1
|
Mao Y, Chen C. The Hap Complex in Yeasts: Structure, Assembly Mode, and Gene Regulation. Front Microbiol 2019; 10:1645. [PMID: 31379791 PMCID: PMC6652802 DOI: 10.3389/fmicb.2019.01645] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/03/2019] [Indexed: 01/19/2023] Open
Abstract
The CCAAT box-harboring proteins represent a family of heterotrimeric transcription factors which is highly conserved in eukaryotes. In fungi, one of the particularly important homologs of this family is the Hap complex that separates the DNA-binding domain from the activation domain and imposes essential impacts on regulation of a wide range of cellular functions. So far, a comprehensive summary of this complex has been described in filamentous fungi but not in the yeast. In this review, we summarize a number of studies related to the structure and assembly mode of the Hap complex in a list of representative yeasts. Furthermore, we emphasize recent advances in understanding the regulatory functions of this complex, with a special focus on its role in regulating respiration, production of reactive oxygen species (ROS) and iron homeostasis.
Collapse
Affiliation(s)
- Yinhe Mao
- Key Laboratory of Molecular Virology and Immunology, Unit of Pathogenic Fungal Infection and Host Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Changbin Chen
- Key Laboratory of Molecular Virology and Immunology, Unit of Pathogenic Fungal Infection and Host Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
2
|
Lima WR, Martins DC, Parreira KS, Scarpelli P, Santos de Moraes M, Topalis P, Hashimoto RF, Garcia CRS. Genome-wide analysis of the human malaria parasite Plasmodium falciparum transcription factor PfNF-YB shows interaction with a CCAAT motif. Oncotarget 2017; 8:113987-114001. [PMID: 29371963 PMCID: PMC5768380 DOI: 10.18632/oncotarget.23053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 11/26/2017] [Indexed: 12/04/2022] Open
Abstract
Little is known about transcription factor regulation during the Plasmodium falciparum intraerythrocytic cycle. In order to elucidate the role of the P. falciparum (Pf)NF-YB transcription factor we searched for target genes in the entire genome. PfNF-YB mRNA is highly expressed in late trophozoite and schizont stages relative to the ring stage. In order to determine the candidate genes bound by PfNF-YB a ChIP-on-chip assay was carried out and 297 genes were identified. Ninety nine percent of PfNF-YB binding was to putative promoter regions of protein coding genes of which only 16% comprise proteins of known function. Interestingly, our data reveal that PfNF-YB binding is not exclusively to a canonical CCAAT box motif. PfNF-YB binds to genes coding for proteins implicated in a range of different biological functions, such as replication protein A large subunit (DNA replication), hypoxanthine phosphoribosyltransferase (nucleic acid metabolism) and multidrug resistance protein 2 (intracellular transport).
Collapse
Affiliation(s)
- Wânia Rezende Lima
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.,Instituto de Ciências Exatas e Naturais-Medicina, Universidade Federal de Mato Grosso-Campus Rondonópolis, Mato Grosso, Brazil
| | - David Correa Martins
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Santo André, Brazil
| | - Kleber Simônio Parreira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.,Instituto de Ciências Exatas e Naturais-Medicina, Universidade Federal de Mato Grosso-Campus Rondonópolis, Mato Grosso, Brazil
| | - Pedro Scarpelli
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Miriam Santos de Moraes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Pantelis Topalis
- Institute of Molecular Biology and Biotechnology, FORTH, Hellas, Greece
| | - Ronaldo Fumio Hashimoto
- Departamento de Ciência da Computação, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil
| | - Célia R S Garcia
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Suske G. NF-Y and SP transcription factors — New insights in a long-standing liaison. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:590-597. [DOI: 10.1016/j.bbagrm.2016.08.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/18/2016] [Accepted: 08/24/2016] [Indexed: 12/31/2022]
|
4
|
Rodríguez-Esteban G, González-Sastre A, Rojo-Laguna JI, Saló E, Abril JF. Digital gene expression approach over multiple RNA-Seq data sets to detect neoblast transcriptional changes in Schmidtea mediterranea. BMC Genomics 2015; 16:361. [PMID: 25952370 PMCID: PMC4494696 DOI: 10.1186/s12864-015-1533-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 04/13/2015] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The freshwater planarian Schmidtea mediterranea is recognised as a valuable model for research into adult stem cells and regeneration. With the advent of the high-throughput sequencing technologies, it has become feasible to undertake detailed transcriptional analysis of its unique stem cell population, the neoblasts. Nonetheless, a reliable reference for this type of studies is still lacking. RESULTS Taking advantage of digital gene expression (DGE) sequencing technology we compare all the available transcriptomes for S. mediterranea and improve their annotation. These results are accessible via web for the community of researchers. Using the quantitative nature of DGE, we describe the transcriptional profile of neoblasts and present 42 new neoblast genes, including several cancer-related genes and transcription factors. Furthermore, we describe in detail the Smed-meis-like gene and the three Nuclear Factor Y subunits Smed-nf-YA, Smed-nf-YB-2 and Smed-nf-YC. CONCLUSIONS DGE is a valuable tool for gene discovery, quantification and annotation. The application of DGE in S. mediterranea confirms the planarian stem cells or neoblasts as a complex population of pluripotent and multipotent cells regulated by a mixture of transcription factors and cancer-related genes.
Collapse
Affiliation(s)
- Gustavo Rodríguez-Esteban
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona (UB), and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Av. Diagonal 643, Barcelona, 08028, Catalonia, Spain.
| | - Alejandro González-Sastre
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona (UB), and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Av. Diagonal 643, Barcelona, 08028, Catalonia, Spain.
| | - José Ignacio Rojo-Laguna
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona (UB), and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Av. Diagonal 643, Barcelona, 08028, Catalonia, Spain.
| | - Emili Saló
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona (UB), and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Av. Diagonal 643, Barcelona, 08028, Catalonia, Spain.
| | - Josep F Abril
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona (UB), and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Av. Diagonal 643, Barcelona, 08028, Catalonia, Spain.
| |
Collapse
|
5
|
Upregulated expression of NF-YC contributes to neuronal apoptosis via proapoptotic protein bim in rats' brain hippocampus following middle cerebral artery occlusion (MCAO). J Mol Neurosci 2013; 52:552-65. [PMID: 24014123 DOI: 10.1007/s12031-013-0111-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 08/27/2013] [Indexed: 01/10/2023]
Abstract
Cerebral ischemia represents a severe brain injury that could lead to significant neuronal damage and death. In this study, we performed a middle cerebral artery occlusion (MCAO) in adult rats and observed that a subunit of nuclear factor-Y (NF-Y) transcriptional factor, NF-YC, was accumulated in rat hippocampal CA1 neurons. Immunochemistrical and immunofluorescent analysis revealed that NF-YC was primarily expressed in the nucleus of neurons. Meanwhile, we found that the changes of bim, one of the target genes of NF-Y, were consistent with the expression of NF-YC and Bim was mainly located in the NF-YC positive cells. Moreover, there was a concomitant upregulation of active caspase-3 and TUNEL positive cells. Taken together, these results suggested that the upregulation of NF-YC might play an important role in the pathophysiology via proapoptotic protein Bim after MCAO and further research is needed to have a better understanding of its function and mechanism.
Collapse
|
6
|
Immune mediators regulate CFTR expression through a bifunctional airway-selective enhancer. Mol Cell Biol 2013; 33:2843-53. [PMID: 23689137 DOI: 10.1128/mcb.00003-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
An airway-selective DNase-hypersensitive site (DHS) at kb -35 (DHS-35kb) 5' to the cystic fibrosis transmembrane conductance regulator (CFTR) gene is evident in many lung cell lines and primary human tracheal epithelial cells but is absent from intestinal epithelia. The DHS-35kb contains an element with enhancer activity in 16HBE14o- airway epithelial cells and is enriched for monomethylated H3K4 histones (H3K4me1). We now define a 350-bp region within DHS-35kb which has full enhancer activity and binds interferon regulatory factor 1 (IRF1) and nuclear factor Y (NF-Y) in vitro and in vivo. Small interfering RNA (siRNA)-mediated depletion of IRF1 or overexpression of IRF2, an antagonist of IRF1, reduces CFTR expression in 16HBE14o- cells. NF-Y is critical for maintenance of H3K4me1 enrichment at DHS-35kb since depletion of NF-YA, a subunit of NF-Y, reduces H3K4me1 enrichment at this site. Moreover, depletion of SETD7, an H3K4 monomethyltransferase, reduces both H3K4me1 and NF-Y occupancy, suggesting a requirement of H3K4me1 for NF-Y binding. NF-Y depletion also represses Sin3A and reduces its occupancy across the CFTR locus, which is accompanied by an increase in p300 enrichment at multiple sites. Our results reveal that the DHS-35kb airway-selective enhancer element plays a pivotal role in regulation of CFTR expression by two independent regulatory mechanisms.
Collapse
|
7
|
Dolfini D, Mantovani R. Targeting the Y/CCAAT box in cancer: YB-1 (YBX1) or NF-Y? Cell Death Differ 2013; 20:676-85. [PMID: 23449390 PMCID: PMC3619239 DOI: 10.1038/cdd.2013.13] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/11/2013] [Accepted: 01/18/2013] [Indexed: 01/14/2023] Open
Abstract
The Y box is an important sequence motif found in promoters and enhancers containing a CCAAT box - one of the few elements enriched in promoters of large sets of genes overexpressed in cancer. The search for the transcription factor(s) acting on it led to the biochemical purification of the nuclear factor Y (NF-Y) heterotrimer, and to the cloning - through the screening of expression libraries - of Y box-binding protein 1 (YB-1), an oncogene, overexpressed in aggressive tumors and associated with drug resistance. These two factors have been associated with Y/CCAAT-dependent activation of numerous growth-related genes, notably multidrug resistance protein 1. We review two decades of data indicating that NF-Y ultimately acts on Y/CCAAT in cancer cells, a notion recently confirmed by genome-wide data. Other features of YB-1, such as post-transcriptional control of mRNA biology, render it important in cancer biology.
