1
|
Porta F, Spada M, Ponzone A. Early Screening for Tetrahydrobiopterin Responsiveness in Phenylketonuria. Pediatrics 2017; 140:e20161591. [PMID: 28679641 DOI: 10.1542/peds.2016-1591] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/19/2016] [Indexed: 11/24/2022] Open
Abstract
Since 2007, synthetic tetrahydrobiopterin (BH4) has been approved as a therapeutic option in BH4-responsive phenylketonuria (PKU) and since 2015 extended to infants younger than 4 years in Europe. The current definition of BH4 responsiveness relies on the observation of a 20% to 30% blood phenylalanine (Phe) decrease after BH4 administration, under nonstandardized conditions. By this definition, however, patients with the same genotype or even the same patients were alternatively reported as responsive or nonresponsive to the cofactor. These inconsistencies are troubling, as frustrating patient expectations and impairing cost-effectiveness of BH4-therapy. Here we tried a quantitative procedure through the comparison of the outcome of a simple Phe and a combined Phe plus BH4 loading in a series of infants with PKU, most of them harboring genotypes already reported as BH4 responsive. Under these ideal conditions, blood Phe clearance did not significantly differ after the 2 types of loading, and a 20% to 30% decrease of blood Phe occurred irrespective of BH4 administration in milder forms of PKU. Such early screening for BH4 responsiveness, based on a quantitative assay, is essential for warranting an evidence-based and cost-effective therapy in those patients with PKU eventually but definitely diagnosed as responsive to the cofactor.
Collapse
Affiliation(s)
- Francesco Porta
- Department of Pediatrics, University of Torino, Torino, Italy
| | - Marco Spada
- Department of Pediatrics, University of Torino, Torino, Italy
| | - Alberto Ponzone
- Department of Pediatrics, University of Torino, Torino, Italy
| |
Collapse
|
2
|
Heintz C, Cotton RGH, Blau N. Tetrahydrobiopterin, its mode of action on phenylalanine hydroxylase, and importance of genotypes for pharmacological therapy of phenylketonuria. Hum Mutat 2013; 34:927-36. [PMID: 23559577 DOI: 10.1002/humu.22320] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 03/20/2013] [Accepted: 03/20/2013] [Indexed: 11/11/2022]
Abstract
In about 20%-30% of phenylketonuria (PKU) patients (all phenotypes of PAH deficiency), Phe levels may be controlled through phenylalanine hydroxylase cofactor tetrahydrobiopterin therapy. These patients can be diagnosed by an oral tetrahydrobiopterin challenge and are characterized by mutations coding for proteins with substantial residual PAH activity. They can be treated with a commercially available synthetic form of tetrahydrobiopterin, either as a monotherapy or as adjunct to the diet. This review article summarizes molecular and metabolic bases of PKU and the importance of the tetrahydrobiopterin loading test used for PKU patients. On the basis of in vitro residual PAH activity, more than 1,200 genotypes from patients challenged with tetrahydrobiopterin were categorized as predictive for tetrahydrobiopterin responsiveness or non-responsiveness and correlated with the loading test, phenotype, and residual in vitro PAH activity. The coexpression of two distinct PAH mutant alleles revealed possible dominance effects (positive or negative) by one of the mutations on residual activity as result of interallelic complementation. The treatment of the transfected cells with tetrahydrobiopterin showed an increase in residual PAH activity with several mutations coexpressed.
