1
|
Alonaizan R, Purnama U, Malandraki-Miller S, Gunadasa-Rohling M, Lewis A, Smart N, Carr C. MicroRNA-210 Enhances Cell Survival and Paracrine Potential for Cardiac Cell Therapy While Targeting Mitophagy. J Funct Biomater 2025; 16:147. [PMID: 40278255 PMCID: PMC12028018 DOI: 10.3390/jfb16040147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/04/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025] Open
Abstract
The therapeutic potential of presumed cardiac progenitor cells (CPCs) in heart regeneration has garnered significant interest, yet clinical trials have revealed limited efficacy due to challenges in cell survival, retention, and expansion. Priming CPCs to survive the hostile hypoxic environment may be key to enhancing their regenerative capacity. We demonstrate that microRNA-210 (miR-210), known for its role in hypoxic adaptation, significantly improves CPC survival by inhibiting apoptosis through the downregulation of Casp8ap2, a ~40% reduction in caspase activity, and a ~90% decrease in DNA fragmentation. Contrary to the expected induction of Bnip3-dependent mitophagy by hypoxia, miR-210 did not upregulate Bnip3, indicating a distinct anti-apoptotic mechanism. Instead, miR-210 reduced markers of mitophagy and increased mitochondrial biogenesis and oxidative metabolism, suggesting a role in metabolic reprogramming. Furthermore, miR-210 enhanced the secretion of paracrine growth factors from CPCs, with a ~1.6-fold increase in the release of stem cell factor and of insulin growth factor 1, which promoted in vitro endothelial cell proliferation and cardiomyocyte survival. These findings elucidate the multifaceted role of miR-210 in CPC biology and its potential to enhance cell-based therapies for myocardial repair by promoting cell survival, metabolic adaptation, and paracrine signalling.
Collapse
Affiliation(s)
- Rita Alonaizan
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford OX1 3PT, UK (C.C.)
- King Faisal Specialist Hospital & Research Centre, Riyadh 12713, Saudi Arabia
| | - Ujang Purnama
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford OX1 3PT, UK (C.C.)
| | | | - Mala Gunadasa-Rohling
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford OX1 3PT, UK (C.C.)
| | - Andrew Lewis
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford OX1 3PT, UK (C.C.)
| | - Nicola Smart
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford OX1 3PT, UK (C.C.)
| | - Carolyn Carr
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford OX1 3PT, UK (C.C.)
| |
Collapse
|
2
|
Rogers RG, Antich J, Fournier M, Omidfar A, Sanchez L, Alfaro J, Zarrow J, Manriquez N, Ciullo A, Valle J, Marbán E. Long-term preservation of muscle function and structure by repeated administration of cardiosphere-derived cells in mdx mice. Stem Cell Reports 2025; 20:102468. [PMID: 40118057 DOI: 10.1016/j.stemcr.2025.102468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/22/2025] [Accepted: 02/23/2025] [Indexed: 03/23/2025] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive myodegenerative disease that leads to severe muscle weakness and premature death. Mouse cardiosphere-derived cells (mCDCs) and extracellular vesicles (EVs) secreted by human cardiosphere-deriveds (hCDC-EVs) are therapeutic to mice with advanced-stage DMD. Here, we investigated the long-term benefits of monthly dosing when initiated early. At the endpoint, exercise performance and skeletal muscle function were strikingly preserved in mdx mice that had received mCDCs, but not in vehicle control. In contrast, the beneficial effects of hCDC-EVs waned after 6 months, in parallel with the development of anti-hCDC-EV antibodies. Further investigation showed that mCDCs lowered fibrosis and initiated a myogenic response program in mdx skeletal muscle. Thus, early and sustained intervention with mCDCs prevents disease progression for up to 1 year in mdx mice. This discovery offers new insights into how cell therapy can be used to treat DMD and motivates clinical testing of CDCs beginning in newly diagnosed DMD.
Collapse
Affiliation(s)
- Russell G Rogers
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - Jack Antich
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mario Fournier
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ariel Omidfar
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Lizbeth Sanchez
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Juliet Alfaro
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jonah Zarrow
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Nancy Manriquez
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Alessandra Ciullo
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jackelyn Valle
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Eduardo Marbán
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
3
|
Mu B, Wang Y, Liu X, Bebit MP, Chen M, Wu H, Zhang W, Wang L, Fang Y, Dong K. Design research on a smart infusion device to reduce medical workload and enhance patient safety. Sci Rep 2025; 15:9265. [PMID: 40102524 PMCID: PMC11920370 DOI: 10.1038/s41598-025-93911-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 03/10/2025] [Indexed: 03/20/2025] Open
Abstract
In traditional infusion processes, issues such as untimely medication replacement and patients' difficulty in continuously monitoring their medication levels are prevalent. This study presents the design of a smart infusion automatic medication replacement device aimed at automating infusion management through three key modules: high-precision liquid level monitoring, automated medication replacement, and a smart control system. By monitoring liquid levels in real time, the system eliminates the need for patients to constantly check their medication levels, accurately controlling the amount of medication dispensed and transmitting monitoring signals within safe thresholds. The rotational medication replacement mechanism stores and precisely replaces medicine bottles, optimizing usage and minimizing waste. Automated settings for liquid level monitoring and the plug-and-push system replace the need for manual assessment of medication completion and input quality, ensuring consistent dosage and high-quality delivery. The rotational mechanism also reduces the time needed for refilling and decreases the labor intensity for healthcare providers. A stabilization and calibration mechanism ensures bottles remain centered, preventing issues with internal pressure changes and loosening of the piercing tool. By replacing repetitive manual adjustments with automated processes, healthcare professionals can focus more on patient care rather than the cumbersome medication replacement procedures. The smart infusion automatic medication replacement device enhances the quality of infusion therapy for patients and alleviates the repetitive workload of medical staff.
Collapse
Affiliation(s)
- Bo Mu
- School of Art and Design, Wuhan Institute of Technology, Wuhan, 430205, China
- Academy of Arts and Creative Technology, University Malaysia Sabah, Kota kinabalu, 88400, Malaysia
| | - Yilun Wang
- School of Art and Design, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Xunchen Liu
- School of Automotive Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Mohammad Puad Bebit
- Academy of Arts and Creative Technology, University Malaysia Sabah, Kota kinabalu, 88400, Malaysia
| | - Mingzhang Chen
- School of Automotive Engineering, Wuhan University of Technology, Wuhan, 430070, China.
| | - Hailin Wu
- School of Automotive Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Wei Zhang
- School of Art and Design, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Lanxin Wang
- School of Art and Design, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yuan Fang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, College of Chemistry and Materials Science, South-central University for Nationalities, Wuhan, 430074, China
| | - Kang Dong
- School of Automotive Engineering, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
4
|
Johnson LM, Pulskamp TG, Berlau DJ. The latest developments in synthetic approaches to Duchenne muscular dystrophy. Expert Rev Neurother 2025:1-11. [PMID: 39899275 DOI: 10.1080/14737175.2025.2462281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD) is a rare X-linked genetic disorder caused by mutations in the dystrophin gene, leading to an almost complete absence of dystrophin, which is essential for muscle cell structure and function. This resulting muscle deterioration and fibrosis, eventually causes respiratory failure and cardiomyopathy. While there is currently no cure, existing therapies aim to prolong survival and alleviate symptoms. AREAS COVERED This paper reviews current and emerging therapies for DMD, focusing on their safety and efficacy. Although corticosteroids remain the standard treatment, newly approved drugs such as exon-skipping therapies, vamorolone, delandistrogene moxeparvovec, and givinostat provide new treatment options. Additionally, future therapies, including gene therapy, stem cell treatments, and anti-fibrotic agents, show promise for clinical application. EXPERT OPINION Advancements in DMD treatments have expanded patient options. While gene therapy offers potential for correcting the genetic defect and alleviating symptoms, corticosteroids remain the most cost-effective and well-researched treatment. This is partly due to the lack of compelling long-term safety and efficacy data for gene therapies. The accelerated FDA review process has enabled faster approval of new medications; however many have provided minimal clinical benefit to patients. Despite these challenges, continued drug development and innovative research offer hope to patients.
Collapse
Affiliation(s)
- Lucy M Johnson
- Department of Pharmaceutical Sciences, Regis University School of Pharmacy, Denver, CO, USA
| | - Tariq G Pulskamp
- Department of Pharmaceutical Sciences, Regis University School of Pharmacy, Denver, CO, USA
| | - Daniel J Berlau
- Department of Pharmaceutical Sciences, Regis University School of Pharmacy, Denver, CO, USA
| |
Collapse
|
5
|
Li J, Wang J, Chen Z. Emerging role of exosomes in cancer therapy: progress and challenges. Mol Cancer 2025; 24:13. [PMID: 39806451 PMCID: PMC11727182 DOI: 10.1186/s12943-024-02215-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/25/2024] [Indexed: 01/16/2025] Open
Abstract
This review highlights recent progress in exosome-based drug delivery for cancer therapy, covering exosome biogenesis, cargo selection mechanisms, and their application across multiple cancer types. As small extracellular vesicles, exosomes exhibit high biocompatibility and low immunogenicity, making them ideal drug delivery vehicles capable of efficiently targeting cancer cells, minimizing off-target damage and side effects. This review aims to explore the potential of exosomes in cancer therapy, with a focus on applications in chemotherapy, gene therapy, and immunomodulation. Additionally, challenges related to exosome production and standardization are analyzed, highlighting the importance of addressing these issues for their clinical application. In conclusion, exosome-based drug delivery systems offer promising potential for future cancer therapies. Further research should aim to enhance production efficiency and facilitate clinical translation, paving the way for innovative cancer treatment strategies.
Collapse
Affiliation(s)
- Jiale Li
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China
| | - Jiachong Wang
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China.
| | - Zigui Chen
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China.
| |
Collapse
|
6
|
Hakimi M, Burnham T, Ramsay J, Cheung JW, Goyal NA, Jefferies JL, Donaldson D. Electrophysiologic and cardiovascular manifestations of Duchenne and Becker muscular dystrophies. Heart Rhythm 2025; 22:192-202. [PMID: 38997055 DOI: 10.1016/j.hrthm.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024]
Abstract
There have been significant advances in the diagnosis and management of the hereditary muscular disorders Duchenne and Becker muscular dystrophy (DMD and BMD). Cardiac electrophysiologic and cardiovascular involvement has long been important in the surveillance, care, and prognosis of patients with both BMD and DMD and is the leading cause of mortality in patients with DMD. With improved long-term prognosis, rhythm disorders and progressive cardiomyopathy with resultant heart failure are increasingly common. This review aimed to provide an overview to electrophysiologists and cardiologists of the cardiac electrophysiologic phenotypes and genetics of BMD and DMD and to highlight the recent discoveries that have advanced clinical course and management. A systematic review was performed of the diagnosis and management of DMD and BMD. The Cochrane Library, PubMed, MEDLINE, Europe PubMed Central, AMED, and Embase databases were accessed for available evidence. The research reported in this paper adhered to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Evidence from randomized controlled trials and studies cited in expert consensus and practice guidelines are examined. Advanced imaging techniques and a spectrum of rhythm disorders associated with the progressive cardiomyopathy are presented. Early initiation of heart failure therapies, the role of cardiac implantable devices, and novel gene therapies approved for use with the potential to alter the disease course are discussed. When profound cardiac and cardiac electrophysiologic involvement is diagnosed and treated earlier, outcomes for DMD and BMD patients may be improved.