Collapse
Affiliation(s)
- D Dolfini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, Milan 20133, Italy
| | - R Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, Milan 20133, Italy
| |
Collapse
|
8
|
Lima WR, Moraes M, Alves E, Azevedo MF, Passos DO, Garcia CRS. The PfNF-YB transcription factor is a downstream target of melatonin and cAMP signalling in the human malaria parasite Plasmodium falciparum. J Pineal Res 2013; 54:145-53. [PMID: 22804732 DOI: 10.1111/j.1600-079x.2012.01021.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Plasmodium falciparum causes the most severe form of malaria and is responsible for the majority of deaths worldwide. The mechanism of cell cycle control within intra-erythrocytic stages has been examined as a potential means of a promising way to identifying how to stop parasite development in red blood cells. Our group determined that melatonin increases parasitemia in P. falciparum and P. chabaudi through a complex signalling cascade. In vertebrates, melatonin controls the expression of transcription factors, leading us to postulate rather that the indoleamine would affect PfNF-YB expression in human malaria parasites. We show here that PfNF-YB transcription factor is highly expressed and colocalized in the nucleus in mature parasites during intra-erythrocytic stages, thus suggesting an important role in cell division. Moreover, we demonstrate for the first time that melatonin and cAMP modulate the PfNF-YB transcription factor expression in P. falciparum at erythrocytic stages. In addition, PfNF-YB is found to be more ubiquitinated in the presence of melatonin. Finally, the proteasome inhibitor bortezomib is able to modulate PfNF-YB expression as well. Taken together, our dada reinforce the role played by melatonin in the cell cycle control of P. falciparum and point this indolamine as a target to develop new antimalarial drugs.
Collapse
Affiliation(s)
- Wânia R Lima
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
9
|
Dolfini D, Gatta R, Mantovani R. NF-Y and the transcriptional activation of CCAAT promoters. Crit Rev Biochem Mol Biol 2011; 47:29-49. [PMID: 22050321 DOI: 10.3109/10409238.2011.628970] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The CCAAT box promoter element and NF-Y, the transcription factor (TF) that binds to it, were among the first cis-elements and trans-acting factors identified; their interplay is required for transcriptional activation of a sizeable number of eukaryotic genes. NF-Y consists of three evolutionarily conserved subunits: a dimer of NF-YB and NF-YC which closely resembles a histone, and the "innovative" NF-YA. In this review, we will provide an update on the functional and biological features that make NF-Y a fundamental link between chromatin and transcription. The last 25 years have witnessed a spectacular increase in our knowledge of how genes are regulated: from the identification of cis-acting sequences in promoters and enhancers, and the biochemical characterization of the corresponding TFs, to the merging of chromatin studies with the investigation of enzymatic machines that regulate epigenetic states. Originally identified and studied in yeast and mammals, NF-Y - also termed CBF and CP1 - is composed of three subunits, NF-YA, NF-YB and NF-YC. The complex recognizes the CCAAT pentanucleotide and specific flanking nucleotides with high specificity (Dorn et al., 1997; Hatamochi et al., 1988; Hooft van Huijsduijnen et al, 1987; Kim & Sheffery, 1990). A compelling set of bioinformatics studies clarified that the NF-Y preferred binding site is one of the most frequent promoter elements (Suzuki et al., 2001, 2004; Elkon et al., 2003; Mariño-Ramírez et al., 2004; FitzGerald et al., 2004; Linhart et al., 2005; Zhu et al., 2005; Lee et al., 2007; Abnizova et al., 2007; Grskovic et al., 2007; Halperin et al., 2009; Häkkinen et al., 2011). The same consensus, as determined by mutagenesis and SELEX studies (Bi et al., 1997), was also retrieved in ChIP-on-chip analysis (Testa et al., 2005; Ceribelli et al., 2006; Ceribelli et al., 2008; Reed et al., 2008). Additional structural features of the CCAAT box - position, orientation, presence of multiple Transcriptional Start Sites - were previously reviewed (Dolfini et al., 2009) and will not be considered in detail here.
Collapse
Affiliation(s)
- Diletta Dolfini
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milan, Italy
| | | | | |
Collapse
|
10
|
Important characteristics of sequence-specific recombination hotspots in Schizosaccharomyces pombe. Genetics 2010; 187:385-96. [PMID: 21098718 DOI: 10.1534/genetics.110.124636] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In many organisms, meiotic recombination occurs preferentially at a limited number of sites in the genome known as hotspots. In the fission yeast Schizosaccharomyces pombe, simple sequence motifs determine the location of at least some, and possibly most or all, hotspots. Recently, we showed that a large number of different sequences can create hotspots. Among those sequences we identified some recurring motifs that fell into at least five distinct families, including the well-characterized CRE family of hotspots. Here we report the essential sequence for activity of two of the novel hotspots, the oligo-C and CCAAT hotspots, and identify associated trans-acting factors required for hotspot activity. The oligo-C hotspot requires a unique 8-bp sequence, CCCCGCAC, though hotspot activity is also significantly affected by adjacent nucleotides. The CCAAT hotspot requires a more complex and degenerate sequence, including the originally identified seven nucleotide CCAATCA sequence at its core. We identified transcription factors, the CCAAT-binding factor (CBF) and Rst2, which are required specifically for activity of the CCAAT hotspots and oligo-C hotspots, respectively. Each of these factors binds to its respective motifs in vitro. However, unlike CRE, the sequence required for hotspot activity is larger than the sequence required for binding, suggesting the involvement of additional factors.
Collapse
|
11
|
Wenkel S, Turck F, Singer K, Gissot L, Le Gourrierec J, Samach A, Coupland G. CONSTANS and the CCAAT box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis. THE PLANT CELL 2006; 18:2971-84. [PMID: 17138697 PMCID: PMC1693937 DOI: 10.1105/tpc.106.043299] [Citation(s) in RCA: 449] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The CCT (for CONSTANS, CONSTANS-LIKE, TOC1) domain is found in 45 Arabidopsis thaliana proteins involved in processes such as photoperiodic flowering, light signaling, and regulation of circadian rhythms. We show that this domain exhibits similarities to yeast HEME ACTIVATOR PROTEIN2 (HAP2), which is a subunit of the HAP2/HAP3/HAP5 trimeric complex that binds to CCAAT boxes in eukaryotic promoters. Moreover, we demonstrate that CONSTANS (CO), which promotes Arabidopsis flowering, interacts with At HAP3 and At HAP5 in yeast, in vitro, and in planta. Mutations in CO that delay flowering affect residues highly conserved between CCT and the DNA binding domain of HAP2. Taken together, these data suggest that CO might replace At HAP2 in the HAP complex to form a trimeric CO/At HAP3/At HAP5 complex. Flowering was delayed by overexpression of At HAP2 or At HAP3 throughout the plant or in phloem companion cells, where CO is expressed. This phenotype was correlated with reduced abundance of FLOWERING LOCUS T (FT) mRNA and no change in CO mRNA levels. At HAP2 or At HAP3 overexpression may therefore impair formation of a CO/At HAP3/At HAP5 complex leading to reduced expression of FT. During plant evolution, the number of genes encoding HAP proteins was greatly amplified, and these proteins may have acquired novel functions, such as mediating the effect of CCT domain proteins on gene expression.
Collapse
Affiliation(s)
- Stephan Wenkel
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|
12
|
Xu Y, Zhou YL, Luo W, Zhu QS, Levy D, MacDougald OA, Snead ML. NF-Y and CCAAT/enhancer-binding protein alpha synergistically activate the mouse amelogenin gene. J Biol Chem 2006; 281:16090-8. [PMID: 16595692 DOI: 10.1074/jbc.m510514200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Amelogenin is the major protein component of the forming enamel matrix. In situ hybridization revealed a periodicity for amelogenin mRNA hybridization signals ranging from low to high transcript abundance on serial sections of developing mouse teeth. This in vivo observation led us to examine the amelogenin promoter for the activity of transcription factor(s) that account for this expression aspect of the regulation for the amelogenin gene. We have previously shown that CCAAT/enhancer-binding protein alpha (C/EBPalpha) is a potent transactivator of the mouse X-chromosomal amelogenin gene acting at the C/EBPalpha cis-element located in the -70/+52 minimal promoter. The minimal promoter contains a reversed CCAAT box (-58/-54) that is four base pairs downstream from the C/EBPalpha binding site. Similar to the C/EBPalpha binding site, the integrity of the reversed CCAAT box is also required for maintaining the activity of the basal promoter. We therefore focused on transcription factors that interact with the reversed CCAAT box. Using electrophoretic mobility shift assays we demonstrated that NF-Y was directly bound to this reversed CCAAT site. Co-transfection of C/EBPalpha and NF-Y synergistically increased the promoter activity. In contrast, increased expression of NF-Y alone had only marginal effects on the promoter. A dominant-negative DNA binding-deficient NF-Y mutant (NF-YAm29) dramatically decreased the promoter activity both in the absence or presence of exogenous expression of C/EBPalpha. We identified protein-protein interactions between C/EBPalpha and NF-Y by a co-immunoprecipitation analysis. These results suggest that C/EBPalpha and NF-Y synergistically activate the mouse amelogenin gene and can contribute to its physiological regulation during amelogenesis.