Collapse
|
3
|
Ponzone A, Porta F, Mussa A, Alluto A, Ferraris S, Spada M. Unresponsiveness to tetrahydrobiopterin of phenylalanine hydroxylase deficiency. Metabolism 2010; 59:645-52. [PMID: 19913839 DOI: 10.1016/j.metabol.2009.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 08/02/2009] [Accepted: 09/09/2009] [Indexed: 11/28/2022]
Abstract
Conflicting results have been reported concerning the efficacy of tetrahydrobiopterin (BH4), the cofactor of phenylalanine hydroxylase, for reducing phenylalanine (Phe) concentration in phenylketonuria (PKU). We aimed to test quantitatively the effects of BH4 in PKU patients. Seven fully characterized patients were selected among a population of 130 PKU subjects as harboring PKU mutations predicted as BH4 responsive and previously considered responsive to a cofactor challenge. They received a simple Phe (100 mg/kg) and 2 combined Phe (100 mg/kg) and BH4 (20 mg/kg) oral loading tests. Cofactor was administered either before or after the amino acid. The concentrations of Phe, tyrosine (Tyr), and biopterin were measured over 24 hours after loading. The comparative analysis of the loading tests showed that in all patients plasma Phe concentrations peaked within 3 hours, and fell within 24 hours by about 50% in benign, 20% in mild, and 15% in severe phenylalanine hydroxylase deficiency regardless of BH4 administration. A consistent or moderate increase of plasma Tyr, again independent of the cofactor challenge, was observed only in the less severe forms of PAH deficiency. Mean blood biopterin concentration increased 6 times after simple Phe and 34 to 39 times after combined loading tests. The administration of BH4 does not alter Phe and Tyr metabolism in PKU patients. The clearance of plasma Phe after oral loading and, as well as Tyr production, is not related to cofactor challenge but to patient's phenotype. The assessment of BH4 responsiveness by the methods so far used is not reliable, and the occurrence of BH4-responsive forms of PKU still has to be definitely proven.
Collapse
Affiliation(s)
- Alberto Ponzone
- Department of Pediatrics, University of Torino, Torino, Italy.
| | | | | | | | | | | |
Collapse
|
4
|
Abstract
OBJECTIVES Early blood phenylalanine (Phe) elevation after birth enables screening for and anticipation of the diagnosis of phenylketonuria. The differential impact of factors involved in this phenomenon, however, has not been elucidated. To solve this question, phenotype, genotype, dietary Phe intake, timing of blood collection, and Phe metabolism were retrospectively analyzed in 21 phenylketonuria newborns and prospectively in 1. PATIENTS AND METHODS Patients were assigned to 1 of 4 classes of phenylalanine hydroxylase (PAH) deficiency (severe, moderate, mild, and benign) on the basis of their Phe tolerance. Phe ingested, tolerated, and released from endogenous catabolism was assessed. RESULTS From birth to screening test, the amount of Phe tolerated ranged from 704 to 1620 mg, according to the class of PAH deficiency. The amount of Phe ingested ranged only from 204 to 405 mg, whereas the endogenous Phe breakdown ranged from 812 to 1534 mg, resulting in a rate of Phe catabolism ranging from 262 to 341 mg/day, regardless of the class of PAH deficiency. CONCLUSIONS The high rate of protein catabolism is the main determinant of neonatal hyperphenylalaninemia. It is sufficient to turn to positive the screening test in severe and moderate PAH deficiency. In mild and benign PAH deficiency, the outcome of screening procedures can be substantially altered by the concurrence of genetic and peristaltic factors. These results imply that the value of blood Phe at the screening test is not fully predictive of the phenylketonuria phenotype, and strengthen concerns regarding the reliability of early screening procedures.
Collapse
|
5
|
Ponzone A, Spada M, Ferraris S, Dianzani I, de Sanctis L. Dihydropteridine reductase deficiency in man: from biology to treatment. Med Res Rev 2004; 24:127-50. [PMID: 14705166 DOI: 10.1002/med.10055] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In 1975, dihydropteridine reductase (DHPR) deficiency was first recognized as a cause of tetrahydrobiopterin (BH(4)) deficiency, leading to hyperphenylalaninemia (HPA) and impaired biogenic amine deficiency. So far, more than 150 patients scattered worldwide have been reported and major progresses have been made in the understanding of physiopathology, screening, diagnosis, treatment, and molecular genetics of this inherited disease. Present knowledge on different aspects of DHPR deficiency, largely derived from authors' personal experience, is traced in this article.