Collapse
Affiliation(s)
- Matthew Hakimi
- Division of Cardiology, Weill Cornell Medical, New York, New York
| | - Tyson Burnham
- Division of Cardiology, Department of Medicine, University of California at Irvine, Irvine Medical Center, Orange, California.
| | - Jay Ramsay
- Division of Cardiology, Department of Medicine, University of California at Irvine, Irvine Medical Center, Orange, California
| | - Jim W Cheung
- Division of Cardiology, Weill Cornell Medical, New York, New York
| | - Namita A Goyal
- Department of Neurology, University of California at Irvine, Irvine Medical Center, Orange, California
| | | | - David Donaldson
- Division of Cardiology, Department of Medicine, University of California at Irvine, Irvine Medical Center, Orange, California
| |
Collapse
|
7
|
Lee J, Park SE, Kim M, Kim H, Kwon JY, Jeon HB, Chang JW, Lee J. Safety and Tolerability of Wharton's Jelly-Derived Mesenchymal Stem Cells for Patients With Duchenne Muscular Dystrophy: A Phase 1 Clinical Study. J Clin Neurol 2025; 21:40-52. [PMID: 39778566 PMCID: PMC11711273 DOI: 10.3988/jcn.2024.0299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/15/2024] [Accepted: 10/31/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND AND PURPOSE This study was an open-label, dose-escalation, phase 1 clinical trial to determine the safety and dose of EN001 for patients with Duchenne muscular dystrophy (DMD). EN001, developed by ENCell, are allogeneic early-passage Wharton's jelly-derived mesenchymal stem cells that originate at the umbilical cord, with preclinical studies demonstrating their high therapeutic efficacy for DMD. METHODS This phase 1 clinical trial explored the safety and tolerability of EN001 as a potential treatment option for patients with DMD. Six pediatric participants with DMD were divided into two subgroups of equal size: low-dose EN001 (5.0×10⁵ cells/kg) and high-dose EN001 (2.5×10⁶ cells/kg). All participants were monitored for 12 weeks after EN001 administration to assess its safety. Dose-limiting toxicity (DLT) was evaluated across 2 weeks post administration. Exploratory efficacy was evaluated by measuring serum creatine kinase levels, and functional evaluations-including spirometry, myometry, the North Star Ambulatory Assessment, and the 6-minute walk test-were conducted at week 12 and compared with the baseline values. RESULTS No participants experienced serious adverse events related to EN001 injection during the 12-week follow-up period. Mild adverse events included injection-related local erythema, edema, parosmia, and headache, but DLT was not observed. Functional evaluations at week 12 revealed no significant changes from baseline. CONCLUSIONS These results demonstrated that EN001 are safe and well tolerated for patients with DMD, and did not cause serious adverse events. The efficacy of EN001 could be confirmed through larger-scale future studies that incorporate repeated dosing and have a randomized controlled trial design.
Collapse
Affiliation(s)
- Jiwon Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sang Eon Park
- Cell and Gene Therapy Research Institute, ENCell Co. Ltd., Seoul, Korea
- Cell & Gene Therapy Institute, Samsung Medical Center, Seoul, Korea
| | - Mira Kim
- Clinical Development Department, ENCell Co. Ltd., Seoul, Korea
| | - Hyeongseop Kim
- Cell and Gene Therapy Research Institute, ENCell Co. Ltd., Seoul, Korea
- Cell & Gene Therapy Institute, Samsung Medical Center, Seoul, Korea
| | - Jeong-Yi Kwon
- Department of Physical and Rehabilitation Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hong Bae Jeon
- Cell and Gene Therapy Research Institute, ENCell Co. Ltd., Seoul, Korea
| | - Jong Wook Chang
- Cell and Gene Therapy Research Institute, ENCell Co. Ltd., Seoul, Korea
- Cell & Gene Therapy Institute, Samsung Medical Center, Seoul, Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Jeehun Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Cell & Gene Therapy Institute, Samsung Medical Center, Seoul, Korea.
| |
Collapse
|
8
|
Hirai K, Sawada R, Hayashi T, Araki T, Nakagawa N, Kondo M, Yasuda K, Hirata T, Sato T, Nakatsuka Y, Yoshida M, Kasahara S, Baba K, Oh H. Eight-Year Outcomes of Cardiosphere-Derived Cells in Single Ventricle Congenital Heart Disease. J Am Heart Assoc 2024; 13:e038137. [PMID: 39526355 DOI: 10.1161/jaha.124.038137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/16/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Cardiosphere-derived cell (CDC) infusion was associated with better clinical outcomes at 2 years in patients with single ventricle heart disease. The current study investigates time-to-event outcomes at 8 years. METHODS AND RESULTS This cohort enrolled patients with single ventricles who underwent stage 2 or stage 3 palliation from January 2011 to January 2015 at 8 centers in Japan. The primary outcomes were time-dependent CDC treatment effects on death and late complications during 8 years of follow-up, assessed by restricted mean survival time. Among 93 patients enrolled (mean age, 2.3±1.3 years; 56% men), 40 received CDC infusion. Overall survival for CDC-treated versus control patients did not differ at 8 years (hazard ratio [HR], 0.60 [95% CI, 0.21-1.77]; P=0.35). Treatment effect had nonproportional hazards for death favoring CDCs at 4 years (restricted mean survival time difference +0.33 years [95% CI, 0.01-0.66]; P=0.043). In patients with heart failure with reduced ejection fraction, CDC treatment effect on survival was greater over 8 years (restricted mean survival time difference +1.58 years [95% CI, 0.05-3.12]; P=0.043). Compared with control participants, CDC-treated patients showed lower incidences of late failure (HR, 0.45 [95% CI, 0.21-0.93]; P=0.027) and adverse events (subdistribution HR, 0.50 [95% CI, 0.27-0.94]; P=0.036) at 8 years. CONCLUSIONS By 8 years, CDC infusion was associated with lower hazards of late failure and adverse events in single ventricle heart disease. CDC treatment effect on survival was notable by 4 years and showed a durable clinical benefit in patients with heart failure with reduced ejection fraction over 8 years. REGISTRATION URL: https://www.clinicaltrials.gov; Unique identifiers: NCT01273857 and NCT01829750.
Collapse
Affiliation(s)
- Kenta Hirai
- Department of Pediatrics Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences Okayama Japan
- Department of Regenerative Medicine, Center for Innovative Clinical Medicine Okayama University Hospital Okayama Japan
| | - Ryusuke Sawada
- Department of Pharmacology Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences Okayama Japan
| | - Tomohiro Hayashi
- Department of Pediatrics Kurashiki Central Hospital Okayama Japan
| | - Toru Araki
- Department of Pediatrics National Hospital Organization Fukuyama Medical Center Hiroshima Japan
| | - Naomi Nakagawa
- Department of Pediatric Cardiology Hiroshima City Hiroshima Citizens Hospital Hiroshima Japan
| | - Maiko Kondo
- Department of Pediatrics Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences Okayama Japan
- Department of Pediatrics Kochi Health Sciences Center Kochi Japan
| | - Kenji Yasuda
- Department of Pediatrics Shimane University Faculty of Medicine Izumo Shimane Japan
| | - Takuya Hirata
- Department of Pediatrics Kyoto University Graduate School of Medicine Kyoto Japan
| | - Tomoyuki Sato
- Department of Pediatrics Jichi Medical University Tochigi Japan
| | - Yuki Nakatsuka
- Department of Data Science, Center for Innovative Clinical Medicine Okayama University Hospital Okayama Japan
| | - Michihiro Yoshida
- Department of Data Science, Center for Innovative Clinical Medicine Okayama University Hospital Okayama Japan
| | - Shingo Kasahara
- Department of Cardiovascular Surgery Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences Okayama Japan
| | - Kenji Baba
- Department of Pediatrics Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences Okayama Japan
| | - Hidemasa Oh
- Department of Regenerative Medicine, Center for Innovative Clinical Medicine Okayama University Hospital Okayama Japan
| |
Collapse
|
9
|
Budzińska M, Malcher A, Zimna A, Kurpisz M. In Vitro Gene Therapy Using Human iPS-Derived Mesoangioblast-Like Cells (HIDEMs) Combined with Microdystrophin ( μDys) Expression as the New Strategy for Duchenne Muscular Dystrophy (DMD) Experimental Treatment. Int J Mol Sci 2024; 25:11869. [PMID: 39595938 PMCID: PMC11593506 DOI: 10.3390/ijms252211869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Duchenne Muscular Dystrophy (DMD) is a genetic disorder characterized by disruptions in the dystrophin gene. This study aims to investigate potential a therapeutic approach using genetically modified human iPS-derived mesoangioblast-like cells (HIDEMs) in mdx mouse model. This study utilizes patient-specific myoblasts reprogrammed to human induced pluripotent stem cells (iPSCs) and then differentiated into HIDEMs. Lentiviral vectors carrying microdystrophin sequences have been employed to deliver the genetic construct to express a shortened, functional dystrophin protein in HIDEMs. The study indicated significant changes within redox potential between healthy and pathological HIDEM cells derived from DMD patients studied by catalase and superoxide dismutase activities. Microdystrophin expressing HIDEMs also improved expression of genes involved in STARS (striated muscle activator of Rho signaling) pathway albeit in selective DMD patients (with mild phenotype). Although in vivo observations did not bring progress in the mobility of mdx mice with HIDEMs, microdystrophin interventions this may argue against "treadmill test" as suitable for assessment of mdx mice recovery. Low-level signaling of the Rho pathway and inflammation-related factors in DMD myogenic cells can also contribute to the lack of success in a functional study. Overall, this research contributes to the understanding of DMD pathogenesis and provides insights into potential novel therapeutic strategy, highlighting the importance of personalized gene therapy.
Collapse
Affiliation(s)
| | | | | | - Maciej Kurpisz
- Institute of Human Genetics Polish Academy of Sciences, 60-479 Poznan, Poland (A.M.); (A.Z.)
| |
Collapse
|
10
|
Marbán E. Deconstructing Regenerative Medicine: From Mechanistic Studies of Cell Therapy to Novel Bioinspired RNA Drugs. Circ Res 2024; 135:877-885. [PMID: 39325847 PMCID: PMC11469554 DOI: 10.1161/circresaha.124.323058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
All Food and Drug Administration-approved noncoding RNA (ncRNA) drugs (n≈20) target known disease-causing molecular pathways by mechanisms such as antisense. In a fortuitous evolution of work on regenerative medicine, my coworkers and I inverted the RNA drug discovery process: first we identified natural disease-modifying ncRNAs, then used them as templates for new synthetic RNA drugs. Mechanism was probed only after bioactivity had been demonstrated. The journey began with the development of cardiosphere-derived cells (CDCs) for cardiac regeneration. While testing CDCs in a first-in-human trial, we discovered they worked indirectly: ncRNAs within CDC-secreted extracellular vesicles mediate the therapeutic benefits. The vast majority of such ncRNAs are fragments of unknown function. We chose several abundant ncRNA species from CDC-secreted extracellular vesicles, synthesized and screened each of them in vitro and in vivo. Those with exceptional disease-modifying bioactivity inspired new chemical entities that conform to the structural conventions of the Food and Drug Administration-approved ncRNA armamentarium. This discovery arc-Cell-Derived RNA from Extracellular vesicles for bioinspired Drug develOpment, or CREDO-has yielded various promising lead compounds, each of which works via a unique, and often novel, mechanism. The process relies on emergent insights to shape therapeutic development. The initial focus of our inquiry-CDCs-are now themselves in phase 3 testing for Duchenne muscular dystrophy and its associated cardiomyopathy. But the intravenous delivery strategy and the repetitive dosing protocol for CDCs, which have proven key to clinical success, both arose from systematic mechanistic inquiry. Meanwhile, emergent insights have led to multiple cell-free therapeutic candidates: CDC-secreted extracellular vesicles are in preclinical development for ventricular arrhythmias, while the CREDO-conceived RNA drugs are in translation for diseases ranging from myocarditis to scleroderma.