Collapse
Affiliation(s)
- Yucheng Xu
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Yavrom S, Chen L, Xiong S, Wang J, Rippe RA, Tsukamoto H. Peroxisome proliferator-activated receptor gamma suppresses proximal alpha1(I) collagen promoter via inhibition of p300-facilitated NF-I binding to DNA in hepatic stellate cells. J Biol Chem 2005; 280:40650-9. [PMID: 16216869 DOI: 10.1074/jbc.m510094200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Depletion of peroxisome proliferator-activated receptor gamma (PPARgamma) represents one of the key molecular changes that underlie transdifferentiation (activation) of hepatic stellate cells in the genesis of liver fibrosis (Miyahara, T., Schrum, L., Rippe, R., Xiong, S., Yee, H. F., Jr., Motomura, K., Anania, F. A., Willson, T. M., and Tsukamoto, H. (2000) J. Biol. Chem. 275, 35715-35722; Hazra, S., Xiong, S., Wang, J., Rippe, R. A., Krishna, V., Chatterjee, K., and Tsukamoto, H. (2004) J. Biol. Chem. 279, 11392-11401). In support of this notion, ectopic expression of PPARgamma suppresses hepatic stellate cells activation markers, most notably expression of alpha1(I) procollagen. However, the mechanisms underlying this antifibrotic effect are largely unknown. The present study utilized deletion-reporter gene constructs of proximal 2.2-kb alpha1(I) procollagen promoter to demonstrate that a region proximal to -133 bp is where PPARgamma exerts its inhibitory effect. Within this region, two DNase footprints with Sp1 and reverse CCAAT box sites exist. NF-I, but not CCAAT DNA-binding factor/NF-Y, binds to the proximal CCAAT box in hepatic stellate cells. A mutation of this site almost completely abrogates the promoter activity. NF-I mildly but independently stimulates the promoter activity and synergistically promotes Sp1-induced activity. PPARgamma inhibits NF-I binding to the most proximal footprint (-97/-85 bp) and inhibits its transactivity. The former effect is mediated by the ability of PPARgamma to inhibit p300-facilitated NF-I binding to DNA as demonstrated by chromatin immunoprecipitation assay.
Collapse
Affiliation(s)
- Sharon Yavrom
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033-9141, USA
| | | | | | | | | | | |
Collapse
|
14
|
Leaner VD, Masemola A, Parker MI. Species-specific regulation of the alpha-2(I) procollagen gene by proximal promoter elements. IUBMB Life 2005; 57:363-70. [PMID: 16036621 DOI: 10.1080/15216540500092039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Transcriptional regulation of the human alpha 2(I) procollagen proximal promoter involves the interaction of trans-acting factors at the inverted CCAAT box (G/CBE) located at position -80 and an adjacent GGAGGCCC-box at -70. Both these elements have previously been shown to be essential for activity of the human promoter. This study investigated nucleotide differences at three sites (-74, -72 and -71) between the human and mouse promoters that were sufficient to abolish trans-acting factor binding with the mouse sequence (GGAGACGT). Two distinct DNA-protein interactions were detected on the human -107/+54 promoter fragment while a single interaction was observed at the equivalent mouse promoter. One of these factors is the CCAAT-binding factor (CBF) and it's binding was observed on both the human and mouse promoters. Although the GGAGGCCC DNA-binding element was not detected on the mouse promoter, GGAGGCC-binding proteins were present in mouse nuclear extracts as observed by their interaction with the human promoter. Functional analysis of the human and mouse -343/+54 and -107/+54 promoter regions revealed significant differences between species; the human constructs having higher activity than the mouse. The differences in promoter activity between species may in part be a result of the nucleotide differences in the GGAGGCCC-box. Mutations in this region of the human -107/+54 promoter prevented DNA-protein interaction and lowered promoter activity. These results support the hypothesis that the GGAGGCCC-box in the human alpha 2(1) procollagen promoter has a regulatory function and that there exists a species-specific difference in transcription factor binding and regulation of the gene.
Collapse
Affiliation(s)
- Virna D Leaner
- Division of Medical Biochemistry, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
| | | | | |
Collapse
|
15
|
Moxley RA, Jarrett HW, Mitra S. Methods for transcription factor separation. J Chromatogr B Analyt Technol Biomed Life Sci 2004; 797:269-88. [PMID: 14630155 DOI: 10.1016/s1570-0232(03)00609-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Recent advances in the separation of transcription factors (TFs) are reviewed in this article. An overview of the transcription factor families and their structure is discussed and a computer analysis of their sequences reveals that while they do not differ from other proteins in molecular mass or isoelectric pH, they do differ from other proteins in the abundance of certain amino acids. The chromatographic and electrophoretic methods which have been successfully used for purification and analysis are discussed and recent advances in stationary and mobile phase composition is discussed.
Collapse
Affiliation(s)
- Robert A Moxley
- Department of Biochemistry, 858 Madison Avenue, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | |
Collapse
|
16
|
Nagato H, Matsuo N, Sumiyoshi H, Sakata-Takatani K, Nasu M, Yoshioka H. The transcription factor CCAAT-binding factor CBF/NF-Y and two repressors regulate the core promoter of the human pro-alpha3(V) collagen gene (COL5A3). J Biol Chem 2004; 279:46373-83. [PMID: 15316020 DOI: 10.1074/jbc.m406069200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To elucidate the mechanisms underlining alpha3(V) collagen chain expression, we performed an initial analysis of the structure and function of the core promoter of the human COL5A3 gene. The core promoter, which lacks a typical TATA motif and has a high GC content, was defined within the -129 bp immediately upstream from the major transcription start site by transient transfection experiments. In this region, we identified four DNA-protein complexes, named A, B, C, and D, by a combination of DNase I footprinting and electrophoretic mobility shift assays. Electrophoretic mobility shift assays using mutant oligonucleotide revealed that the complexes A, B, C, and D bind to -122 to -117, the -101 to -96, the -83 to -78, and the -68 to -57 bp, respectively. The competition assays using consensus oligonucleotides and supershift assays with specific antibodies showed that complex A consists of CBF/NF-Y. In a chromatin immunoprecipitation assay, CBF/NF-Y protein directly bound to this region, in vivo. Functional analysis showed that CBF/NF-Y activated the gene, whereas the proteins of complexes B and C repressed its activity. Furthermore, overexpression of a mutant form of the CBF-B/NF-YA subunit, which forms CBF/NF-Y with CBF-A/NF-YB and CBF-C/NF-YC subunits, inhibited promoter activity.
Collapse
Affiliation(s)
- Hitoshi Nagato
- Department of Anatomy, Biology and Medicine, Faculty of Medicine, Oita University, 1-1 Hasama-machi, Oita 879-5593, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Sakata-Takatani K, Matsuo N, Sumiyoshi H, Tsuda T, Yoshioka H. Identification of a functional CBF-binding CCAAT-like motif in the core promoter of the mouse pro-α1(V) collagen gene (Col5a1). Matrix Biol 2004; 23:87-99. [PMID: 15246108 DOI: 10.1016/j.matbio.2004.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2003] [Revised: 03/26/2004] [Accepted: 03/26/2004] [Indexed: 11/29/2022]
Abstract
We used structure-function analysis of the core promoter region to elucidate the transcriptional features of the mouse alpha 1(V) collagen gene (Col5a1). The core promoter, which lacks a typical TATA motif and has a high GC content, was defined within the 231 bp immediately upstream from the major transcription start site by transient transfection experiments. In this region, we identified three nuclear-factor binding sites by electrophoretic mobility shift assay: BS1 (-195 to -167), BS2 (-134 to -106), and BS3 (-110 to -80). Oligonucleotide competition and supershift assays revealed that Sp1, CBF, and Sp1-related protein specifically bind to BS1, BS2, and BS3, respectively. The CCAAT-like motif, CAAAT, and flanking sequences are conserved between the mouse and human gene. CBF, which recognizes this motif, activated the Col5a1 promoter, as previously reported for Col1a1 and Col1a2. Furthermore, overexpression of a wild-type and mutant forms of CBF-B subunit altered this activity. These results suggest that CBF is a key factor in the coordinated expression of type I and V collagen genes.
Collapse
Affiliation(s)
- Keiko Sakata-Takatani
- Department of Anatomy, Biology and Medicine, Faculty of Medicine, Oita University, 1-1 Hasama, Oita 879-5593, Japan
| | | | | | | | | |
Collapse
|
18
|
Matsuo N, Yu-Hua W, Sumiyoshi H, Sakata-Takatani K, Nagato H, Sakai K, Sakurai M, Yoshioka H. The transcription factor CCAAT-binding factor CBF/NF-Y regulates the proximal promoter activity in the human alpha 1(XI) collagen gene (COL11A1). J Biol Chem 2003; 278:32763-70. [PMID: 12805369 DOI: 10.1074/jbc.m305599200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have characterized the proximal promoter region of the human COL11A1 gene. Transient transfection assays indicate that the segment from -199 to +1 is necessary for the activation of basal transcription. Electrophoretic mobility shift assays (EMSAs) demonstrated that the ATTGG sequence, within the -147 to -121 fragment, is critical to bind nuclear proteins in the proximal COL11A1 promoter. We demonstrated that the CCAAT binding factor (CBF/NF-Y) bound to this region using an interference assay with consensus oligonucleotides and a supershift assay with specific antibodies in an EMSA. In a chromatin immunoprecipitation assay and EMSA using DNA-affinity-purified proteins, CBF/NF-Y proteins directly bound this region in vitro and in vivo. We also showed that four tandem copies of the CBF/NF-Y-binding fragment produced higher transcriptional activity than one or two copies, whereas the absence of a CBF/NF-Y-binding fragment suppressed the COL11A1 promoter activity. Furthermore, overexpression of a dominant-negative CBF-B/NF-YA subunit significantly inhibited promoter activity in both transient and stable cells. These results indicate that the CBF/NF-Y proteins regulate the transcription of COL11A1 by directly binding to the ATTGG sequence in the proximal promoter region.
