1
|
Zhao J, Li L, Liu Q, Liu P, Li S, Yang D, Chen Y, Pagnotta S, Favery B, Abad P, Jian H. A MIF-like effector suppresses plant immunity and facilitates nematode parasitism by interacting with plant annexins. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5943-5958. [PMID: 31365744 PMCID: PMC6812717 DOI: 10.1093/jxb/erz348] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 07/22/2019] [Indexed: 05/20/2023]
Abstract
Plant-parasitic nematodes secrete numerous effectors to facilitate parasitism, but detailed functions of nematode effectors and their plant targets remain largely unknown. Here, we characterized four macrophage migration inhibitory factors (MIFs) in Meloidogyne incognita resembling the MIFs secreted by human and animal parasites. Transcriptional data showed MiMIFs are up-regulated in parasitism. Immunolocalization provided evidence that MiMIF proteins are secreted from the nematode hypodermis to the parasite surface, detected in plant tissues and giant cells. In planta MiMIFs RNA interference in Arabidopsis decreased infection and nematode reproduction. Transient expression of MiMIF-2 could suppress Bax- and RBP1/Gpa2-induced cell death. MiMIF-2 ectopic expression led to higher levels of Arabidopsis susceptibility, suppressed immune responses triggered by flg22, and impaired [Ca2+]cyt influx induced by H2O2. The immunoprecipitation of MiMIF-2-interacting proteins, followed by co-immunoprecipitation and bimolecular fluorescence complementation validations, revealed specific interactions between MiMIF-2 and two Arabidopsis annexins, AnnAt1 and AnnAt4, involved in the transport of calcium ions, stress responses, and signal transduction. Suppression of expression or overexpression of these annexins modified nematode infection. Our results provide functional evidence that nematode effectors secreted from hypodermis to the parasite cuticle surface target host proteins and M. incognita uses MiMIFs to promote parasitism by interfering with the annexin-mediated plant immune responses.
Collapse
Affiliation(s)
- Jianlong Zhao
- Department of Plant Pathology and Key Laboratory of Pest Monitoring and Green Management of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Lijuan Li
- Department of Plant Pathology and Key Laboratory of Pest Monitoring and Green Management of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Qian Liu
- Department of Plant Pathology and Key Laboratory of Pest Monitoring and Green Management of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Pei Liu
- Department of Plant Pathology and Key Laboratory of Pest Monitoring and Green Management of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Shuang Li
- Department of Plant Pathology and Key Laboratory of Pest Monitoring and Green Management of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Dan Yang
- Department of Plant Pathology and Key Laboratory of Pest Monitoring and Green Management of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Yongpan Chen
- Department of Plant Pathology and Key Laboratory of Pest Monitoring and Green Management of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Sophie Pagnotta
- Centre Commun de Microscopie Appliquée (CCMA), Université de Nice Sophia Antipolis, Nice, France
| | | | - Pierre Abad
- Université Côte d’Azur, INRA, CNRS, ISA, France
| | - Heng Jian
- Department of Plant Pathology and Key Laboratory of Pest Monitoring and Green Management of the Ministry of Agriculture, China Agricultural University, Beijing, China
- Correspondence:
| |
Collapse
|
2
|
Konopka-Postupolska D, Clark G. Annexins as Overlooked Regulators of Membrane Trafficking in Plant Cells. Int J Mol Sci 2017; 18:E863. [PMID: 28422051 PMCID: PMC5412444 DOI: 10.3390/ijms18040863] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 12/11/2022] Open
Abstract
Annexins are an evolutionary conserved superfamily of proteins able to bind membrane phospholipids in a calcium-dependent manner. Their physiological roles are still being intensively examined and it seems that, despite their general structural similarity, individual proteins are specialized toward specific functions. However, due to their general ability to coordinate membranes in a calcium-sensitive fashion they are thought to participate in membrane flow. In this review, we present a summary of the current understanding of cellular transport in plant cells and consider the possible roles of annexins in different stages of vesicular transport.
Collapse
Affiliation(s)
- Dorota Konopka-Postupolska
- Plant Biochemistry Department, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland.