Collapse
Affiliation(s)
- Eduardo Marbán
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
11
|
Ciullo A, Li L, Li C, Tsi K, Farrell C, Pellegrini M, Marbán E, Ibrahim AGE. Non-coding RNA yREX3 from human extracellular vesicles exerts macrophage-mediated cardioprotection via a novel gene-methylating mechanism. Eur Heart J 2024; 45:2660-2673. [PMID: 38865332 PMCID: PMC11297535 DOI: 10.1093/eurheartj/ehae357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/22/2024] [Accepted: 05/21/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND AND AIMS Extracellular vesicles (EVs) secreted by cardiosphere-derived cells exert immunomodulatory effects through the transmission of small non-coding RNAs. METHODS The mechanism and role of yREX3, a small Y RNA abundant in EVs in myocardial injury, was investigated. RESULTS yREX3 attenuates cardiac ischaemic injury by selective DNA methylation. Synthetic yREX3 encapsulated in lipid nanoparticles triggers broad transcriptomic changes in macrophages, localizes to the nucleus, and mediates epigenetic silencing of protein interacting with C kinase-1 (Pick1) through methylation of upstream CpG sites. Moreover, yREX3 interacts with polypyrimidine tract binding protein 3 (PTBP3) to methylate the Pick1 gene locus in a DNA methyltransferase-dependent manner. Suppression of Pick1 in macrophages potentiates Smad3 signalling and enhances efferocytosis, minimizing heart necrosis in rats with myocardial infarction. Adoptive transfer of Pick1-deficient macrophages recapitulates the cardioprotective effects of yREX3 in vivo. CONCLUSIONS These findings highlight the role of a small Y RNA mined from EVs with a novel gene-methylating mechanism.
Collapse
Affiliation(s)
- Alessandra Ciullo
- Cedars-Sinai Medical Center, Smidt Heart Institute, 8700 Beverly Blvd, 1090 Davis Bldg, Los Angeles, CA 90048, USA
| | - Liang Li
- Cedars-Sinai Medical Center, Smidt Heart Institute, 8700 Beverly Blvd, 1090 Davis Bldg, Los Angeles, CA 90048, USA
| | - Chang Li
- Cedars-Sinai Medical Center, Smidt Heart Institute, 8700 Beverly Blvd, 1090 Davis Bldg, Los Angeles, CA 90048, USA
| | - Kara Tsi
- Cedars-Sinai Medical Center, Smidt Heart Institute, 8700 Beverly Blvd, 1090 Davis Bldg, Los Angeles, CA 90048, USA
| | - Colin Farrell
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Eduardo Marbán
- Cedars-Sinai Medical Center, Smidt Heart Institute, 8700 Beverly Blvd, 1090 Davis Bldg, Los Angeles, CA 90048, USA
| | - Ahmed G E Ibrahim
- Cedars-Sinai Medical Center, Smidt Heart Institute, 8700 Beverly Blvd, 1090 Davis Bldg, Los Angeles, CA 90048, USA
| |
Collapse
|
12
|
Smith C, Lalu MM, Davis DR. Exploring Patient Viewpoints to Optimize Implementation of a Biological Therapy for Atrial Fibrillation Prevention. CJC Open 2024; 6:893-900. [PMID: 39026620 PMCID: PMC11252543 DOI: 10.1016/j.cjco.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/10/2024] [Indexed: 07/20/2024] Open
Abstract
Background Embracing patient viewpoints can enhance the translation of novel therapeutics to clinical settings. This study evaluated the acceptability of using extracellular vesicles (EVs) as a biological therapy for preventing postoperative atrial fibrillation (AF), through engagement with patients, providing insights into their attitudes and information needs. Methods Patients participated in prerecorded presentations, virtual focus groups, and surveys to assess their perspectives on EV therapy and determine the factors influencing their acceptance of the intervention. Results Participants with postoperative AF experienced prolonged intensive care unit and hospital stays, compared to those of patients with normal heart rhythm. Prior to the presentation, a number of participants were unfamiliar with postoperative AF and biological therapies. However, postpresentation and post-focus group activities resulted in enhanced understanding of the research, with high levels of comprehension reported by all participants. The level of acceptance of EV therapy tended to increase, with a majority expressing willingness to participate in clinical trials and accept the therapy. The focus groups identified and addressed common questions regarding the potential risks and side effects of EVs, their source, dosing, utility for patients with preexisting AF, and the risk of human immunodeficiency virus (HIV) contraction or allergic reactions. Conclusions The study highlights the importance of providing education, involving the patient's circle of care, and addressing patient concerns, to promote acceptance of therapies such as EV therapy for postoperative AF. Clinical Trial Registration NCT05032495.
Collapse
Affiliation(s)
- Chloé Smith
- Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Manoj M. Lalu
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Anesthesiology and Pain Medicine, University of Ottawa, The Ottawa Hospital, Ottawa, Ontario, Canada
- Regenerative Medicine and Clinical Epidemiology Programs, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Darryl R. Davis
- Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, University of Ottawa, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
13
|
McDonald CM, Signorovitch J, Mercuri E, Niks EH, Wong B, Fillbrunn M, Sajeev G, Yim E, Dieye I, Miller D, Ward SJ, Goemans N. Functional trajectories before and after loss of ambulation in Duchenne muscular dystrophy and implications for clinical trials. PLoS One 2024; 19:e0304099. [PMID: 38829874 PMCID: PMC11146704 DOI: 10.1371/journal.pone.0304099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 04/24/2024] [Indexed: 06/05/2024] Open
Abstract
This study examined functional trajectories of subjects during the transition phase between ambulatory and non-ambulatory Duchenne muscular dystrophy (DMD) to inform clinical trial designs for new therapeutics. Ambulatory, pulmonary, and upper limb function leading up to loss of ambulation (LoA) and non-ambulatory measures following LoA were quantified; time ordering of pulmonary and upper limb milestones relative to LoA were determined; and the 10-second time threshold for 10-meter walk/run (10MWR) as a marker of approaching LOA was explored. Included in this analysis were 51 subjects aged between 7 and 18 years who experienced LoA during follow-up in the PRO-DMD-01 natural history study. Mean age at LoA was 12.7 (7.1-18.6) years. Mean annual rates of decline in forced vital capacity (FVC) <80%-predicted and performance of upper limb (PUL) 1.2 total score were smaller before than after LoA, but not significantly (FVC %-predicted: 5.6% vs. 10.1%, p = 0.21; PUL 1.2 total score: 2.3 vs. 3.8 units, p = 0.20). More than half of patients experienced clinically significant deficits in FVC %-predicted and PUL 1.2 before experiencing LoA. Among subjects with baseline 10MWR >10 s, those with <1 year to LoA had similar mean ages but significantly worse mean ambulatory function at baseline compared to those with ≥1 year to LoA. Enriching DMD clinical trials for patients with declining pulmonary or upper limb function is achievable without restricting enrollment to non-ambulatory patients. The sequencing of LoA and initial deficits in pulmonary and upper limb function varied across patients and highlights the potential for composite outcomes or multi-outcome trial designs to assess disease-modifying therapies more comprehensively.
Collapse
Affiliation(s)
- Craig M. McDonald
- Department of Physical Medicine and Rehabilitation and Department of Pediatrics, University of California Davis Health System, Sacramento, California, United States of America
| | - James Signorovitch
- Analysis Group Inc., Boston, Massachusetts, United States of America
- Collaborative Trajectory Analysis Project, Cambridge, Massachusetts, United States of America
| | - Eugenio Mercuri
- Child Neurology Unit e Centro Nemo, IRCCS Fondazione Policlinico Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Erik H. Niks
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Brenda Wong
- Department of Pediatrics and Neurology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Mirko Fillbrunn
- Analysis Group Inc., Boston, Massachusetts, United States of America
| | - Gautam Sajeev
- Analysis Group Inc., Boston, Massachusetts, United States of America
| | - Erica Yim
- Analysis Group Inc., Boston, Massachusetts, United States of America
| | - Ibrahima Dieye
- Analysis Group Inc., Boston, Massachusetts, United States of America
| | - Debra Miller
- CureDuchenne, Newport Beach, California, United States of America
| | - Susan J. Ward
- Collaborative Trajectory Analysis Project, Cambridge, Massachusetts, United States of America
| | | | | |
Collapse
|
14
|
Zambon AA, Falzone YM, Bolino A, Previtali SC. Molecular mechanisms and therapeutic strategies for neuromuscular diseases. Cell Mol Life Sci 2024; 81:198. [PMID: 38678519 PMCID: PMC11056344 DOI: 10.1007/s00018-024-05229-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/14/2024] [Accepted: 04/07/2024] [Indexed: 05/01/2024]
Abstract
Neuromuscular diseases encompass a heterogeneous array of disorders characterized by varying onset ages, clinical presentations, severity, and progression. While these conditions can stem from acquired or inherited causes, this review specifically focuses on disorders arising from genetic abnormalities, excluding metabolic conditions. The pathogenic defect may primarily affect the anterior horn cells, the axonal or myelin component of peripheral nerves, the neuromuscular junction, or skeletal and/or cardiac muscles. While inherited neuromuscular disorders have been historically deemed not treatable, the advent of gene-based and molecular therapies is reshaping the treatment landscape for this group of condition. With the caveat that many products still fail to translate the positive results obtained in pre-clinical models to humans, both the technological development (e.g., implementation of tissue-specific vectors) as well as advances on the knowledge of pathogenetic mechanisms form a collective foundation for potentially curative approaches to these debilitating conditions. This review delineates the current panorama of therapies targeting the most prevalent forms of inherited neuromuscular diseases, emphasizing approved treatments and those already undergoing human testing, offering insights into the state-of-the-art interventions.
Collapse
Affiliation(s)
- Alberto Andrea Zambon
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Institute for Experimental Neurology, Inspe, Milan, Italy
- Neurology Department, San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Yuri Matteo Falzone
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Institute for Experimental Neurology, Inspe, Milan, Italy
- Neurology Department, San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Bolino
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Institute for Experimental Neurology, Inspe, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Stefano Carlo Previtali
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Institute for Experimental Neurology, Inspe, Milan, Italy.