Collapse
Affiliation(s)
- Noritaka Matsuo
- Department of Anatomy, Biology, and Medicine, Oita Medical University, Hasama-machi, Oita 879-5593, Japan
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Padmanabhan R, Tanimoto A, Sasaguri Y. Transactivation of human cdc2 promoter by adenovirus E1A. Curr Top Microbiol Immunol 2003; 272:365-97. [PMID: 12747556 DOI: 10.1007/978-3-662-05597-7_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Expression of the adenovirus oncoprotein E1A 12S induces the heterotrimeric transcription factor, NF-Y. NF-Y binds to the two CCAAT motifs upstream of the transcriptional start site of the human cdc2 promoter and is required for activation of the promoter by E1A 12S in cycling cells. The observations that a number of eukaryotic cell cycle regulatory genes also contain the CCAAT motifs and NF-Y binds to them support the notion that E1A 12S could play an important role in deregulated expression of these genes through activation of NF-Y gene in cycling cells.
Collapse
Affiliation(s)
- R Padmanabhan
- Department of Microbiology and Immunology, Georgetown University Medical Center, 3900 Reservoir Road, Washington DC, WA 20057, USA.
| | | | | |
Collapse
|
20
|
Bezhani S, Sherameti I, Pfannschmidt T, Oelmüller R. A repressor with similarities to prokaryotic and eukaryotic DNA helicases controls the assembly of the CAAT box binding complex at a photosynthesis gene promoter. J Biol Chem 2001; 276:23785-9. [PMID: 11274172 DOI: 10.1074/jbc.m010945200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A single nucleotide exchange in a promoter region located immediately upstream of the CAAT box of the spinach photosynthesis gene AtpC (gene product is subunit gamma of the chloroplast ATP synthase) prevents the formation of a secondary structure and causes an unregulated, constitutive high level of expression (Kusnetsov, V., Landsberger, M., Oelmüller, R. (1999) J. Biol. Chem. 274, 36009-36014). We have isolated cDNAs for ATPC-2, a new polypeptide with homologies to pro- and eukaryotic helicases, which specifically binds to this promoter region. Binding of ATPC-2 competes strongly with that of a CAAT box binding factor (CBF), consistent with the idea that both complexes cannot be formed simultaneously because of sterical reasons. In gel mobility shift assays, high binding activities of ATPC-2 and low binding activities of CBF were observed with nuclear extracts from tissue with low AtpC expression levels, and the opposite was observed with extracts from tissues with high AtpC expression levels. Binding of ATPC-2 to the mutant sequence, which directs a constitutively high level expression in vivo and prevents the formation of a secondary structure in vitro, is significantly weaker than binding to the wild-type sequence. Again, the opposite results were obtained for the CBF. Thus, we conclude that the assembly of the CBF.DNA complex stimulates transcription of AtpC and that CBF binding is prevented if ATPC-2 is bound to the promoter region. The novel mechanism of gene regulation and the role of the helicase-like protein ATPC-2 as a potential transcriptional repressor is discussed in relation to its modular structure.
Collapse
Affiliation(s)
- S Bezhani
- Institut für Allgemeine Botanik, Lehrstuhl für Pflanzenphysiologie, Friedrich-Schiller-Universität Jena, Dornburger Strasse 159, D-07743 Jena, Germany
| | | | | | | |
Collapse
|
21
|
Gadgil H, Taylor WL, Jarrett HW. Comparative studies on discrete and concatemeric DNA-sepharose columns for purification of transcription factors. J Chromatogr A 2001; 917:43-53. [PMID: 11403491 DOI: 10.1016/s0021-9673(01)00647-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Concatemers, tandem copies of DNA elements ligated together, are widely used for the DNA affinity chromatography of transcription factors. Purification of different transcription factors using discrete, concatemeric and T18:A18 tailed DNA affinity columns was studied. Columns having a discrete DNA sequence bound by cytidylic-adenylic-adenylic-thymidylic oligonucleotide (CAAT) enhancer binding protein (C/EBP) yields significantly more green fluorescent protein-C/EBP (GFP-C/EBP) fusion protein than a concatemeric DNA column made from five tandem repeats of the same DNA sequence. For lac repressor protein, the concatemeric and T18:A18 tailed columns show greater retention times than a discrete, untailed DNA affinity column. It was observed that the T18:A18 tailed column gives better resolution than either the discrete or concatemeric columns, of mixtures containing both lac repressor and GFP-C/EBP. Discrete concatemeric and T18:A18 tail columns all bound the Sp1 transcription factor and showed similar retention. The T18:A18 tailed column gives higher yield for Sp1 than the other columns. Our study shows concatemeric columns do not have any distinct advantage for the three different transcription factors we studied including Sp1, the original justification for the concatemeric approach.
Collapse
Affiliation(s)
- H Gadgil
- Department of Biochemistry, University of Tennessee, Memphis 38163, USA
| | | | | |
Collapse
|
22
|
Affiliation(s)
- H Gadgil
- Department of Biochemistry, University of Tennessee, 858 Madison Avenue, Memphis, Tennessee 38163, USA
| | | | | |
Collapse
|
23
|
Cassel DL, Subudhi SK, Surrey S, McKenzie SE. GATA and NF-Y participate in transcriptional regulation of FcgammaRIIA in megakaryocytic cells. Blood Cells Mol Dis 2000; 26:587-97. [PMID: 11112392 DOI: 10.1006/bcmd.2000.0337] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human FcgammaRIIA, expressed on platelets, neutrophils, and macrophages, plays a major role in platelet activation and immune clearance. Clinical observations indicate that regulation of expression of this receptor is an important factor influencing the course of immune thrombocytopenia. We used both transient transfection with FcgammaRIIA promoter constructs and electrophoretic mobility shift assays (EMSA) to study the regulation of FcgammaRIIA transcription. In HEL (erythromegakaryocytic) cells, the 200 bp immediately 5' of the ATG start codon accounted for the majority of the activity of a 3.6-kb promoter fragment. Putative GATA (-161) and NF-Y (-119) sites are present. EMSA analyses demonstrate specific binding of both GATA-1 and GATA-2 to labeled oligonucleotides containing the putative GATA site with HEL but not U937 (myelomonocytic) nuclear extracts. Antibodies to NF-Y supershift the specific -119 NF-Y complex with HEL, U937, Jurkat (T-lymphocytic), and HeLa (nonhematopoietic) nuclear extracts. Comparison of the activity of GATA and NF-Y mutant constructs in HEL and U937 demonstrates that while either GATA or NF-Y mutation results in a large decrease in the promoter activity (2.2- and 2.3-fold, respectively) in HEL cells, neither mutation is effective in reducing activity in U937 cells. This is the first example of a promoter active in the megakaryocyte lineage in which NF-Y cooperates additively with GATA factors to regulate transcription. Identification of other factors that must be operational for FcgammaRIIA transcription in myelomonocytic cells which lack GATA factors will bolster our ongoing efforts to dissect the function of these Fc receptors in megakaryocytic and myelomonocytic cells in vivo.
Collapse
MESH Headings
- 5' Untranslated Regions/genetics
- Antigens, CD/drug effects
- Antigens, CD/genetics
- Antigens, CD/physiology
- Binding Sites
- CCAAT-Binding Factor/pharmacology
- DNA-Binding Proteins/pharmacology
- Electrophoresis, Polyacrylamide Gel
- Erythroid-Specific DNA-Binding Factors
- GATA1 Transcription Factor
- GATA2 Transcription Factor
- Gene Expression Regulation/drug effects
- Genes, Reporter
- Humans
- Megakaryocytes/drug effects
- Megakaryocytes/metabolism
- Promoter Regions, Genetic
- Receptors, IgG/drug effects
- Receptors, IgG/genetics
- Receptors, IgG/physiology
- Transcription Factors/pharmacology
- Transcription, Genetic/drug effects
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- D L Cassel
- Department of Pediatrics, Jefferson Medical College, Philadelphia, Pennsylvania 19107, USA
| | | | | | | |
Collapse
|
24
|
Xiong S, Chirala SS, Wakil SJ. Sterol regulation of human fatty acid synthase promoter I requires nuclear factor-Y- and Sp-1-binding sites. Proc Natl Acad Sci U S A 2000; 97:3948-53. [PMID: 10759542 PMCID: PMC18122 DOI: 10.1073/pnas.040574197] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
To understand cholesterol-mediated regulation of human fatty acid synthase promoter I, we tested various 5'-deletion constructs of promoter I-luciferase reporter gene constructs in HepG2 cells. The reporter gene constructs that contained only the Sp-1-binding site (nucleotides -82 to -74) and the two tandem sterol regulatory elements (SREs; nucleotides -63 to -46) did not respond to cholesterol. Only the reporter gene constructs containing a nuclear factor-Y (NF-Y) sequence, the CCAAT sequence (nucleotides -90 to -86), an Sp-1 sequence, and the two tandem SREs responded to cholesterol. The NF-Y-binding site, therefore, is essential for cholesterol response. Mutating the SREs or the NF-Y site and inserting 4 bp between the Sp-1- and NF-Y-binding sites both resulted in a minimal cholesterol response of the reporter genes. Electrophoretic mobility-shift assays using anti-SRE-binding protein (SREBP) and anti-NF-Ya antibodies confirmed that these SREs and the NF-Y site bind the respective factors. We also identified a second Sp-1 site located between nucleotides -40 and -30 that can substitute for the mutated Sp-1 site located between nucleotides -82 and -74. The reporter gene expression of the wild-type promoter and the Sp-1 site (nucleotides -82 to -74) mutant promoter was similar when SREBP1a [the N-terminal domain of SREBP (amino acids 1-520)] was constitutively overexpressed, suggesting that Sp-1 recruits SREBP to the SREs. Under the same conditions, an NF-Y site mutation resulted in significant loss of reporter gene expression, suggesting that NF-Y is required to activate the cholesterol response.
