conversely, when the number of axons is increased by genetic manipulation, oligodendrocyte numbers increase [2] [3]. Newly formed oligodendrocytes that fail to contact axons undergo apoptosis, and co-culture experiments that model axon-glial interactions in vitro reveal a neuronal survival effect not present in neuron-conditioned medium [4] [5], suggesting that the signal is non-diffusible and present on the surface of axons. The nature of these neuronal signals is unknown, as are the mechanisms by which they interact with growth-factor-mediated survival signals. As integrins can regulate survival in other cell types [6] [7] [8], we determined whether integrins are involved in the neuronal survival effect. We found that the laminin receptor alpha6beta1 integrin, which is expressed on oligodendrocytes, enhances the sensitivity of oligodendrocytes to the survival effect of growth factors. On the basis of this interaction between integrin and growth-factor-mediated signalling, we propose a simple model by which signals from axons and other cell types might interact to regulate oligodendrocyte cell numbers.
Collapse
Affiliation(s)
- E E Frost
- Wellcome/CRC Institute of Developmental Biology and Cancer, Department of Medical Genetics, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | | | | | | |
Collapse
|
48
|
Buttery PC, ffrench-Constant C. Laminin-2/integrin interactions enhance myelin membrane formation by oligodendrocytes. Mol Cell Neurosci 1999; 14:199-212. [PMID: 10576890 DOI: 10.1006/mcne.1999.0781] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To examine the role of extracellular matrix (ECM)/integrin interactions in myelination we have analyzed oligodendrocyte differentiation and myelin membrane formation in oligodendrocytes grown in cell culture. We have found that the ECM substrates fibronectin, vitronectin, and laminin-2 (merosin) have no effect on differentiation, as measured by the appearance of myelin basic protein-expressing cells, but that laminin-2 substrates dramatically enhance myelin membrane formation. Blocking antibody and immunolocalization studies suggest that this effect is mediated via 1 integrins. The v integrins expressed on oligodendrocytes, in contrast, are less effective at promoting membrane formation. These results show that the interaction between laminin-2 expressed in white matter tracts and oligodendrocyte laminin-binding integrins may be an important part of the signalling mechanisms that stimulate oligodendrocytes to elaborate the extensive myelin membrane required to wrap the axon and form the myelin sheath. The results also provide a logical explanation for the abnormalities of myelination observed in humans with merosin-deficient congenital muscular dystrophy.
Collapse
Affiliation(s)
- P C Buttery
- Wellcome/CRC Institute of Developmental Biology and Cancer, Cambridge, United Kingdom
| | | |
Collapse
|
49
|
Koch M, Olson PF, Albus A, Jin W, Hunter DD, Brunken WJ, Burgeson RE, Champliaud MF. Characterization and expression of the laminin gamma3 chain: a novel, non-basement membrane-associated, laminin chain. J Cell Biol 1999; 145:605-18. [PMID: 10225960 PMCID: PMC2185082 DOI: 10.1083/jcb.145.3.605] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Laminins are heterotrimeric molecules composed of an alpha, a beta, and a gamma chain; they have broad functional roles in development and in stabilizing epithelial structures. Here, we identified a novel laminin, composed of known alpha and beta chains but containing a novel gamma chain, gamma3. We have cloned gene encoding this chain, LAMC3, which maps to chromosome 9 at q31-34. Protein and cDNA analyses demonstrate that gamma3 contains all the expected domains of a gamma chain, including two consensus glycosylation sites and a putative nidogen-binding site. This suggests that gamma3-containing laminins are likely to exist in a stable matrix. Studies of the tissue distribution of gamma3 chain show that it is broadly expressed in: skin, heart, lung, and the reproductive tracts. In skin, gamma3 protein is seen within the basement membrane of the dermal-epidermal junction at points of nerve penetration. The gamma3 chain is also a prominent element of the apical surface of ciliated epithelial cells of: lung, oviduct, epididymis, ductus deferens, and seminiferous tubules. The distribution of gamma3-containing laminins on the apical surfaces of a variety of epithelial tissues is novel and suggests that they are not found within ultrastructurally defined basement membranes. It seems likely that these apical laminins are important in the morphogenesis and structural stability of the ciliated processes of these cells.
Collapse
Affiliation(s)
- M Koch
- The Cutaneous Biology Research Center, Massachusetts General Hospital, and the Department of Dermatology, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Indyk J, Chen ZL, Strickland S. Proteases and degradation of extracellular matrix in neurodegeneration. ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s0268-9499(99)90081-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|