- Neurology Department, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
15
|
Casati SR, Cervia D, Roux-Biejat P, Moscheni C, Perrotta C, De Palma C. Mitochondria and Reactive Oxygen Species: The Therapeutic Balance of Powers for Duchenne Muscular Dystrophy. Cells 2024; 13:574. [PMID: 38607013 PMCID: PMC11011272 DOI: 10.3390/cells13070574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic progressive muscle-wasting disorder that leads to rapid loss of mobility and premature death. The absence of functional dystrophin in DMD patients reduces sarcolemma stiffness and increases contraction damage, triggering a cascade of events leading to muscle cell degeneration, chronic inflammation, and deposition of fibrotic and adipose tissue. Efforts in the last decade have led to the clinical approval of novel drugs for DMD that aim to restore dystrophin function. However, combination therapies able to restore dystrophin expression and target the myriad of cellular events found impaired in dystrophic muscle are desirable. Muscles are higher energy consumers susceptible to mitochondrial defects. Mitochondria generate a significant source of reactive oxygen species (ROS), and they are, in turn, sensitive to proper redox balance. In both DMD patients and animal models there is compelling evidence that mitochondrial impairments have a key role in the failure of energy homeostasis. Here, we highlighted the main aspects of mitochondrial dysfunction and oxidative stress in DMD and discussed the recent findings linked to mitochondria/ROS-targeted molecules as a therapeutic approach. In this respect, dual targeting of both mitochondria and redox homeostasis emerges as a potential clinical option in DMD.
Collapse
Affiliation(s)
- Silvia Rosanna Casati
- Department of Medical Biotechnology and Translational Medicine (BioMeTra), Università degli Studi di Milano, via Fratelli Cervi 93, 20054 Segrate, Italy; (S.R.C.); (C.D.P.)
| | - Davide Cervia
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università degli Studi della Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy;
| | - Paulina Roux-Biejat
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milano, Italy; (P.R.-B.); (C.M.)
| | - Claudia Moscheni
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milano, Italy; (P.R.-B.); (C.M.)
| | - Cristiana Perrotta
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milano, Italy; (P.R.-B.); (C.M.)
| | - Clara De Palma
- Department of Medical Biotechnology and Translational Medicine (BioMeTra), Università degli Studi di Milano, via Fratelli Cervi 93, 20054 Segrate, Italy; (S.R.C.); (C.D.P.)
| |
Collapse
|
16
|
Gatto F, Benemei S, Piluso G, Bello L. The complex landscape of DMD mutations: moving towards personalized medicine. Front Genet 2024; 15:1360224. [PMID: 38596212 PMCID: PMC11002111 DOI: 10.3389/fgene.2024.1360224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/26/2024] [Indexed: 04/11/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe genetic disorder characterized by progressive muscle degeneration, with respiratory and cardiac complications, caused by mutations in the DMD gene, encoding the protein dystrophin. Various DMD mutations result in different phenotypes and disease severity. Understanding genotype/phenotype correlations is essential to optimize clinical care, as mutation-specific therapies and innovative therapeutic approaches are becoming available. Disease modifier genes, trans-active variants influencing disease severity and phenotypic expressivity, may modulate the response to therapy, and become new therapeutic targets. Uncovering more disease modifier genes via extensive genomic mapping studies offers the potential to fine-tune prognostic assessments for individuals with DMD. This review provides insights into genotype/phenotype correlations and the influence of modifier genes in DMD.
Collapse
Affiliation(s)
| | | | - Giulio Piluso
- Medical Genetics and Cardiomyology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Luca Bello
- Department of Neurosciences DNS, University of Padova, Padova, Italy
| |
Collapse
|
17
|
Tang A, Yokota T. Duchenne muscular dystrophy: promising early-stage clinical trials to watch. Expert Opin Investig Drugs 2024; 33:201-217. [PMID: 38291016 DOI: 10.1080/13543784.2024.2313105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/28/2024] [Indexed: 02/01/2024]
Abstract
INTRODUCTION Current therapies are unable to cure Duchenne muscular dystrophy (DMD), a severe and common form of muscular dystrophy, and instead aim to delay disease progression. Several treatments currently in phase I trials could increase the number of therapeutic options available to patients. AREAS COVERED This review aims to provide an overview of current treatments undergoing or having recently undergone early-stage trials. Several exon-skipping and gene therapy approaches are currently being investigated at the clinical stage to address an unmet need for DMD treatments. This article also covers Phase I trials from the last 5 years that involve inhibitors, small molecules, a purified synthetic flavanol, a cell-based therapy, and repurposed cardiac or tumor medications. EXPERT OPINION With antisense oligonucleotide (AON) treatments making up the majority of conditionally approved DMD therapies, most of the clinical trials occurring within the last 5 years have also evaluated exon-skipping AONs. The approval of Elevidys, a micro-dystrophin therapy, is reflected in a recent trend toward gene transfer therapies in phase I DMD clinical trials, but their safety and efficacy are being established in this phase of development. Other Phase I clinical-stage approaches are diverse, but have a range in efficacy, safety, and endpoint measures.
Collapse
Affiliation(s)
- Annie Tang
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
18
|
Lewis MI, Shapiro S, Oudiz RJ, Nakamura M, Geft D, Matusov Y, Hage A, Tapson VF, Henry TD, Azizad P, Saggar R, Mirocha J, Karpov OA, Van Eyk JE, Marbán E. The ALPHA phase 1 study: pulmonary ArteriaL hypertension treated with CardiosPHere-Derived allogeneic stem cells. EBioMedicine 2024; 100:104900. [PMID: 38092579 PMCID: PMC10879003 DOI: 10.1016/j.ebiom.2023.104900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Pulmonary Arterial Hypertension (PAH) is a progressive condition with no cure. Even with pharmacologic advances, survival remains poor. Lung pathology on PAH therapies still shows impressive occlusive arteriolar remodelling and plexiform lesions. Cardiosphere-derived cells (CDCs) are heart-derived progenitor cells exhibiting anti-inflammatory and immunomodulatory effects, are anti -fibrotic, anti-oxidative and anti-apoptotic to potentially impact several aspects of PAH pathobiology. In preclinical trials CDCs reduced right ventricular (RV) systolic pressure, RV hypertrophy, pulmonary arteriolar wall thickness and inflammation. METHODS The ALPHA study was a Phase 1a/b study in which CDCs were infused into patients with Idiopathic (I)PAH, Heritable (H) HPAH, PAH-connective tissue disease (CTD) and PAH-human immunodeficiency virus (HIV). The study was IRB approved and DSMB monitored. Phase 1a, was an open label study (n = 6). Phase 1b was a double-blind placebo-controlled study (n = 20) in which half received 100 million CDCs (the maximum feasible dose from manufacturing perspective) and half placebo (PLAC) infusions. Right heart catheterization (RHC) and cardiac MR imaging (cMR) were performed at baseline and at 4 months post infusion. Patients were followed over a year. FINDINGS No short-term clinical safety adverse events (AE) were related to the IP, the primary outcome measure. There were no adverse hemodynamic, gas exchange, rhythm or other clinical events following infusion and in the 1st 23 h monitored in hospital. There were no long-term AEs over 12 months noted, including unrelated limited hospitalizations. No immunologic short or long-term AEs were noted. We examined exploratory outcomes across multiple domains to determine encouraging signals to motivate future advanced phase testing. Phase 1a data showed encouraging observations for both 50 and 100 million CDC doses. Several encouraging findings favouring CDCs (n = 16) compared to placebo (n = 10) were noted. On cMR, the RV end diastolic volume (RVEDV) and index (RVEDVI) decreased with CDCs with a rise in the PLAC group. The 6-min walk distance was increased 2 months post infusion in the CDC group compared with PLAC. With PLAC, diffusing capacity (DLCO) decreased at 4 months but was unchanged with CDCs. Serum creatinine decreased with CDCs at 4 months. Encouraging observations favouring CDCs were also noted for RV fractional area change on echo and RV ejection fraction (RVEF) on cMR at 4 months. No differences were observed for mean pulmonary artery pressures or pulmonary vascular resistance. Review of long-term data to 12 months showed continued decline in DLCO for the PLAC cohort at 6 months with no change through 12 months. By contrast, CDC subjects showed an unchanged DLCO over 12-months. For parameters exhibiting early encouraging exploratory findings in CDC subjects, no further improvement was noted in long-term follow up through 12 months. INTERPRETATION Intravenous CDCs were safe in both the short and long term in PAH subjects and thus may be safe in larger cohorts, in line with our extensive track record of safety in clinical trials for other conditions. Further, CDCs exhibited encouraging exploratory findings across several domains. Repeat dosing (quarterly, over one year) of intravenous CDCs has been reported to yield highly significant sustained disease-modifying bioactivity in subjects with advanced Duchenne muscular dystrophy. Because only single CDC doses were used here, the findings represent a lower limit estimate of CDC's potential in PAH. Upcoming phase 2 studies would logically use a repeat dosing paradigm. FUNDING California Institute for Regenerative Medicine (CIRM). Project Number: CLIN2-09444.
Collapse
Affiliation(s)
- Michael I Lewis
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Pulmonary/Critical Care Division, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Shelley Shapiro
- Division of Cardiology, VA Greater Los Angeles Healthcare System and Division of Pulmonary/Critical Care, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | - Ronald J Oudiz
- Division of Cardiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Mamoo Nakamura
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dael Geft
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yuri Matusov
- Pulmonary/Critical Care Division, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Antoine Hage
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Victor F Tapson
- Pulmonary/Critical Care Division, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Timothy D Henry
- The Carl and Edyth Lindner Center for Research and Education and Interventional Cardiology, The Christ Hospital, Cincinnati, OH, USA
| | - Parisa Azizad
- Pulmonary/Critical Care Division, Kaiser Sunset Medical Center, Los Angeles, CA, USA
| | - Rajan Saggar
- Pulmonary/Critical Care Division, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | - James Mirocha
- Biostatistics and Cancer Institute Shared Services, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Oleg A Karpov
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jennifer E Van Eyk
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Eduardo Marbán
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
19
|
Akat A, Karaöz E. Cell Therapy Strategies on Duchenne Muscular Dystrophy: A Systematic Review of Clinical Applications. Stem Cell Rev Rep 2024; 20:138-158. [PMID: 37955832 DOI: 10.1007/s12015-023-10653-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2023] [Indexed: 11/14/2023]
Abstract
Duchenne Muscular Dystrophy (DMD) is an inherited genetic disorder characterized by progressive degeneration of muscle tissue, leading to functional disability and premature death. Despite extensive research efforts, the discovery of a cure for DMD continues to be elusive, emphasizing the need to investigate novel treatment approaches. Cellular therapies have emerged as prospective approaches to address the underlying pathophysiology of DMD. This review provides an examination of the present situation regarding cell-based therapies, including CD133 + cells, muscle precursor cells, mesoangioblasts, bone marrow-derived mononuclear cells, mesenchymal stem cells, cardiosphere-derived cells, and dystrophin-expressing chimeric cells. A total of 12 studies were found eligible to be included as they were completed cell therapy clinical trials, clinical applications, or case reports with quantitative results. The evaluation encompassed an examination of limitations and potential advancements in this particular area of research, along with an assessment of the safety and effectiveness of cell-based therapies in the context of DMD. In general, the available data indicates that diverse cell therapy approaches may present a new, safe, and efficacious treatment modality for patients diagnosed with DMD. However, further studies are required to comprehensively understand the most advantageous treatment approach and therapeutic capacity.