Collapse
Affiliation(s)
- S Xiong
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | |
Collapse
|
25
|
Kusnetsov V, Landsberger M, Meurer J, Oelmüller R. The assembly of the CAAT-box binding complex at a photosynthesis gene promoter is regulated by light, cytokinin, and the stage of the plastids. J Biol Chem 1999; 274:36009-14. [PMID: 10585491 DOI: 10.1074/jbc.274.50.36009] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A functionally important region in the promoter of the spinach photosynthesis gene AtpC, which encodes the subunit gamma of the chloroplast ATP synthase, is located immediately upstream of the CAAT-box. A single nucleotide exchange in this region (AAAATTCAAT --> AAGATCAAT) uncouples the expression of an AtpC promoter::uidA gene fusion from the regulation by light, cytokinin, and functional plastids and results in a high constitutive expression of the reporter gene. By screening an Arabidopsis thaliana expression library with a double-stranded wild-type oligonucleotide from this promoter region, we have isolated cDNAs from Arabidopsis libraries that code for plant homologs of the CAAT-box binding factor (CBF)-C. Binding occurs only in the presence of nuclear extracts, consistent with reports from metazoa CBFs that the subunits A and B in addition to C are required for the formation of the CBF-DNA complex. At least eight genes with homologies to CBF-C are present in the Arabidopsis genome; one of them exhibits striking similarities to the gene for the human global transcriptional repressor Drap1. In gel mobility shift assays, low binding activity of CBF to the wild-type AtpC promoter sequence was observed with nuclear extracts from tissue with low AtpC expression levels, i.e. extracts from etiolated and photobleached seedlings, whereas high binding activity was detectable with extracts from tissues with high AtpC expression levels, i.e. extracts from light-grown seedlings and etiolated seedlings treated with cytokinin. Binding to the mutant sequence, which directs constitutive high level uidA expression in vivo, is significantly stronger than to the wild-type sequence. The data are consistent with the idea that the assembly of CBF at the AtpC promoter is regulated in response to light and cytokinin and that the low level of expression in etiolated and photobleached material is caused by an inhibitory effect. The structure/function relationships of the Arabidopsis CBFs are discussed in relation to their regulatory function in AtpC gene expression.
Collapse
Affiliation(s)
- V Kusnetsov
- Timiriazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow 127276, Russia
| | | | | | | |
Collapse
|
26
|
Park GT, Morasso MI. Regulation of the Dlx3 homeobox gene upon differentiation of mouse keratinocytes. J Biol Chem 1999; 274:26599-608. [PMID: 10473625 PMCID: PMC1317293 DOI: 10.1074/jbc.274.37.26599] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Distal-less Dlx3 homeodomain gene is expressed in terminally differentiated murine epidermal cells, and there is evidence to support an essential role as a transcriptional regulator of the terminal differentiation process in these cells. In an attempt to determine the factors that induce Dlx3 gene expression, we have cloned the 1.2-kilobase pair proximal region of murine gene and analyzed its cis-regulatory elements and potential trans-acting factors. The proximal region of the Dlx3 gene has a canonical TATA box and CCAAT box, and the transcription start site was located 205 base pairs upstream from the initiation of translation site. Serial deletion analysis showed that the region between -84 and -34 confers the maximal promoter activity both in undifferentiated and differentiated primary mouse keratinocytes. Gel retardation assays and mutational analysis demonstrated that the transcriptional regulator NF-Y (also referred to as CBF) binds to a CCAAT box motif within this region and is responsible for the majority of the Dlx3 promoter activity. In addition, an Sp1-binding site was located immediately upstream of transcription start site that acts as a positive regulatory element of the Dlx3 promoter, independent of the CCAAT box motif. Importantly, elements residing between +30 to +60 of the Dlx3 gene are responsible for the Ca(2+)-dependent induction of Dlx3 during keratinocyte differentiation.
Collapse
Affiliation(s)
- Geon Tae Park
- From the Laboratory of Skin Biology, NIAMS, National Institutes of Health, Bethesda, Maryland 20892
| | - Maria I. Morasso
- From the Laboratory of Skin Biology, NIAMS, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
27
|
Temple MD, Cairns MJ, Kim A, Murray V. Protein-DNA footprinting of the human epsilon-globin promoter in human intact cells using nitrogen mustard analogues and other DNA-damaging agents. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1445:245-56. [PMID: 10366709 DOI: 10.1016/s0167-4781(99)00057-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Nitrogen mustard analogues, bleomycin and dimethyl sulphate (DMS) have been used as probes of protein-DNA interactions in intact human cells. The sites of damage have been determined at base pair resolution in the single copy epsilon-globin gene promoter in erythroid K562 cells, non-erythroid HeLa cells and purified DNA. Exponential amplification of gene-specific damage fragments was achieved using the ligation-mediated polymerase chain reaction (LMPCR) technique and analysed on DNA sequencing gels. A comparison of the relative damage band intensities between purified DNA and intact cells revealed several significant differences - both protection (footprint) and enhancement. These differences occurred at putative transcription factor binding sites and hence are thought to be due to protein-DNA interactions. A major feature of the band intensity ratio plots was the footprint observed at the CCAAT box binding motif as revealed by nitrogen mustard analogues. Enhanced band intensity (hypersensitivity) was displayed at the 5'- and 3'-ends of the CCAAT box in K562 cells - this feature was absent in HeLa cells and in vitro reconstitutions. A footprint was found at the GATA-1 motif in K562 cells that was also absent in non-expressing HeLa cells. Footprints were also evident at the TATA box, CACC box and the epsilonF1 DNA binding motif in K562 cells.
Collapse
Affiliation(s)
- M D Temple
- School of Biochemistry and Molecular Genetics, University of New South Wales, Sydney NSW 2052, Australia
| | | | | | | |
Collapse
|
28
|
Abstract
As a result of differential splicing, one subunit of the nuclear factor Y (NF-Y) consists of two major isoforms designated short (NF-YaS) and long (NF-YaL). In proliferating normal human fibroblasts, NF-YaL is by far the more expressed isoform. Surprisingly, NF-YaS was found by immunoblotting to be as prominent as NF-YaL in simian virus 40 (SV40)-transformed cell derivatives. As a consequence, two NF-Y/DNA complexes, one containing the long and the other the short isoform, were formed with extracts from transformed cells and a target promoter element in electrophoretic mobility-shift assays. Only the complex containing NF-YaL was detected with extracts from normal fibroblasts. Furthermore, the NF-Y recognition motif contributed to promoter activation in SV40-transformed cells but not in normal, cells. Our finding links transcription stimulation in transformed cells to quantitative changes in the expression of an NF-Ya subunit.
Collapse
Affiliation(s)
- Z Gu
- Applied Tumor Virology, Deutsches Krebsforschungszentrum, and Institut National de la Santé et de la Recherche Médicale Unité, Heidelberg, Germany
| | | | | | | |
Collapse
|
29
|
Liang SG, Maity SN. Pathway of complex formation between DNA and three subunits of CBF/NF-Y. Photocross-linking analysis of DNA-protein interaction and characterization of equilibrium steps of subunit interaction and dna binding. J Biol Chem 1998; 273:31590-8. [PMID: 9813075 DOI: 10.1074/jbc.273.47.31590] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, we used a photocross-linking method to identify specific contact of CCAAT-binding factor (CBF) subunits in a CBF-DNA complex. The analysis showed that all three subunits in the CBF-DNA complex were cross-linked to DNA and that CBF-B and CBF-C were cross-linked more strongly than CBF-A. None of the CBF-A and CBF-C subunits, which together formed a CBF-A/CBF-C heterodimer, were cross-linked without CBF-B; in contrast, CBF-B was cross-linked in the absence of CBF-A/CBF-C. No subunit of heterotrimeric CBF containing DNA-binding domain mutant of either CBF-B or CBF-C was cross-linked to DNA, and interestingly, cross-linking of CBF-B that occurred without CBF-A/CBF-C was inhibited in presence of mutant CBF-C/CBF-A heterodimer. Altogether, these results indicated that the specific DNA contact surface of each CBF subunit is generated as a result of interaction between CBF-B and CBF-A/CBF-C heterodimer and that the three CBF subunits interact interdependently with DNA to form a CBF-DNA complex. Equilibrium interactions among the three CBF subunits and between CBF subunits and DNA were studied by electrophoretic mobility shift assay. This showed that at equilibrium DNA-binding conditions, the CBF-A/CBF-C heterodimer is very stable, but association between CBF-B and CBF-A/CBF-C is very weak. The nature of the association of CBF-B with CBF-A/CBF-C was also revealed by studying the inhibition of CBF-DNA complex formation by the mutant CBF-B. This study indicated that the association between CBF-B and CBF-A/CBF-C is stabilized upon interaction with DNA, a process likely to favor formation of a high-affinity CBF-DNA complex.
Collapse
Affiliation(s)
- S G Liang
- Department of Molecular Genetics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | |
Collapse
|
30
|
Li Q, Herrler M, Landsberger N, Kaludov N, Ogryzko VV, Nakatani Y, Wolffe AP. Xenopus NF-Y pre-sets chromatin to potentiate p300 and acetylation-responsive transcription from the Xenopus hsp70 promoter in vivo. EMBO J 1998; 17:6300-15. [PMID: 9799238 PMCID: PMC1170955 DOI: 10.1093/emboj/17.21.6300] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We identify Xenopus NF-Y as a key regulator of acetylation responsiveness for the Xenopus hsp70 promoter within chromatin assembled in Xenopus oocyte nuclei. Y-box sequences are required for the assembly of DNase I-hypersensitive sites in the hsp70 promoter, and for transcriptional activation both by inhibitors of histone deacetylase and by the p300 acetyltransferase. The viral oncoprotein E1A interferes with both of these activation steps. We clone Xenopus NF-YA, NF-YB and NF-YC and establish that NF-Y is the predominant Y-box-binding protein in Xenopus oocyte nuclei. NF-Y interacts with p300 in vivo and is itself a target for acetylation by p300. Transcription from the hsp70 promoter in chromatin can be enhanced further by heat shock factor. We suggest two steps in chromatin modification at the Xenopus hsp70 promoter: first the binding of NF-Y to the Y-boxes to pre-set chromatin and second the recruitment of p300 to modulate transcriptional activity.