Collapse
|
6
|
Bernegger C, Blau N. High frequency of tetrahydrobiopterin-responsiveness among hyperphenylalaninemias: a study of 1,919 patients observed from 1988 to 2002. Mol Genet Metab 2002; 77:304-13. [PMID: 12468276 DOI: 10.1016/s1096-7192(02)00171-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tetrahydrobiopterin (BH(4))-responsive hyperphenylalaninemia (HPA) is a recently described variant of phenylalanine hydroxylase deficiency. In contrast to patients with classical phenylketonuria, these patients respond to BH(4) loading tests (20mg/kg) with decrease of plasma phenylalanine levels 4 and 8 h after administration and they can be treated with BH(4) monotherapy. We retrospectively evaluated 1,919 loading tests from 33 different countries performed in our laboratory between 1988 and 2002 of which 278 loading tests were performed with 6R-BH(4), which is about 33% more active than the formerly used 6R,S-BH(4). The loading tests were performed between the ages of one week and 4.6 years, using 2.6-30.0 mg 6R,S- or 6R-BH(4)/kg. Plasma phenylalanine levels before the test ranged from 121 to 4,705 micromol/L. We calculated the phenylalanine "hydroxylation rate" 4 and 8 h after BH(4) administration and plotted the slope of the hydroxylation rate against the phenylalanine levels at time 0. The slope was greater than 3.75 in 65, 74, 33, 17, 0, and 10% of patients with basal phenylalanine levels of 120-400, 400-800, 800-1,200, 1,200-1,600, 1,600-2,200, and >2,200 micromol/L, respectively, when loaded with 20 mg 6R-BH(4)/kg (p>0.0001). This is 5-20 times higher compared with tests using 6R,S-BH(4) or lower doses of BH(4). More than 70% of patients with mild HPA (<800 micromol/L) are found to be BH(4) responders. Therapy with BH(4) (approximately 10mg/kg/day) was initiated in several patients instead of a low-phenylalanine diet, resulting in much better treatment compliance. Our data further demonstrate that BH(4) loading tests can only distinguish between BH(4) responders and non-responders. To differentiate between BH(4) and phenylalanine hydroxylase deficiencies additional tests are essential.
Collapse
Affiliation(s)
- Caroline Bernegger
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital, Steinwiesstrasse 75, 8032 Zurich, Switzerland
| | | |
Collapse
|
7
|
Guzzetta V, Bonapace G, Dianzani I, Parenti G, Lecora M, Giannattasio S, Concolino D, Strisciuglio P, Sebastio G, Andria G. Phenylketonuria in Italy: distinct distribution pattern of three mutations of the phenylalanine hydroxylase gene. J Inherit Metab Dis 1997; 20:619-24. [PMID: 9323556 DOI: 10.1023/a:1005315106604] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Phenylketonuria (PKU) is an autosomal recessive disease caused by the deficiency of a liver-specific enzyme, phenylalanine hydroxylase (PAH). The pattern of PAH mutations in Mediterranean populations appears to be different from that observed in northern Europe and Asia. Our aim was to study the molecular basis of PKU in Campania and Calabria, two regions of southern Italy. We studied 99 unrelated alleles, detecting 75.8% of the mutations. Our results show that 57% of all the PKU alleles are caused by three different mutations: IVS10nt-546, R261Q and L48S, which display significant differences in their relative distribution across Italy. A novel mutation, a G-to-T transversion at the codon 257 (G257C), was also identified. This mutation results in a Gly-to-Cys change in the catalytic domain of the protein.
Collapse
Affiliation(s)
- V Guzzetta
- Dipartimento di Pediatria, Universita Federico II, Napoli, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ponzone A, Guardamagna O, Spada M, Ferraris S, Ponzone R, Kierat L, Blau N. Differential diagnosis of hyperphenylalaninaemia by a combined phenylalanine-tetrahydrobiopterin loading test. Eur J Pediatr 1993; 152:655-61. [PMID: 8404969 DOI: 10.1007/bf01955242] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We describe a new fully reliable method for the differential diagnosis of tetrahydrobiopterin-dependent hyperphenylalaninaemia (HPA). The method comprises the combined phenylalanine (Phe) plus tetrahydrobiopterin (BH4) oral loading test and enables the selective screening of BH4 deficiency when pterin analysis is not available or when a clear diagnosis has not been previously made. It should be performed together with the measurement of dihydropteridine reductase (DHPR) activity in blood. The new combined loading test was performed in nine patients with primary HPA, three with classical phenylketonuria (PKU), three with DHPR deficiency, and three with 6-pyruvoyl tetrahydropterin synthase (PTPS) deficiency. Three hours after oral Phe loading (100 mg/kg body weight), synthetic BH4 was administered orally at doses of either 7.5 or 20 mg/kg body weight. Amino acid (Phe and tyrosine) and pterin (neopterin and biopterin) metabolism and kinetics were analysed. By exploiting the decrease in serum Phe 4 and 8 h after administration, a clear response was obtained with the higher BH4 dose (20 mg/kg body weight), allowing detection of all cases of BH4 deficiency, as well as differentiation of BH4 synthesis from regeneration defects. Since DHPR deficient patients who were previously shown to be non-responsive to the simple BH4 loading test gave a positive response, the combined Phe plus BH4 loading test can be used as a more reliable tool for the differential diagnosis of HPA in these patients. Moreover, it takes advantage of being performed while patients are on a Phe-restricted diet.