Collapse
Affiliation(s)
- Ayberk Akat
- Life Park Hospital, Cellular and Biological Products Manufacturing Center, Ragıp Kenan Sok. No:8, Ortakoy, 99010, Nicosia (Lefkosa), Cyprus.
| | - Erdal Karaöz
- Liv Hospital Ulus, Regenerative Medicine and Stem Cell Center, Istanbul, Turkey
| |
Collapse
|
20
|
Chepeleva EV. Cell Therapy in the Treatment of Coronary Heart Disease. Int J Mol Sci 2023; 24:16844. [PMID: 38069167 PMCID: PMC10706847 DOI: 10.3390/ijms242316844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Heart failure is a leading cause of death in patients who have suffered a myocardial infarction. Despite the timely use of modern reperfusion therapies such as thrombolysis, surgical revascularization and balloon angioplasty, they are sometimes unable to prevent the development of significant areas of myocardial damage and subsequent heart failure. Research efforts have focused on developing strategies to improve the functional status of myocardial injury areas. Consequently, the restoration of cardiac function using cell therapy is an exciting prospect. This review describes the characteristics of various cell types relevant to cellular cardiomyoplasty and presents findings from experimental and clinical studies investigating cell therapy for coronary heart disease. Cell delivery methods, optimal dosage and potential treatment mechanisms are discussed.
Collapse
Affiliation(s)
- Elena V. Chepeleva
- Federal State Budgetary Institution National Medical Research Center Named after Academician E.N. Meshalkin of the Ministry of Health of the Russian Federation, 15, Rechkunovskaya Str., 630055 Novosibirsk, Russia;
- Research Institute of Clinical and Experimental Lymphology—Branch of the Institute of Cytology and Genetics Siberian Branch of Russian Academy of Sciences, 2, Timakova Str., 630060 Novosibirsk, Russia
| |
Collapse
|
21
|
Niezgoda A, Biegański G, Wachowiak J, Czarnota J, Siemionow K, Heydemann A, Ziemiecka A, Sikorska MH, Bożyk K, Siemionow M. Assessment of Motor Unit Potentials Duration as the Biomarker of DT-DEC01 Cell Therapy Efficacy in Duchenne Muscular Dystrophy Patients up to 12 Months After Systemic-Intraosseous Administration. Arch Immunol Ther Exp (Warsz) 2023; 71:24. [PMID: 37999748 PMCID: PMC10673998 DOI: 10.1007/s00005-023-00691-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/20/2023] [Indexed: 11/25/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a lethal X-linked disease caused by mutations in the dystrophin gene, leading to muscle degeneration and wasting. Electromyography (EMG) is an objective electrophysiological biomarker of muscle fiber function in muscular dystrophies. A novel, DT-DEC01 therapy, consisting of Dystrophin Expressing Chimeric (DEC) cells created by fusing allogeneic myoblasts from normal donors with autologous myoblasts from DMD-affected patients, was assessed for safety and preliminary efficacy in boys of age 6-15 years old (n = 3). Assessments included EMG testing of selected muscles of upper (deltoideus, biceps brachii) and lower (rectus femoris and gastrocnemius) extremities at the screening visit and at 3, 6, and 12 months following systemic-intraosseous administration of a single low dose of DT-DEC01 therapy (Bioethics Committee approval no. 46/2019). No immunosuppression was administered. Safety of DT-DEC01 was confirmed by the lack of therapy-related Adverse Events or Serious Adverse Events up to 22 months following DT-DEC01 administration. EMG of selected muscles of both, ambulatory and non-ambulatory patients confirmed preliminary efficacy of DT-DEC01 therapy by an increase in motor unit potentials (MUP) duration, amplitudes, and polyphasic MUPs at 12 months. This study confirmed EMG as a reliable and objective biomarker of functional assessment in DMD patients after intraosseous administration of the novel DT-DEC01 therapy.
Collapse
Affiliation(s)
- Adam Niezgoda
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Grzegorz Biegański
- Department of Infectious Diseases and Child Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Jacek Wachowiak
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Krzysztof Siemionow
- Dystrogen Therapeutics Corp., Chicago, IL, USA
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL, USA
| | - Ahlke Heydemann
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
- Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, USA
| | | | | | | | - Maria Siemionow
- Dystrogen Therapeutics Corp., Chicago, IL, USA.
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL, USA.
- Chair and Department of Traumatology, Orthopedics and Surgery of the Hand, Poznan University of Medical Sciences, Poznan, Poland.
| |
Collapse
|
22
|
Roberts TC, Wood MJA, Davies KE. Therapeutic approaches for Duchenne muscular dystrophy. Nat Rev Drug Discov 2023; 22:917-934. [PMID: 37652974 DOI: 10.1038/s41573-023-00775-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2023] [Indexed: 09/02/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a monogenic muscle-wasting disorder and a priority candidate for molecular and cellular therapeutics. Although rare, it is the most common inherited myopathy affecting children and so has been the focus of intense research activity. It is caused by mutations that disrupt production of the dystrophin protein, and a plethora of drug development approaches are under way that aim to restore dystrophin function, including exon skipping, stop codon readthrough, gene replacement, cell therapy and gene editing. These efforts have led to the clinical approval of four exon skipping antisense oligonucleotides, one stop codon readthrough drug and one gene therapy product, with other approvals likely soon. Here, we discuss the latest therapeutic strategies that are under development and being deployed to treat DMD. Lessons from these drug development programmes are likely to have a major impact on the DMD field, but also on molecular and cellular medicine more generally. Thus, DMD is a pioneer disease at the forefront of future drug discovery efforts, with these experimental treatments paving the way for therapies using similar mechanisms of action being developed for other genetic diseases.
Collapse
Affiliation(s)
- Thomas C Roberts
- Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK.
- Department of Paediatrics, University of Oxford, Oxford, UK.
- MDUK Oxford Neuromuscular Centre, Oxford, UK.
| | - Matthew J A Wood
- Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK
- Department of Paediatrics, University of Oxford, Oxford, UK
- MDUK Oxford Neuromuscular Centre, Oxford, UK
| | - Kay E Davies
- MDUK Oxford Neuromuscular Centre, Oxford, UK.
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
23
|
Wilton-Clark H, Yokota T. CRISPR-Cas9-mediated exon skipping as a cardioprotective strategy in Duchenne muscular dystrophy. Mol Ther Methods Clin Dev 2023; 30:500-501. [PMID: 37693945 PMCID: PMC10491811 DOI: 10.1016/j.omtm.2023.08.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Affiliation(s)
- Harry Wilton-Clark
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
24
|
Watanabe M, Miyamoto H, Okamoto K, Nakano K, Matsunari H, Kazuki K, Hasegawa K, Uchikura A, Takayanagi S, Umeyama K, Hiramuki Y, Kemter E, Klymuik N, Kurome M, Kessler B, Wolf E, Kazuki Y, Nagashima H. Phenotypic features of dystrophin gene knockout pigs harboring a human artificial chromosome containing the entire dystrophin gene. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:444-453. [PMID: 37588685 PMCID: PMC10425850 DOI: 10.1016/j.omtn.2023.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 07/20/2023] [Indexed: 08/18/2023]
Abstract
Mammalian artificial chromosomes have enabled the introduction of extremely large amounts of genetic information into animal cells in an autonomously replicating, nonintegrating format. However, the evaluation of human artificial chromosomes (HACs) as novel tools for curing intractable hereditary disorders has been hindered by the limited efficacy of the delivery system. We generated dystrophin gene knockout (DMD-KO) pigs harboring the HAC bearing the entire human DMD via a somatic cell cloning procedure (DYS-HAC-cloned pig). Restored human dystrophin expression was confirmed by immunofluorescence staining in the skeletal muscle of the DYS-HAC-cloned pigs. Viability at the first month postpartum of the DYS-HAC-cloned pigs, including motor function in the hind leg and serum creatinine kinase level, was improved significantly when compared with that in the original DMD-KO pigs. However, decrease in systemic retention of the DYS-HAC vector and limited production of the DMD protein might have caused severe respiratory impairment with general prostration by 3 months postpartum. The results demonstrate that the use of transchromosomic cloned pigs permitted a straightforward estimation of the efficacy of the DYS-HAC carried in affected tissues/organs in a large-animal disease model, providing novel insights into the therapeutic application of exogenous mammalian artificial chromosomes.
Collapse
Affiliation(s)
- Masahito Watanabe
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Hitomaru Miyamoto
- Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Kazutoshi Okamoto
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Kazuaki Nakano
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Hitomi Matsunari
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Kanako Kazuki
- Chromosome Engineering Research Center (CERC), Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Koki Hasegawa
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Ayuko Uchikura
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Shuko Takayanagi
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Kazuhiro Umeyama
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Yosuke Hiramuki
- Chromosome Engineering Research Center (CERC), Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Elisabeth Kemter
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleissheim, Germany
| | - Nikolai Klymuik
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleissheim, Germany
| | - Mayuko Kurome
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleissheim, Germany
| | - Barbara Kessler
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleissheim, Germany
| | - Eckhard Wolf
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleissheim, Germany
| | - Yasuhiro Kazuki
- Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
- Chromosome Engineering Research Center (CERC), Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
- Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Hiroshi Nagashima
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
25
|
Gallet R, Su JB, Corboz D, Chiaroni PM, Bizé A, Dai J, Panel M, Boucher P, Pallot G, Brehat J, Sambin L, Thery G, Mouri N, de Pommereau A, Denormandie P, Germain S, Lacampagne A, Teiger E, Marbán E, Ghaleh B. Three-vessel coronary infusion of cardiosphere-derived cells for the treatment of heart failure with preserved ejection fraction in a pre-clinical pig model. Basic Res Cardiol 2023; 118:26. [PMID: 37400630 DOI: 10.1007/s00395-023-00995-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/05/2023]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a major public health concern. Its outcome is poor and, as of today, barely any treatments have been able to decrease its morbidity or mortality. Cardiosphere-derived cells (CDCs) are heart cell products with anti-fibrotic, anti-inflammatory and angiogenic properties. Here, we tested the efficacy of CDCs in improving left ventricular (LV) structure and function in pigs with HFpEF. Fourteen chronically instrumented pigs received continuous angiotensin II infusion for 5 weeks. LV function was investigated through hemodynamic measurements and echocardiography at baseline, after 3 weeks of angiotensin II infusion before three-vessel intra-coronary CDC (n = 6) or placebo (n = 8) administration and 2 weeks after treatment (i.e., at completion of the protocol). As expected, arterial pressure was significantly and similarly increased in both groups. This was accompanied by LV hypertrophy that was not affected by CDCs. LV systolic function remained similarly preserved during the whole protocol in both groups. In contrast, LV diastolic function was impaired (increases in Tau, LV end-diastolic pressure as well as E/A, E/E'septal and E/E'lateral ratios) but CDC treatment significantly improved all of these parameters. The beneficial effect of CDCs on LV diastolic function was not explained by reduced LV hypertrophy or increased arteriolar density; however, interstitial fibrosis was markedly reduced. Three-vessel intra-coronary administration of CDCs improves LV diastolic function and reduces LV fibrosis in this hypertensive model of HFpEF.