Collapse
Affiliation(s)
- Q Li
- Laboratory of Molecular Embryology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-5431, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Artlett CM, Chen SJ, Varga J, Jimenez SA. Modulation of basal expression of the human alpha1(I) procollagen gene (COL1A1) by tandem NF-1/Sp1 promoter elements in normal human dermal fibroblasts. Matrix Biol 1998; 17:425-34. [PMID: 9840444 DOI: 10.1016/s0945-053x(98)90102-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We previously demonstrated that a segment of the human alpha1 type I procollagen gene (COL1A1) promoter encompassing nt -174 to -84 is responsible for the highest transcriptional activity in collagen producing cells in vitro. Here, we identified two almost identical tandem NF-1/Sp1 binding sites located between nt -129 to -107 (distal element) and nt -104 to -77 (proximal element) that are responsible for the basal regulation of COL1A1 transcription in normal human dermal fibroblasts. Transient transfection studies revealed that 85% of the basal COL1A1 promoter activity resides within the distal element; however, site-directed mutagenesis within the CCAAT motif in the proximal element resulted in a 98% decrease of the COL1A1 promoter activity. We conclude that each of the NF-1/Sp1 tandem binding sites has a different function. The distal element drives the transcriptional activity of the COL1A1 promoter but is not sufficient for its basal expression, whereas the NF-1 binding site in the proximal element is essential for in vitro COL1A1 gene transcription.
Collapse
Affiliation(s)
- C M Artlett
- Department of Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | |
Collapse
|
32
|
Collins M, Smith AA, Parker MI. Characterization of two distinct families of transcription factors that bind to the CCAAT box region of the human COL1A2 gene. J Cell Biochem 1998. [DOI: 10.1002/(sici)1097-4644(19980915)70:4<455::aid-jcb3>3.0.co;2-i] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
33
|
Serra E, Zemzoumi K, di Silvio A, Mantovani R, Lardans V, Dissous C. Conservation and divergence of NF-Y transcriptional activation function. Nucleic Acids Res 1998; 26:3800-5. [PMID: 9685499 PMCID: PMC147774 DOI: 10.1093/nar/26.16.3800] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The CCAAT-binding protein NF-Y is involved in the regulation of a variety of eukaryotic genes and is formed in higher eukaryotes by three subunits NF-YA/B/C. We have characterized NF-Y of the trematode parasite Schistosoma mansoni and studied the structure and the function of the SMNF-YA subunit. In this work, we present the cloning and sequence analysis of the B subunit of the parasite factor. SMNF-YB contains the conserved HAP-3 homology domain but the remaining part of the protein was found to be highly divergent from all other species. We demonstrated by transfections of GAL4 fusion constructs, that mouse NF-YB does not contain activation domains while the C-terminal part of SMNF-YB has transcriptional activation potential. On the other hand, the N-terminal parts of SMNF-YA and mouse NF-YA were shown to mediate transactivation; the integrity of a large 160 amino acid glutamine-rich domain of NF-YA was required for this function and an adjacent serine- and threonine-rich domain was necessary for full activity in HepG2, but redundant in other cell types. Transactivation domains identified in SMNF-YB are also rich in serine and threonine residues. Our results indicate that serine/threonine-richsequences from helminth parasites potentiate trans-cription and that such structures have diverged during evolution within the same transcription factor.
Collapse
Affiliation(s)
- E Serra
- Unité INSERM 167, Institut Pasteur Lille, 1, rue du Professeur Calmette, 59019 Lille, France
| | | | | | | | | | | |
Collapse
|
34
|
Currie RA. Biochemical characterization of the NF-Y transcription factor complex during B lymphocyte development. J Biol Chem 1998; 273:18220-9. [PMID: 9660784 DOI: 10.1074/jbc.273.29.18220] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcription factor, NF-Y, plays a critical role in tissue-specific major histocompatibility complex class II gene transcription. In this report the biochemical properties of the heterotrimeric NF-Y complex have been characterized during stage-specific B-cell development, and in several class II- mutant B-cell lines, which represent distinct bare lymphocyte syndrome class II genetic complementation groups. The NF-Y complex derived from class II+ mature B-cells bound with high affinity to anion exchangers, and eluted as an intact trimeric complex, whereas, NF-Y derived from class II- plasma B-cells, and from bare lymphocyte syndrome group II cell lines, RJ2.2.5 and RM3, dissociated into discrete NF-YA and NF-YB:C subunit fractions. Recombination of the MPC11 plasma B-cell derived NF-Y A:B:C complex with the low molecular mass protein fraction, NF-Y-associated factors (YAFs), derived from mature A20 B-cell nuclei, conferred high affinity anion exchange binding to NF-Y as an intact trimeric complex. Recombination of the native NF-YA:B:C complex with the transcriptional cofactor, PC4, likewise conferred high affinity NF-Y binding to anion exchangers, and stabilized NF-Y interaction with CCAAT-box DNA motifs in vitro. Interaction between PC4 and NF-Y was mapped to the C-terminal region of PC4, and the subunit interaction subdomain of the highly conserved DNA binding-subunit interaction domain (DBD) of NF-YA. These results suggest that in class II+ mature B-cells NF-Y is associated with the protein cofactor, PC4, which may play an important role in NF-Y-mediated transcriptional control of class II genes.
Collapse
Affiliation(s)
- R A Currie
- Laboratory of Gene Regulation, The Wheeler Institute for Biomedical Research, Huntington, New York 11743, USA
| |
Collapse
|
35
|
Lamb KA, Johnson LR, Rizzino A. NF-Y binds to the CCAAT box motif of the FGF-4 gene and promotes FGF-4 expression in embryonal carcinoma cells. Mol Reprod Dev 1997; 48:301-9. [PMID: 9322240 DOI: 10.1002/(sici)1098-2795(199711)48:3<301::aid-mrd1>3.0.co;2-v] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
FGF-4 appears to be the first fibroblast growth factor (FGF) expressed during embryogenesis, and its expression is critical for early mammalian development. FGF-4 is expressed in the embryonic cell lines, F9, D3, and NT2/D1; but its expression in these cells is repressed upon differentiation. Transcription of the FGF-4 gene in embryonic cells is regulated by an enhancer in the third exon and by a positive regulatory region upstream of the transcription start site. A CCAAT box motif within the positive regulatory region has been shown to support FGF-4 expression, but the factor that binds to this site in vivo has not been identified. In this report, we demonstrate that the transcription factor complex NF-Y binds to the FGF-4 CCAAT box motif when nuclear extracts from each of the embryonic cell lines and their differentiated cells were examined by gel mobility shift analyses. Importantly, we demonstrate that expression of a dominant-negative NF-YA mutant protein reduces the expression of FGF-4 promoter/reporter gene constructs in F9 EC cells. Hence, we provide strong evidence that the transcription factor NF-Y is involved in the expression of the FGF-4 gene.
Collapse
Affiliation(s)
- K A Lamb
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha 68198-6805, USA
| | | | | |
Collapse
|
36
|
Jump DB, Badin MV, Thelen A. The CCAAT box binding factor, NF-Y, is required for thyroid hormone regulation of rat liver S14 gene transcription. J Biol Chem 1997; 272:27778-86. [PMID: 9346922 DOI: 10.1074/jbc.272.44.27778] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Triiodothyronine (T3) activates rat liver S14 gene transcription through T3 receptors (TRbeta) binding distal thyroid hormone response elements located between -2.8 and -2.5 kilobase pairs upstream from the transcription start site. Previous studies suggested that proximal promoter elements located between -220 to -80 base pairs upstream from the 5' end of the S14 gene were involved in hormone activation of the S14 gene. This report identifies an inverted CCAAT box (or Y box) at -104ATTGG-100 as a core cis-regulatory element. Gel shift studies using rat liver nuclear proteins show that at least three CCAAT-binding factors interact with this region as follows: NF-Y and c/EBP-related proteins formed major complexes, whereas NF-1/CTF forms a minor complex in gel shift assay. Mutation of the Y box indicated that loss of NF-Y binding, but not c/EBP or NF-1, correlated closely with a decline in basal activity and a loss of T3-mediated transactivation. Substitution of the S14 Y box in reporter genes with elements binding only NF-Y elevated basal activity and T3-mediated transactivation, whereas substitution with elements binding c/EBP-related proteins or SP1 displayed low basal activity and T3-mediated transactivation. These studies indicate that NF-Y and TRbeta functionally interact to confer T3 control to the S14 gene.
Collapse
Affiliation(s)
- D B Jump
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA.
| | | | | |
Collapse
|
37
|
Bi W, Wu L, Coustry F, de Crombrugghe B, Maity SN. DNA binding specificity of the CCAAT-binding factor CBF/NF-Y. J Biol Chem 1997; 272:26562-72. [PMID: 9334236 DOI: 10.1074/jbc.272.42.26562] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
CBF is a heterotrimeric protein that binds to DNA containing CCAAT motifs. Here we have analyzed interactions of recombinant CBF with DNA using hydroxyl radical footprinting and methylation interference assays. In the CBF-DNA complex, three separate DNA regions are protected from hydroxyl radical cleavage, one located over and immediately adjacent to the CCAAT motif itself and the other two located on both sides of the CCAAT motif. The methylation interference assay showed, however, that only in the CCAAT motif region methylation of bases was able to interfere with the formation of a CBF-DNA complex, suggesting that CBF makes sequence-specific contacts only in the CCAAT motif region. To further determine the specific DNA sequences necessary for CBF binding, we employed a polymerase chain reaction-mediated random binding site selection method. This analysis showed that CBF binding to DNA requires the CCAAT sequence and other specific sequences immediately flanking both ends of the CCAAT motif. We also showed that the nature of the flanking nucleotide sequences affects the affinity of CBF for DNA. Interestingly, most of the CCAAT motifs present in various higher eukaryotic promoters correspond to the CBF binding sites that were selected, consistent with the hypothesis that these motifs are binding sites for CBF and, hence, that CBF could regulate transcription of numerous eukaryotic genes.