Collapse
Affiliation(s)
- A Ponzone
- Department of Paediatrics, University of Sassari, Italy
| | | | | | | | | | | | | |
Collapse
|
9
|
Dianzani I, Devoto M, Camaschella C, Saglio G, Ferrero GB, Cerone R, Romano C, Romeo G, Giovannini M, Riva E. Haplotype distribution and molecular defects at the phenylalanine hydroxylase locus in Italy. Hum Genet 1990; 86:69-72. [PMID: 1979309 DOI: 10.1007/bf00205176] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In order to investigate the molecular basis of phenylketonuria (PKU) in Italy, we characterized the RFLP haplotypes at the phenylalanine hydroxylase gene in 38 unrelated Italian PKU families. The distribution of haplotypes associated with PKU alleles differs from that of other European populations. In particular, haplotypes 1 and 6 are present in 39.7% and 17.6% of the PKU chromosomes, whereas the frequencies of haplotypes 2 and 3 are 5.9% and 2.9%, respectively. The characterization of PKU mutations using the polymerase chain reaction and allele-specific oligonucleotides shows that 1 out of 2 haplotypes 3 carries the splicing mutation and that 2 out of 4 haplotypes 2 carry the missense mutation associated with these haplotypes in North European populations. Our results indicate that the two molecular defects most frequent in Northern Europe represent a minority of PKU mutations in Italy.
Collapse
Affiliation(s)
- I Dianzani
- Clinica Pediatrica dell'Università di Torino, Turin, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Dianzani I, Farinasso L, Fortina P, Camaschella C, Ponzone R, Dahl HH, Cotton RG, Ponzone A. RFLPs of the phenylalanine hydroxylase gene in the Italian population. J Inherit Metab Dis 1989; 12:162-5. [PMID: 2569049 DOI: 10.1007/bf01800721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Different mutations of the phenylalanine hydroxylase (PAH) gene leading to phenylketonuria (PKU) have been described associated with specific haplotypes in several European countries. In order to investigate the distribution of DNA haplotypes in Italy, restriction fragment length polymorphism (RFLP) analysis of the PAH gene was performed in nine Italian PKU patients from eight unrelated families, and in the available relatives. The analysis of eight polymorphic sites revealed haplotypes 1 and 6 in association with PKU. This pattern appears to differ from those reported for other European populations. The majority of the 14 PKU subjects studied showed compound heterozygosity for different haplotypes, as observed for other European series. RFLP analysis at the PAH locus allowed us to offer the possibility of prenatal diagnosis to six of the studied families. One prenatal diagnosis was performed and a normal fetus was diagnosed.
Collapse
Affiliation(s)
- I Dianzani
- Department of Biomedical Sciences and Human Oncology, University of Turin, Italy
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Ponzone A, Guardamagna O, Ferraris S, Bracco G, Niederwieser A, Cotton RG. Two mutations of dihydropteridine reductase deficiency. Arch Dis Child 1988; 63:154-7. [PMID: 2894818 PMCID: PMC1778712 DOI: 10.1136/adc.63.2.154] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Two patients with dihydropteridine reductase (DHPR) deficiency, in one case due to the absence of any enzyme protein (DHPR- cross reactive material (CRM)-) and in the other case due to the production of a mutant type devoid of catalytic activity (DHPR- CRM+) were examined. This latter form of malignant phenylketonuria, whose relative frequency seems to be higher in the Italian population, possibly has a worse prognosis. The earlier onset and the greater severity of clinical symptoms are associated with a more pronounced hydroxylation defect, as shown by higher degree of neonatal hyperphenylalaninaemia, unresponsiveness to an oral tetrahydrobiopterin load, lower concentrations of neurotransmitter metabolites, and reduced tyrosine production after an oral phenylalanine load.
Collapse
Affiliation(s)
- A Ponzone
- Pediatric Clinic, University of Turin, Italy
| | | | | | | | | | | |
Collapse
|