Collapse
Affiliation(s)
- Romain Gallet
- Inserm U955-IMRB, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Henri Mondor, Service de Cardiologie, Créteil, France
| | - Jin-Bo Su
- Inserm U955-IMRB, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Daphné Corboz
- Inserm U955-IMRB, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Paul-Matthieu Chiaroni
- Inserm U955-IMRB, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Henri Mondor, Service de Cardiologie, Créteil, France
| | - Alain Bizé
- Inserm U955-IMRB, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Jianping Dai
- Inserm U955-IMRB, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Mathieu Panel
- PhyMedExp, Université de Montpellier, INSERM U1046, CNRS UMR 9214, Montpellier, France
| | - Pierre Boucher
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Gaëtan Pallot
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Juliette Brehat
- Inserm U955-IMRB, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Lucien Sambin
- Inserm U955-IMRB, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Guillaume Thery
- Inserm U955-IMRB, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Nadir Mouri
- Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Henri Mondor, Département de biochimie-pharmacologie-biologie moléculaire-génétique médicale, Créteil, France
| | - Aurélien de Pommereau
- Inserm U955-IMRB, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Pierre Denormandie
- Inserm U955-IMRB, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Stéphane Germain
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Alain Lacampagne
- PhyMedExp, Université de Montpellier, INSERM U1046, CNRS UMR 9214, Montpellier, France
| | - Emmanuel Teiger
- Inserm U955-IMRB, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Henri Mondor, Service de Cardiologie, Créteil, France
| | - Eduardo Marbán
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Bijan Ghaleh
- Inserm U955-IMRB, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France.
| |
Collapse
|
26
|
Shah MNA, Yokota T. Cardiac therapies for Duchenne muscular dystrophy. Ther Adv Neurol Disord 2023; 16:17562864231182934. [PMID: 37425427 PMCID: PMC10328182 DOI: 10.1177/17562864231182934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/02/2023] [Indexed: 07/11/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a devastating disease that results in life-limiting complications such as loss of skeletal muscle function as well as respiratory and cardiac complications. Advanced therapeutics in pulmonary care have significantly reduced respiratory complication-related mortality, making cardiomyopathy the main determinant factor of survival. While there are multiple therapies such as the use of anti-inflammatory drugs, physical therapy, and ventilatory assistance targeted toward delaying the disease progression in DMD, a cure remains elusive. In the last decade, several therapeutic approaches have been developed to improve patient survival. These include small molecule-based therapy, micro-dystrophin gene delivery, CRISPR-mediated gene editing, nonsense readthrough, exon skipping, and cardiosphere-derived cell therapy. Associated with the specific benefits of each of these approaches are their individual risks and limitations. The variability in the genetic aberrations leading to DMD also limits the widespread use of these therapies. While numerous approaches have been explored to treat DMD pathophysiology, only a handful have successfully advanced through the preclinical stages. In this review, we summarize the currently approved as well as the most promising therapeutics undergoing clinical trials aimed toward treating DMD with a focus on its cardiac manifestations.
Collapse
Affiliation(s)
- Md Nur Ahad Shah
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
27
|
Collet BC, Davis DR. Mechanisms of Cardiac Repair in Cell Therapy. Heart Lung Circ 2023; 32:825-835. [PMID: 37031061 DOI: 10.1016/j.hlc.2023.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/10/2022] [Accepted: 01/04/2023] [Indexed: 04/08/2023]
Abstract
Heart failure is an important cause of morbidity and mortality. More than 20 years ago, special interest was drawn to cell therapy as a means of restoring damaged hearts to working condition. But progress has not been straightforward as many of our initial assumptions turned out to be wrong. In this review, we critically examine the last 20 years of progress in cardiac cell therapy and focus on several of the popular beliefs surrounding cell therapy to illustrate the mechanisms involved in restoring heart function after cardiac injury. Are they true or false?
Collapse
Affiliation(s)
- Bérénice C Collet
- University of Ottawa Heart Institute, Division of Cardiology, Department of Medicine, University of Ottawa, Ottawa, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Darryl R Davis
- University of Ottawa Heart Institute, Division of Cardiology, Department of Medicine, University of Ottawa, Ottawa, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
28
|
Bez Batti Angulski A, Hosny N, Cohen H, Martin AA, Hahn D, Bauer J, Metzger JM. Duchenne muscular dystrophy: disease mechanism and therapeutic strategies. Front Physiol 2023; 14:1183101. [PMID: 37435300 PMCID: PMC10330733 DOI: 10.3389/fphys.2023.1183101] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/24/2023] [Indexed: 07/13/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe, progressive, and ultimately fatal disease of skeletal muscle wasting, respiratory insufficiency, and cardiomyopathy. The identification of the dystrophin gene as central to DMD pathogenesis has led to the understanding of the muscle membrane and the proteins involved in membrane stability as the focal point of the disease. The lessons learned from decades of research in human genetics, biochemistry, and physiology have culminated in establishing the myriad functionalities of dystrophin in striated muscle biology. Here, we review the pathophysiological basis of DMD and discuss recent progress toward the development of therapeutic strategies for DMD that are currently close to or are in human clinical trials. The first section of the review focuses on DMD and the mechanisms contributing to membrane instability, inflammation, and fibrosis. The second section discusses therapeutic strategies currently used to treat DMD. This includes a focus on outlining the strengths and limitations of approaches directed at correcting the genetic defect through dystrophin gene replacement, modification, repair, and/or a range of dystrophin-independent approaches. The final section highlights the different therapeutic strategies for DMD currently in clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph M. Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
29
|
Pane M, Coratti G, Brogna C, Bovis F, D'Amico A, Pegoraro E, Bello L, Sansone V, Albamonte E, Ferraroli E, Mazzone ES, Fanelli L, Messina S, Catteruccia M, Cicala G, Ricci M, Frosini S, De Luca G, Rolle E, De Sanctis R, Forcina N, Norcia G, Passamano L, Gardani A, Pini A, Monaco G, D'Angelo MG, Capasso A, Leone D, Zanin R, Vita GL, Panicucci C, Bruno C, Mongini T, Ricci F, Berardinelli A, Battini R, Masson R, Baranello G, Dosi C, Bertini E, Politano L, Mercuri E. Longitudinal Analysis of PUL 2.0 Domains in Ambulant and Non-Ambulant Duchenne Muscular Dystrophy Patients: How do they Change in Relation to Functional Ability? J Neuromuscul Dis 2023:JND221556. [PMID: 37066919 DOI: 10.3233/jnd-221556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
BACKGROUND The performance of upper limb 2.0 (PUL) is widely used to assess upper limb function in DMD patients. The aim of the study was to assess 24 month PUL changes in a large cohort of DMD patients and to establish whether domains changes occur more frequently in specific functional subgroups. METHODS The PUL was performed in 311 patients who had at least one pair of assessments at 24 months, for a total of 808 paired assessments. Ambulant patients were subdivided according to the ability to walk: >350, 250-350, ≤250 meters. Non ambulant patients were subdivided according to the time since they lost ambulation: <1, 1-2, 2-5 or >5 years. RESULTS At 12 months, the mean PUL 2.0 change on all the paired assessments was -1.30 (-1.51--1.05) for the total score, -0.5 (-0.66--0.39) for the shoulder domain, -0.6 (-0.74--0.5) for the elbow domain and -0.1 (-0.20--0.06) for the distal domain.At 24 months, the mean PUL 2.0 change on all the paired assessments was -2.9 (-3.29--2.60) for the total score, -1.30 (-1.47--1.09) for the shoulder domain, -1.30 (-1.45--1.11) for the elbow domain and -0.4 (-1.48--1.29) for the distal domain.Changes at 12 and 24 months were statistically significant between subgroups with different functional abilities for the total score and each domain (p < 0.001). CONCLUSION There were different patterns of changes among the functional subgroups in the individual domains. The time of transition, including the year before and after loss of ambulation, show the peak of negative changes in PUL total scores that reflect not only loss of shoulder but also of elbow activities. These results suggest that patterns of changes should be considered at the time of designing clinical trials.
Collapse
Affiliation(s)
- Marika Pane
- Pediatric Neurology, Università Cattolica delSacro Cuore, Rome, Italy
- Centro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome
| | - Giorgia Coratti
- Centro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome
| | - Claudia Brogna
- Centro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome
| | - Francesca Bovis
- Department of Health Sciences (DISSAL), University of Genova, Genova, Italy
| | - Adele D'Amico
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children'sHospital, Rome, Italy
| | - Elena Pegoraro
- Department of Neurosciences, University of Padua, Padua, Italy
| | - Luca Bello
- Department of Neurosciences, University of Padua, Padua, Italy
| | - Valeria Sansone
- The NEMO Clinical Center in Milan, Neurorehabilitation Unit, University of Milan, ASST Niguarda Hospital, Milan, Italy
| | - Emilio Albamonte
- The NEMO Clinical Center in Milan, Neurorehabilitation Unit, University of Milan, ASST Niguarda Hospital, Milan, Italy
| | | | | | - Lavinia Fanelli
- Centro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome
| | - Sonia Messina
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Michela Catteruccia
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children'sHospital, Rome, Italy
| | - Gianpaolo Cicala
- Pediatric Neurology, Università Cattolica delSacro Cuore, Rome, Italy
- Centro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome
| | - Martina Ricci
- Pediatric Neurology, Università Cattolica delSacro Cuore, Rome, Italy
- Centro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome
| | - Silvia Frosini
- Department of Developmental Neuroscience, IRCCS Stella Maris, Pisa, Italy
| | - Giacomo De Luca
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children'sHospital, Rome, Italy
| | - Enrica Rolle
- Neuromuscular Center, AOU Città della Salute e della Scienza, University of Torino, Turin, Italy
| | - Roberto De Sanctis
- Centro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome
| | - Nicola Forcina
- Centro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome
| | - Giulia Norcia
- Centro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome
| | - Luigia Passamano
- Department of Experimental Medicine, Cardiomiology and Medical Genetics, Second University of Naples, Naples, Italy
| | - Alice Gardani
- Child and Adolescence NeurologicalUnit, National Neurological Institute Casimiro MondinoFoundation, IRCCS, Pavia, Italy
| | - Antonella Pini
- Child Neurologyand Psychiatry Unit, IRCCS Institute of Neurological Sciences, Bellaria Hospital, Bologna, Italy
| | - Giulia Monaco
- Child Neurologyand Psychiatry Unit, IRCCS Institute of Neurological Sciences, Bellaria Hospital, Bologna, Italy
| | | | - Anna Capasso
- Pediatric Neurology, Università Cattolica delSacro Cuore, Rome, Italy
- Centro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome
| | - Daniela Leone
- Centro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome
| | - Riccardo Zanin
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Gian Luca Vita
- Unit of Neurology, IRCCS Centro Neurolesi Bonino-Pulejo - P.O. Piemonte, Messina, Italy
| | - Chiara Panicucci
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, and Department of Neuroscience, Rehabilitation, Ophtalmology, Genetics, Maternal and ChildHealth-DINOGMI, University of Genova, Genova, Italy
| | - Claudio Bruno
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, and Department of Neuroscience, Rehabilitation, Ophtalmology, Genetics, Maternal and ChildHealth-DINOGMI, University of Genova, Genova, Italy
| | - Tiziana Mongini
- Neuromuscular Center, AOU Città della Salute e della Scienza, University of Torino, Turin, Italy
| | - Federica Ricci
- Neuromuscular Center, AOU Città della Salute e della Scienza, University of Torino, Turin, Italy
| | - Angela Berardinelli
- Child and Adolescence NeurologicalUnit, National Neurological Institute Casimiro MondinoFoundation, IRCCS, Pavia, Italy
| | - Roberta Battini
- Department of Developmental Neuroscience, IRCCS Stella Maris, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Riccardo Masson
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giovanni Baranello
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Claudia Dosi
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children'sHospital, Rome, Italy
| | - Luisa Politano
- Cardiomyology and Medical Genetics Unit, Università degli Studi della CampaniaLuigi Vanvitelli Scuola di Medicina e Chirurgia, Napoli, Italy
| | - Eugenio Mercuri
- Pediatric Neurology, Università Cattolica delSacro Cuore, Rome, Italy
| |
Collapse
|
30
|
Bell-Hensley A, Das S, McAlinden A. The miR-181 family: Wide-ranging pathophysiological effects on cell fate and function. J Cell Physiol 2023; 238:698-713. [PMID: 36780342 PMCID: PMC10121854 DOI: 10.1002/jcp.30969] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 02/14/2023]
Abstract
MicroRNAs (miRNAs) are epigenetic regulators that can target and inhibit translation of multiple mRNAs within a given cell type. As such, a number of different pathways and networks may be modulated as a result. In fact, miRNAs are known to regulate many cellular processes including differentiation, proliferation, inflammation, and metabolism. This review focuses on the miR-181 family and provides information from the published literature on the role of miR-181 homologs in regulating a range of activities in different cell types and tissues. Of note, we have not included details on miR-181 expression and function in the context of cancer since this is a broad topic area requiring independent review. Instead, we have focused on describing the function and mechanism of miR-181 family members on differentiation toward a number of cell lineages in various non-neoplastic conditions (e.g., immune/hematopoietic cells, osteoblasts, osteoclasts, chondrocytes, adipocytes). We have also provided information on how modulation of miR-181 homologs can have positive effects on disease states such as cardiac abnormalities, pulmonary arterial hypertension, thrombosis, osteoarthritis, and vascular inflammation. In this context, we have used some examples of FDA-approved drugs that modulate miR-181 expression. We conclude by discussing some common mechanisms by which miR-181 homologs appear to regulate a number of different cellular processes and how targeting specific miR-181 family members may lead to attractive therapeutic approaches to treat a number of human disease or repair conditions, including those associated with the aging process.