Collapse
Affiliation(s)
- W Bi
- Department of Molecular Genetics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
38
|
Orita T, Shimozaki K, Murakami H, Nagata S. Binding of NF-Y transcription factor to one of the cis-elements in the myeloperoxidase gene promoter that responds to granulocyte colony-stimulating factor. J Biol Chem 1997; 272:23216-23. [PMID: 9287329 DOI: 10.1074/jbc.272.37.23216] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The expression of the myeloperoxidase (MPO) gene is restricted to cells of the myeloid cell lineage and is induced by granulocyte colony-stimulating factor (G-CSF). In this study, a series of deletion mutations was introduced in the promoter of the human MPO gene, which was then fused to the chloramphenicol acetyltransferase gene. The G-CSF-induced promoter activity was examined in mouse myeloid precursor FDC-P1 transformants that constitutively express the G-CSF receptor. A G-CSF-responsive element (GRE) in the MPO gene was found approximately 800 base pairs upstream from the transcription initiation site. When the 5'-flanking region of the human MPO gene contained this element, it yielded promoter activity in cells cultured with G-CSF but not in cells cultured with interleukin 3. Gel shift assays with the element showed that a specific nuclear factor(s) (NF/G-CSF) binds to the element. The NF/G-CSF was purified by affinity chromatography using an oligonucleotide of GRE. Protein sequence analysis of the purified NF/G-CSF indicated that NF/G-CSF is a ubiquitous transcription factor, NF-Y, which is composed of three subunits. The recombinant NF-Y was then shown to bind to GRE in a combination of the three subunits.
Collapse
Affiliation(s)
- T Orita
- Osaka Bioscience Institute, 6-2-4 Furuedai, Suita, Osaka 565, Japan
| | | | | | | |
Collapse
|
39
|
Moran D, Galperin E, Horowitz M. Identification of factors regulating the expression of the human glucocerebrosidase gene. Gene 1997; 194:201-13. [PMID: 9272862 DOI: 10.1016/s0378-1119(97)00148-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Gaucher disease, the most prevalent sphingolipid disorder, is characterized by an accumulation of sphingolipids mainly in cells of the reticuloendothelial cells, and is due to decreased activity of the lysosomal enzyme glucocerebrosidase (GCase). The corresponding gene is expressed differentially, namely in different cell types there are different GCase steady-state mRNA levels. Electrophoretic mobility shift assays, DNase footprinting and chloramphenicol acetyl transferase assays were employed in order to unravel some of the transcription factors responsible for the differential expression of the glucocerebrosidase (gcs) gene. The results indicate that OCTA binding protein, AP-1, PEA3 and a CAAT binding protein participate in regulating the expression of the gcs gene. The availability of the transcription factors seems to control the level of transcription of the gcs gene.
Collapse
Affiliation(s)
- D Moran
- Department of Cell Research and Immunology, Tel-Aviv University, Ramat-Aviv, Israel
| | | | | |
Collapse
|
40
|
Hasegawa T, Takeuchi A, Miyaishi O, Isobe KI, de Crombrugghe B. Cloning and characterization of a transcription factor that binds to the proximal promoters of the two mouse type I collagen genes. J Biol Chem 1997; 272:4915-23. [PMID: 9030551 DOI: 10.1074/jbc.272.8.4915] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have used the yeast one-hybrid system to clone transcription factors that bind to specific sequences in the proximal promoters of the type I collagen genes. We utilized as bait the sequence between -180 and -136 in the pro-alpha2(I) collagen promoter because it acts as a functional promoter element and binds several DNA-binding proteins. Three cDNA clones were isolated that encoded portions of the mouse SPR2 transcription factor, whereas a fourth cDNA contained a potential open reading frame for a polypeptide of 775 amino acids and was designated BFCOL1. Recombinant BFCOL1 was shown to bind to the -180 to -152 segment of the mouse pro-alpha2(I) collagen proximal promoter and to two discrete sites in the proximal promoter of the mouse pro-alpha1(I) gene. The N-terminal portion of BFCOL1 contains its DNA-binding domain. DNA transfection experiments using fusion polypeptides with the yeast GAL4 DNA-binding segment indicated that the C-terminal part of BFCOL1 contained a potential transcriptional activation domain. We speculate that BFCOL1 participates in the transcriptional control of the two type I collagen genes.
Collapse
Affiliation(s)
- T Hasegawa
- Department of Molecular Genetics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
41
|
Saux CJL, Gleyzal C, Raccurt M, Sommer P. Functional analysis of the lysyl oxidase promoter in myofibroblast-like clones of 3T6 fibroblast. J Cell Biochem 1997. [DOI: 10.1002/(sici)1097-4644(199702)64:2<328::aid-jcb14>3.0.co;2-e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
42
|
Woodson KG, Crawford PA, Sadovsky Y, Milbrandt J. Characterization of the promoter of SF-1, an orphan nuclear receptor required for adrenal and gonadal development. Mol Endocrinol 1997; 11:117-26. [PMID: 9013759 DOI: 10.1210/mend.11.2.9881] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Steroidogenic factor 1 (SF-1) is a transcription factor shown to be critical for regulation of adrenal and gonadal development and function. To dissect the mechanisms that direct expression of this regulator, we have studied the promoter of the SF-1 gene and have identified cis-acting elements that recognize a basic-helix-loop-helix transcription factor; the CAAT binding factor; and Sp1. We demonstrate in Y1 adrenocortical cells that a 90-bp proximal promoter fragment is sufficient to direct steroidogenic-specific expression and that all three elements are required for activity of the SF-1 promoter. Functional analysis of the binding sites on a heterologous TATA box-containing promoter demonstrates that the CAAT box and Sp1 site are not essential for promoter activity when a TATA box is present, whereas the E box is absolutely required for gene expression and is most likely the steroidogenic cell-specific element. We also demonstrate that SF-1 itself does not significantly affect the transcription of its own gene, and thus conclude that the E box, CAAT box, and Sp1 site of the proximal promoter direct expression of the SF-1 gene.
Collapse
Affiliation(s)
- K G Woodson
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
43
|
Serra E, Zemzoumi K, Trolet J, Capron A, Dissous C. Functional analysis of the Schistosoma mansoni 28 kDa glutathione S-transferase gene promoter: involvement of SMNF-Y transcription factor in multimeric complexes. Mol Biochem Parasitol 1996; 83:69-80. [PMID: 9010843 DOI: 10.1016/s0166-6851(96)02751-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The ability of the 5' flanking region of the gene encoding the 28 kDa glutathione S-transferase of Schistosoma mansoni gene to promote transcription, was studied in different mammalian cell lines. Results of transient transfection assays showed a strong activity of the -277 to +1 nt region of the Sm28GST gene, comparable to that of well-studied promoters. Deletion analysis indicated that an AP-1 site and two closely located CCAAT (Y1 and Y2) boxes were the principal motifs responsible for the promoter activity. Binding of the NF-Y complex to Y1 and Y2, as well as to a third CCAAT box (Y3) close to the promoter TATA box, was compared in gel shift and super-shift experiments. All of the three Y boxes bound protein complexes from S. mansoni nuclear extracts that were shown to contain the A subunit of the schistosome NF-Y complex (SMNF-YA). Competition assays revealed a differential affinity of the Y1, Y2 and Y3 sequences for NF-Y. The Y1, Y2 and Y3 regions were also shown to activate transcription when included in an heterologous promoter and data obtained strongly suggested the involvement of SMNF-Y in multimeric complexes during this process.
Collapse
Affiliation(s)
- E Serra
- Unité INSERM 167, Institut Pasteur, Lille, France
| | | | | | | | | |
Collapse
|
44
|
Nakshatri H, Bhat-Nakshatri P, Currie RA. Subunit association and DNA binding activity of the heterotrimeric transcription factor NF-Y is regulated by cellular redox. J Biol Chem 1996; 271:28784-91. [PMID: 8910521 DOI: 10.1074/jbc.271.46.28784] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
NF-Y is a heterotrimeric transcription factor that specifically recognizes a CCAAT box motif found in a variety of eukaryotic promoter and enhancer elements. The subunit association and DNA binding properties of the NF-Y complex were examined as a function of redox state using recombinant NF-YA, NF-YB, and NF-YC subunits. Reduction of NF-YB by dithiothreitol (DTT) was essential for reconstitution of specific NF-Y CCAAT box DNA binding activity in vitro. Approximately 30% of the Escherichia coli-derived NF-YB subunit existed as intermolecular disulfide-linked dimers. NF-YB mutants in which the highly conserved cysteine residues at positions 85 and 89 had been converted to serines existed only as monomers and did not require DTT for functional NF-Y DNA binding activity. DTT was required, however, for the functional association of NF-YC with wild-type NF-YB but not with the NF-YB cysteine mutants. The cellular redox factors Ref-1 and adult T-cell leukemia-derived factor stimulated the DNA binding activity of recombinant NF-Y in the absence of DTT. Cells treated with 1-chloro-2,4-dinitrobenzene, an irreversible inhibitor of thioredoxin reductase, exhibited reduced endogenous NF-Y DNA binding activity. Together these results suggest that the cellular redox environment of mammalian cells is an important posttranscriptional regulator of NF-Y subunit association and DNA binding activities.
Collapse
Affiliation(s)
- H Nakshatri
- Laboratory of Gene Regulation, The Picower Institute for Medical Research, Manhasset, New York 11030, USA.
| | | | | |
Collapse
|
45
|
Serra E, Liu JL, Capron A, Zemzoumi K, Dissous C. Expression of NF-Y nuclear factor in Schistosoma mansoni. Parasitology 1996; 113 ( Pt 5):457-64. [PMID: 8893531 DOI: 10.1017/s003118200008152x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The A subunit of NF-Y nuclear factor from Schistosoma mansoni was expressed in E. coli fused to a histidine tag and purified by affinity chromatography using a Ni(2+)-Agarose matrix. Antibodies against the recombinant protein were prepared and used for Western blot and immunolocalization. The presence of SMNF-YA in all stages of the parasite life-cycle was determined by RT-PCR and Western blot analysis. The immunolocalization of SMNF-YA showed the presence of this factor in a parenchymal cell population of cercariae and adult worms and in embryos within eggs. The expression of SMNF-YA was demonstrated to decrease in maturating spermatozoites whereas an accumulation of this factor was observed in the nucleus from oocytes during their maturation processes.
Collapse
Affiliation(s)
- E Serra
- Unité INSERM 167, Institut Pasteur Lille, France
| | | | | | | | | |
Collapse
|
46
|
Ihn H, Ohnishi K, Tamaki T, LeRoy EC, Trojanowska M. Transcriptional regulation of the human alpha2(I) collagen gene. Combined action of upstream stimulatory and inhibitory cis-acting elements. J Biol Chem 1996; 271:26717-23. [PMID: 8900150 DOI: 10.1074/jbc.271.43.26717] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
This study identifies three regions of the human alpha2(I) collagen promoter involved in the binding of nuclear factors. These regions include sequences from -173 to -155 (footprint I), -133 to -119 (footprint II), and -101 to -72 (footprint III). A novel positive cis-element containing a TCCTCC motif was identified within footprint II. In addition, we demonstrated that a pyrimidine-rich region within footprint I is a binding site for a transcriptional repressor, and a CCAAT motif within footprint III is a binding site for a transcriptional activator. Comparative functional analysis of the cis-acting elements within the proximal 350 base pairs of this promoter, including previously characterized Sp1 binding sites at -300, indicates that constitutive activity of this promoter is regulated equivalently by the three positive cis-acting elements at -300, -125, and -80. Mutations in the repressor site at -160 increase constitutive activity by 4-6-fold. However, simultaneous mutations of the repressor site and the cis-regulatory element at either the -300 or -125 sites result in no increase in constitutive transcription activity suggesting interaction between the activators and repressor elements. In contrast, simultaneous mutation of the CCAAT motif and the repressor site results in about a 4-fold increase, suggesting that activation via the CCAAT motif may be independent of this repressor.
Collapse
Affiliation(s)
- H Ihn
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, Charleston, South Carolina 29425-2229, USA
| | | | | | | | | |
Collapse
|
47
|
Tezuka KI, Denhardt DT, Rodan GA, Harada SI. Stimulation of mouse osteopontin promoter by v-Src is mediated by a CCAAT box-binding factor. J Biol Chem 1996; 271:22713-7. [PMID: 8798445 DOI: 10.1074/jbc.271.37.22713] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Osteopontin is an arginine-glycine-aspartic acid-containing cell adhesion protein, which is frequently expressed in transformed cells and is thought to play a role in tumorigenesis. v-Src is a transforming viral oncogene product encoded by Rous sarcoma virus (RSV). We report that v-Src expression in HT1080 fibrosarcoma cells significantly stimulates mouse osteopontin promoter activity. We also determined the v-Src response element in the osteopontin promoter as an inverted CCAAT box located at -53 to -49 from the transcription start site. Mutations of the CCAAT box disrupts protein-DNA interaction and diminishes both v-Src stimulation and basal promoter activity. A CCAAT box-containing fragment corresponding to -155 to -122 of RSV long terminal repeat competed with the -72 to -38 fragment of mouse osteopontin promoter for specific protein binding in the gel shift assay. A polyclonal antibody against CBF, a CCAAT box-binding factor, supershifted in gel shift assays the protein-DNA complex formed by nuclear extract of HT1080 with either the RSV CCAAT box fragment or with the osteopontin -72 to -38 fragment. Moreover, both osteopontin mRNA levels and enhancer activity of CCAAT box-containing -72 to -38 fragment were significantly elevated in v-src-transformed NIH 3T3 cells relative to parental cells. These findings suggest that the elevated osteopontin expression in transformed cells could be due, at least in part, to v-Src stimulation of the osteopontin promoter and that this effect is mediated by a CBF-like factor.
Collapse
Affiliation(s)
- K i Tezuka
- Department of Bone Biology and Osteoporosis Research, Merck Research Laboratories, West Point, Pennsylvania 19486, USA
| | | | | | | |
Collapse
|
48
|
Ueda A, Yoshimura T. Characterization of cis-acting elements of the gene for macrophage-stimulating protein from the human. The involvement of positive and negative regulatory elements. J Biol Chem 1996; 271:20265-72. [PMID: 8702759 DOI: 10.1074/jbc.271.34.20265] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
To analyze the promotor region of the human macrophage-stimulating protein (MSP) gene, the 5'-flanking region of this gene was cloned. The major initiation site was determined at T located 49 base pairs upstream of the translation initiation site by primer extention with mRNA from HepG2 and Hep3B cells. There was no TATA sequence in this region. Transient transfection assay with 5'-deletion constructs showed that the transcription of this gene was regulated by positive and negative regulatory elements (PRE and NRE). The PRE (-34 to +2) was essential for the maximal transcription of this gene, and the NRE (-141 to -34) appeared to be responsible for the tissue-specific expression of the gene. The PRE contained the CCAAT sequence and a mutation from CCAAT to CTGAT resulted in a significant loss of the transcriptional activity. Electrophoretic mobility shift assay suggested that two different proteins bound to the PRE (MSP-PRE-binding protein-1 (MSP-PREB1) and 2). MSP-PREB1 and 2 were detected in various cell types, and the CCAAT sequence was involved in these bindings. These findings indicate that MSP-PREB1 and 2 are positive regulators. Further characterization also revealed that MSP-PREB2 was identical to CCAAT binding transcription factor, also known as NF-Y.
Collapse
Affiliation(s)
- A Ueda
- Immunopathology Section, Laboratory of Immunobiology, National Cancer Institute-Frederick Cancer Research and Development Center, Frederick, Maryland 21702, USA
| | | |
Collapse
|
49
|
Osawa H, Robey RB, Printz RL, Granner DK. Identification and characterization of basal and cyclic AMP response elements in the promoter of the rat hexokinase II gene. J Biol Chem 1996; 271:17296-303. [PMID: 8663388 DOI: 10.1074/jbc.271.29.17296] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Hexokinases catalyze the phosphorylation of glucose and initiate cellular glucose metabolism. Hexokinase II (HKII) is the principal hexokinase isoform in skeletal muscle, heart, and adipose tissue. Isoproterenol and exogenous cyclic AMP (cAMP) increase HKII gene transcription in L6 myotubes. Various segments of the HKII promoter that direct the expression of the chloramphenicol acetyltransferase reporter gene were transfected into L6 myotubes to identify basal and cAMP response elements. The 5'-flanking region that extends 90 base pairs upstream of the transcription start site includes a CCAAT box and a cAMP response element (CRE); both contribute to basal promoter activity and each provides an independent, maximal response to cAMP. An inverted CCAAT motif, or Y box, located just upstream of the CCAAT box, contributes to basal promoter activity but is not involved in the cAMP response. Homo- and heterodimers composed of the CRE-binding protein and activating transcription factor-1 bind specifically to the CRE. The Y box and the CCAAT box specifically bind the factor NF-Y (also known as CBF).
Collapse
Affiliation(s)
- H Osawa
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615, USA
| | | | | | | |
Collapse
|
50
|
Zemzoumi K, Serra E, Mantovani R, Trolet J, Capron A, Dissous C. Cloning of Schistosoma mansoni transcription factor NF-YA subunit: phylogenic conservation of the HAP-2 homology domain. Mol Biochem Parasitol 1996; 77:161-72. [PMID: 8813662 DOI: 10.1016/0166-6851(96)02590-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The CCAAT-binding factor NF-Y (CBF/CP1) is a heteromeric transcription factor involved in the regulation of a variety of eukaryotic genes. We identified NF-Y as the CCAAT activity binding to the promoter region of the gene coding for the 28-kDa glutathione S-transferase of the human parasite Schistosoma mansoni (Sm28GST). We isolated the NF-YA cDNA from S. mansoni (SmNF-YA): the complete 268 amino acid sequence harbors a region in its C-terminal part that shows homology with the subunit interaction and DNA-binding domains of the mammalian NF-YA; the N-terminal region has an amino acid composition reminiscent of the mammalian and echinoderm counterparts, rich in glutamine and hydrophobic residues, but shows no sequence similarity at the primary level. In vitro synthesized SMNF-YA is able to associate with mammalian NF-YB/C subunits in the absence of DNA and to bind to the Sm28GST CCAAT box. Surprisingly, a monoclonal antibody directed against the non-conserved Q-rich activation domain of mammalian NF-YA supershifts and immunoprecipitates SMNF-YA, strongly suggesting structure conservation in the activation domain between divergent species.
Collapse
Affiliation(s)
- K Zemzoumi
- Unité INSERM 167, Institut Pasteur, Lille, France
| | | | | | | | | | | |
Collapse
|