Collapse
Affiliation(s)
- Austin Bell-Hensley
- Department of Biomedical Engineering, Washington University School of Medicine, St Louis, Missouri
| | - Samarjit Das
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Audrey McAlinden
- Department of Orthopaedic Surgery Washington University School of Medicine, St Louis, Missouri
- Department of Cell Biology & Physiology, Washington University School of Medicine, St Louis, Missouri, USA
- Shriners Hospital for Children – St Louis, Missouri
| |
Collapse
|
31
|
Kishino Y, Tohyama S. An Approach That Brings Out the Potential of Regenerative Therapies in Heart Failure. Circ J 2023; 87:487-489. [PMID: 36642512 DOI: 10.1253/circj.cj-22-0781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine
| |
Collapse
|
32
|
Zhang R, Mesquita T, Cho JH, Li C, Sanchez L, Holm K, Akhmerov A, Liu W, Li Y, Ibrahim AG, Cingolani E. Systemic Delivery of Extracellular Vesicles Attenuates Atrial Fibrillation in Heart Failure With Preserved Ejection Fraction. JACC Clin Electrophysiol 2023; 9:147-158. [PMID: 36858679 PMCID: PMC11073791 DOI: 10.1016/j.jacep.2022.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Atrial fibrillation (AF) is a common comorbidity in heart failure with preserved ejection fraction (HFpEF) patients. To date, treatments for HFpEF-related AF have been limited to anti-arrhythmic drugs and ablation. Here we examined the effects of immortalized cardiosphere-derived extracellular vesicles (imCDCevs) in rats with HFpEF. OBJECTIVES This study sought to investigate the mechanisms of AF in HFpEF and probe the potential therapeutic efficacy of imCDCevs in HFpEF-related AF. METHODS Dahl salt-sensitive rats were fed a high-salt diet for 7 weeks to induce HFpEF and randomized to receive imCDCevs (n = 18) or vehicle intravenously (n = 14). Rats fed a normal-salt diet were used as control animals (n = 26). A comprehensive characterization of atrial remodeling was conducted using functional and molecular techniques. RESULTS HFpEF-verified animals showed significantly higher AF inducibility (84%) compared with control animals (15%). These changes were associated with prolonged action potential duration, slowed conduction velocity (connexin 43 lateralization), and fibrotic remodeling in the left atrium of HFpEF compared with control animals. ImCDCevs reversed adverse electrical remodeling (restoration of action potential duration to control levels and reorganization of connexin 43) and reduced AF inducibility (33%). In addition, fibrosis, inflammation, and oxidative stress, which are major pathological AF drivers, were markedly attenuated in imCDCevs-treated animals. Importantly, these effects occurred without changes in blood pressure and diastolic function. CONCLUSIONS Thus, imCDCevs attenuated adverse remodeling, and prevented AF in a rat model of HFpEF.
Collapse
Affiliation(s)
- Rui Zhang
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Thassio Mesquita
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jae Hyung Cho
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Chang Li
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Lizbeth Sanchez
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Kevin Holm
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Akbarshakh Akhmerov
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Weixin Liu
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Yigang Li
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ahmed G Ibrahim
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Eugenio Cingolani
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.
| |
Collapse
|
33
|
Andriolo G, Provasi E, Brambilla A, Panella S, Soncin S, Cicero VL, Radrizzani M, Turchetto L, Barile L. Methodologies for Scalable Production of High-Quality Purified Small Extracellular Vesicles from Conditioned Medium. Methods Mol Biol 2023; 2668:69-98. [PMID: 37140791 DOI: 10.1007/978-1-0716-3203-1_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The development of an extracellular vesicles (EV)-based therapeutic product requires the implementation of reproducible and scalable, purification protocols for clinical-grade EV. Commonly used isolation methods including ultracentrifugation, density gradient centrifugation, size exclusion chromatography, and polymer-based precipitation, faced limitations such as yield efficiency, EV purity, and sample volume. We developed a GMP-compatible method for the scalable production, concentration, and isolation of EV through a strategy involving, tangential flow filtration (TFF). We applied this purification method for the isolation of EV from conditioned medium (CM) of cardiac stromal cells, namely cardiac progenitor cells (CPC) which has been shown to possess potential therapeutical application in heart failure. Conditioned medium collection and EV isolation using TFF demonstrated consistent particle recovery (~1013 particle/mL) enrichment of small/medium-EV subfraction (range size 120-140 nm). EV preparations achieved a 97% reduction of major protein-complex contaminant and showed unaltered biological activity. The protocol describes methods to assess EV identity and purity as well as procedures to perform downstream applications including functional potency assay and quality control tests. The large-scale manufacturing of GMP-grade EV represents a versatile protocol that can be easily applied to different cell sources for wide range of therapeutic areas.
Collapse
Affiliation(s)
- Gabriella Andriolo
- Lugano Cell Factory, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Elena Provasi
- Lugano Cell Factory, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Andrea Brambilla
- Lugano Cell Factory, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Stefano Panella
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Sabrina Soncin
- Lugano Cell Factory, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Viviana Lo Cicero
- Lugano Cell Factory, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Marina Radrizzani
- Lugano Cell Factory, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Lucia Turchetto
- Lugano Cell Factory, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Lucio Barile
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland.
- Faculty of Biomedical Sciences, Università Svizzera italiana, Lugano, Switzerland.
| |
Collapse
|
34
|
Mitteilungen der Deutschen Gesellschaft für Neurologie. DGNEUROLOGIE 2023; 6. [PMCID: PMC9951165 DOI: 10.1007/s42451-023-00546-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
35
|
Wilton-Clark H, Yokota T. Biological and genetic therapies for the treatment of Duchenne muscular dystrophy. Expert Opin Biol Ther 2023; 23:49-59. [PMID: 36409820 DOI: 10.1080/14712598.2022.2150543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Duchenne muscular dystrophy is a lethal genetic disease which currently has no cure, and poor standard treatment options largely focused on symptom relief. The development of multiple biological and genetic therapies is underway across various stages of clinical progress which could markedly affect how DMD patients are treated in the future. AREAS COVERED The purpose of this review is to provide an introduction to the different therapeutic modalities currently being studied, as well as a brief description of their progress to date and relative advantages and disadvantages for the treatment of DMD. This review discusses exon skipping therapy, microdystrophin therapy, stop codon readthrough therapy, CRISPR-based gene editing, cell-based therapy, and utrophin upregulation. Secondary therapies addressing nonspecific symptoms of DMD were excluded. EXPERT OPINION Despite the vast potential held by gene replacement therapy options such as microdystrophin production and utrophin upregulation, safety risks inherent to the adeno-associated virus delivery vector might hamper the clinical viability of these approaches until further improvements can be made. Of the mutation-specific therapies, exon skipping therapy remains the most extensively validated and explored option, and the cell-based CAP-1002 therapy may prove to be a suitable adjunct therapy filling the urgent need for cardiac-specific therapies.
Collapse
Affiliation(s)
- Harry Wilton-Clark
- Faculty of Medicine and Dentistry, Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Toshifumi Yokota
- Faculty of Medicine and Dentistry, Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
36
|
Yedigaryan L, Sampaolesi M. Extracellular vesicles and Duchenne muscular dystrophy pathology: Modulators of disease progression. Front Physiol 2023; 14:1130063. [PMID: 36891137 PMCID: PMC9987248 DOI: 10.3389/fphys.2023.1130063] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a devastating disorder and is considered to be one of the worst forms of inherited muscular dystrophies. DMD occurs as a result of mutations in the dystrophin gene, leading to progressive muscle fiber degradation and weakness. Although DMD pathology has been studied for many years, there are aspects of disease pathogenesis and progression that have not been thoroughly explored yet. The underlying issue with this is that the development of further effective therapies becomes stalled. It is becoming more evident that extracellular vesicles (EVs) may contribute to DMD pathology. EVs are vesicles secreted by cells that exert a multitude of effects via their lipid, protein, and RNA cargo. EV cargo (especially microRNAs) is also said to be a good biomarker for identifying the status of specific pathological processes that occur in dystrophic muscle, such as fibrosis, degeneration, inflammation, adipogenic degeneration, and dilated cardiomyopathy. On the other hand, EVs are becoming more prominent vehicles for custom-engineered cargos. In this review, we will discuss the possible contribution of EVs to DMD pathology, their potential use as biomarkers, and the therapeutic efficacy of both, EV secretion inhibition and custom-engineered cargo delivery.
Collapse
Affiliation(s)
- Laura Yedigaryan
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Histology and Medical Embryology Unit, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
37
|
Strategies for Bottlenecks of rAAV-Mediated Expression in Skeletal and Cardiac Muscle of Duchenne Muscular Dystrophy. Genes (Basel) 2022; 13:genes13112021. [DOI: 10.3390/genes13112021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Gene therapy using the adeno-associated virus (rAAV) to deliver mini/micro- dystrophin is the current promising strategy for Duchenne Muscular Dystrophy (DMD). However, the further transformation of this strategy still faces many “bottlenecks”. Most gene therapies are only suitable for infants with strong muscle cell regeneration and immature immune system, and the treatment depends heavily on the high dose of rAAV. However, high-dose rAAV inevitably causes side effects such as immune response and acute liver toxicity. Therefore, how to reduce the degree of fibrosis and excessive immune response in older patients and uncouple the dependence association between therapeutic effect and high dose rAAV are crucial steps for the transformation of rAAV-based gene therapy. The article analyzes the latest research and finds that the application of utrophin, the homologous protein of dystrophin, could avoid the immune response associated with dystrophin, and the exploration of methods to improve the expression level of mini/micro-utrophin in striated muscle, combined with the novel MyoAAV with high efficiency and specific infection of striated muscle, is expected to achieve the same therapeutic efficacy under the condition of reducing the dose of rAAV. Furthermore, the delivery of allogeneic cardio sphere-derived cells (CDCs) with anti-inflammatory and anti-fibrotic characteristics combined with immune suppression can provide a continuous and appropriate “window period” for gene therapy. This strategy can expand the number of patients who could benefit from gene therapy.
Collapse
|
38
|
de Couto G, Mesquita T, Wu X, Rajewski A, Huang F, Akhmerov A, Na N, Wu D, Wang Y, Li L, Tran M, Kilfoil P, Cingolani E, Marbán E. Cell therapy attenuates endothelial dysfunction in hypertensive rats with heart failure and preserved ejection fraction. Am J Physiol Heart Circ Physiol 2022; 323:H892-H903. [PMID: 36083797 PMCID: PMC9602891 DOI: 10.1152/ajpheart.00287.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/24/2022] [Accepted: 09/06/2022] [Indexed: 12/14/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is defined by increased left ventricular (LV) stiffness, impaired vascular compliance, and fibrosis. Although systemic inflammation, driven by comorbidities, has been proposed to play a key role, the precise pathogenesis remains elusive. To test the hypothesis that inflammation drives endothelial dysfunction in HFpEF, we used cardiosphere-derived cells (CDCs), which reduce inflammation and fibrosis, improving function, structure, and survival in HFpEF rats. Dahl salt-sensitive rats fed a high-salt diet developed HFpEF, as manifested by diastolic dysfunction, systemic inflammation, and accelerated mortality. Rats were randomly allocated to receive intracoronary infusion of CDCs or vehicle. Two weeks later, inflammation, oxidative stress, and endothelial function were analyzed. Single-cell RNA sequencing of heart tissue was used to assay transcriptomic changes. CDCs improved endothelial-dependent vasodilation while reducing oxidative stress and restoring endothelial nitric oxide synthase (eNOS) expression. RNA sequencing revealed CDC-induced attenuation of pathways underlying endothelial cell leukocyte binding and innate immunity. Exposure of endothelial cells to CDC-secreted extracellular vesicles in vitro reduced VCAM-1 protein expression and attenuated monocyte adhesion and transmigration. Cell therapy with CDCs corrects diastolic dysfunction, reduces oxidative stress, and restores vascular reactivity. These findings lend credence to the hypothesis that inflammatory changes of the vascular endothelium are important, if not central, to HFpEF pathogenesis.NEW & NOTEWORTHY We tested the concept that inflammation of endothelial cells is a major pathogenic factor in HFpEF. CDCs are heart-derived cell products with verified anti-inflammatory therapeutic properties. Infusion of CDCs reduced oxidative stress, restored eNOS abundance, lowered monocyte levels, and rescued the expression of multiple disease-associated genes, thereby restoring vascular reactivity. The salutary effects of CDCs support the hypothesis that inflammation of endothelial cells is a proximate driver of HFpEF.
Collapse
Affiliation(s)
- Geoffrey de Couto
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Thassio Mesquita
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Xiaokang Wu
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Alex Rajewski
- Applied Genomics, Computation and Translational Core, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, California
| | - Feng Huang
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | | | - Na Na
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Di Wu
- Applied Genomics, Computation and Translational Core, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, California
| | - Yizhou Wang
- Applied Genomics, Computation and Translational Core, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, California
| | - Liang Li
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - My Tran
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Peter Kilfoil
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Eugenio Cingolani
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Eduardo Marbán
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
39
|
Kihara Y, Tanaka Y, Ikeda M, Homma J, Takagi R, Ishigaki K, Yamanouchi K, Honda H, Nagata S, Yamato M. In utero transplantation of myoblasts and adipose-derived mesenchymal stem cells to murine models of Duchenne muscular dystrophy does not lead to engraftment and frequently results in fetal death. Regen Ther 2022; 21:486-493. [PMID: 36313392 PMCID: PMC9596598 DOI: 10.1016/j.reth.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/19/2022] [Accepted: 10/09/2022] [Indexed: 11/07/2022] Open
Abstract
Introduction Duchenne muscular dystrophy (DMD) is a progressive disease that leads to damage of muscle and myocardium due to genetic abnormalities in the dystrophin gene. In utero cell transplantation that might facilitate allogenic transplantation is worth considering to treat this disease. Methods We performed allogeneic in utero transplantation of GFP-positive myoblasts and adipose-derived mesenchymal stem cells into murine DMD model animals. The transplantation route in this study was fetal intraperitoneal transplantation and transplacental transplantation. Transplanted animals were examined at 4-weeks old by immunofluorescence staining and RT-qPCR. Results No GFP-positive cells were found by immunofluorescence staining of skeletal muscle and no GFP mRNA was detected by RT-qPCR in any animal, transplantation method and cell type. Compared with previous reports, myoblast transplantation exhibited an equivalent mortality rate, but adipose-derived stem cell (ASC) transplantation produced a higher mortality rate. Conclusions In utero transplantation of myoblasts or ASCs to murine models of DMD does not lead to engraftment and, in ASC transplantation primarily, frequently results in fetal death.
Collapse
Affiliation(s)
- Yuki Kihara
- Department of Pediatrics, Tokyo Women’s Medical University, School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan,Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan
| | - Yukie Tanaka
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Masanari Ikeda
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Jun Homma
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan
| | - Ryo Takagi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan
| | - Keiko Ishigaki
- Department of Pediatrics, Tokyo Women’s Medical University, School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan
| | - Keitaro Yamanouchi
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Hiroaki Honda
- Human Disease Models, Institute of Laboratory Animals, Tokyo Women's Medical University, Tokyo, Japan
| | - Satoru Nagata
- Department of Pediatrics, Tokyo Women’s Medical University, School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan,Corresponding author. Fax: +81 3-3359-6046.
| |
Collapse
|
40
|
Deng J, Zhang J, Shi K, Liu Z. Drug development progress in duchenne muscular dystrophy. Front Pharmacol 2022; 13:950651. [PMID: 35935842 PMCID: PMC9353054 DOI: 10.3389/fphar.2022.950651] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/28/2022] [Indexed: 12/22/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe, progressive, and incurable X-linked disorder caused by mutations in the dystrophin gene. Patients with DMD have an absence of functional dystrophin protein, which results in chronic damage of muscle fibers during contraction, thus leading to deterioration of muscle quality and loss of muscle mass over time. Although there is currently no cure for DMD, improvements in treatment care and management could delay disease progression and improve quality of life, thereby prolonging life expectancy for these patients. Furthermore, active research efforts are ongoing to develop therapeutic strategies that target dystrophin deficiency, such as gene replacement therapies, exon skipping, and readthrough therapy, as well as strategies that target secondary pathology of DMD, such as novel anti-inflammatory compounds, myostatin inhibitors, and cardioprotective compounds. Furthermore, longitudinal modeling approaches have been used to characterize the progression of MRI and functional endpoints for predictive purposes to inform Go/No Go decisions in drug development. This review showcases approved drugs or drug candidates along their development paths and also provides information on primary endpoints and enrollment size of Ph2/3 and Ph3 trials in the DMD space.
Collapse
Affiliation(s)
- Jiexin Deng
- School of Nursing and Health, Henan University, Kaifeng, China
- *Correspondence: Jiexin Deng, ; Zhigang Liu,
| | - Junshi Zhang
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Keli Shi
- School of Medicine, Henan University, Kaifeng, China
| | - Zhigang Liu
- Department of Orthopedics, First Affiliated Hospital of Henan University, Kaifeng, China
- *Correspondence: Jiexin Deng, ; Zhigang Liu,
| |
Collapse
|
41
|
Emerging therapies for Duchenne muscular dystrophy. Lancet Neurol 2022; 21:814-829. [DOI: 10.1016/s1474-4422(22)00125-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 02/21/2022] [Accepted: 03/18/2022] [Indexed: 12/11/2022]
|
42
|
Long-Term Protective Effect of Human Dystrophin Expressing Chimeric (DEC) Cell Therapy on Amelioration of Function of Cardiac, Respiratory and Skeletal Muscles in Duchenne Muscular Dystrophy. Stem Cell Rev Rep 2022; 18:2872-2892. [PMID: 35590083 PMCID: PMC9622520 DOI: 10.1007/s12015-022-10384-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 12/12/2022]
Abstract
Duchenne Muscular Dystrophy (DMD) is a lethal disease caused by mutations in dystrophin encoding gene, causing progressive degeneration of cardiac, respiratory, and skeletal muscles leading to premature death due to cardiac and respiratory failure. Currently, there is no cure for DMD. Therefore, novel therapeutic approaches are needed for DMD patients. We have previously reported functional improvements which correlated with increased dystrophin expression following administration of dystrophin expressing chimeric (DEC) cells of myoblast origin to the mdx mouse models of DMD. In the current study, we confirmed dose-dependent protective effect of human DEC therapy created from myoblasts of normal and DMD-affected donors, on restoration of dystrophin expression and amelioration of cardiac, respiratory, and skeletal muscle function at 180 days after systemic-intraosseous DEC administration to mdx/scid mouse model of DMD. Functional improvements included maintenance of ejection fraction and fractional shortening levels on echocardiography, reduced enhanced pause and expiration time on plethysmography and improved grip strength and maximum stretch induced contraction of skeletal muscles. Improved function was associated with amelioration of mdx muscle pathology revealed by reduced muscle fibrosis, reduced inflammation and improved muscle morphology confirmed by reduced number of centrally nucleated fibers and normalization of muscle fiber diameters. Our findings confirm the long-term systemic effect of DEC therapy in the most severely affected by DMD organs including heart, diaphragm, and long skeletal muscles. These encouraging preclinical data introduces human DEC as a novel therapeutic modality of Advanced Therapy Medicinal Product (ATMP) with the potential to improve or halt the progression of DMD and enhance quality of life of DMD patients.
Collapse
|
43
|
Lempriere S. Treatment with cardiosphere-derived cells could slow progress of Duchenne muscular dystrophy. Nat Rev Neurol 2022; 18:251. [PMID: 35396359 DOI: 10.1038/s41582-022-00657-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Davis DR. Cell therapy for patients with Duchenne muscular dystrophy. Lancet 2022; 399:1024-1025. [PMID: 35279246 DOI: 10.1016/s0140-6736(22)00185-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022]
Affiliation(s)
- Darryl R Davis
- University of Ottawa Heart Institute, Division of Cardiology, Department of Medicine, and Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1Y 4W7, Canada.
| |
Collapse
|