| | - Greg Clark
- Molecular, Cell, and Developmental Biology, University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
3
|
Dalal A, Vishwakarma A, Singh NK, Gudla T, Bhattacharyya MK, Padmasree K, Viehhauser A, Dietz KJ, Kirti PB. Attenuation of hydrogen peroxide-mediated oxidative stress byBrassica junceaannexin-3 counteracts thiol-specific antioxidant (TSA1) deficiency inSaccharomyces cerevisiae. FEBS Lett 2014; 588:584-93. [DOI: 10.1016/j.febslet.2014.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 12/15/2013] [Accepted: 01/02/2014] [Indexed: 01/23/2023]
|
4
|
Konopka-Postupolska D, Clark G, Goch G, Debski J, Floras K, Cantero A, Fijolek B, Roux S, Hennig J. The role of annexin 1 in drought stress in Arabidopsis. PLANT PHYSIOLOGY 2009; 150:1394-410. [PMID: 19482919 PMCID: PMC2705051 DOI: 10.1104/pp.109.135228] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 05/18/2009] [Indexed: 05/18/2023]
Abstract
Annexins act as targets of calcium signals in eukaryotic cells, and recent results suggest that they play an important role in plant stress responses. We found that in Arabidopsis (Arabidopsis thaliana), AnnAt1 (for annexin 1) mRNA levels were up-regulated in leaves by most of the stress treatments applied. Plants overexpressing AnnAt1 protein were more drought tolerant and knockout plants were more drought sensitive than ecotype Columbia plants. We also observed that hydrogen peroxide accumulation in guard cells was reduced in overexpressing plants and increased in knockout plants both before and after treatment with abscisic acid. Oxidative protection resulting from AnnAt1 overexpression could be due to the low level of intrinsic peroxidase activity exhibited by this protein in vitro, previously linked to a conserved histidine residue found in a peroxidase-like motif. However, analyses of a mutant H40A AnnAt1 protein in a bacterial complementation test and in peroxidase activity assays indicate that this residue is not critical to the ability of AnnAt1 to confer oxidative protection. To further examine the mechanism(s) linking AnnAt1 expression to stress resistance, we analyzed the reactive S3 cluster to determine if it plays a role in AnnAt1 oligomerization and/or is the site for posttranslational modification. We found that the two cysteine residues in this cluster do not form intramolecular or intermolecular bonds but are highly susceptible to oxidation-driven S-glutathionylation, which decreases the Ca(2+) affinity of AnnAt1 in vitro. Moreover, S-glutathionylation of AnnAt1 occurs in planta after abscisic acid treatment, which suggests that this modification could be important in regulating the cellular function of AnnAt1 during stress responses.
Collapse
|
5
|
Jami SK, Clark GB, Turlapati SA, Handley C, Roux SJ, Kirti PB. Ectopic expression of an annexin from Brassica juncea confers tolerance to abiotic and biotic stress treatments in transgenic tobacco. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:1019-30. [PMID: 18768323 DOI: 10.1016/j.plaphy.2008.07.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 07/10/2008] [Indexed: 05/18/2023]
Abstract
Plant annexins belong to a multigene family and are suggested to play a role in stress responses. A full-length cDNA for a gene encoding an annexin protein was isolated and characterized from Brassica juncea (AnnBj1). AnnBj1 message levels were regulated by abscisic acid, ethephon, salicylic acid, and methyl jasmonate as well as chemicals that induce osmotic stress (NaCl, Mannitol or PEG), heavy metal stress (CdCl(2)) and oxidative stress (methyl viologen or H(2)O(2)). In order to determine if AnnBj1 functions in protection against stress, we generated transgenic tobacco plants ectopically expressing AnnBj1 under the control of constitutive CaMV 35S promoter. The transgenic tobacco plants showed significant tolerance to dehydration (mannitol), salt (NaCl), heavy metal (CdCl(2)) and oxidative stress (H(2)O(2)) at the seedling stage and retained higher chlorophyll levels in response to the above stresses as determined in detached leaf senescence assays. The transgenic plants also showed decreased accumulation of thiobarbituric acid-reactive substances (TBARS) compared to wild-type plants in response to mannitol treatments in leaf disc assays. AnnBj1 recombinant protein exhibited low levels of peroxidase activity in vitro and transgenic plants showed increased total peroxidase activity. Additionally, the transgenic plants showed enhanced resistance to the oomycete pathogen, Phytophthora parasitica var. nicotianae, and increased message levels for several pathogenesis-related proteins. Our results demonstrate that ectopic expression of AnnBj1 in tobacco provides tolerance to a variety of abiotic and biotic stresses.
Collapse
Affiliation(s)
- Sravan Kumar Jami
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad-500046, AP, India
| | | | | | | | | | | |
Collapse
|
6
|
Konopka-Postupolska D. Annexins: putative linkers in dynamic membrane-cytoskeleton interactions in plant cells. PROTOPLASMA 2007; 230:203-15. [PMID: 17458635 DOI: 10.1007/s00709-006-0234-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Accepted: 03/14/2006] [Indexed: 05/08/2023]
Abstract
The plasma membrane, the most external cellular structure, is at the forefront between the plant cell and its environment. Hence, it is naturally adapted to function in detection of external signals, their transduction throughout the cell, and finally, in cell reactions. Membrane lipids and the cytoskeleton, once regarded as simple and static structures, have recently been recognized as significant players in signal transduction. Proteins involved in signal detection and transduction are organised in specific domains at the plasma membrane. Their aggregation allows to bring together and orient the downstream and upstream members of signalling pathways. The cortical cytoskeleton provides a structural framework for rapid signal transduction from the cell periphery into the nucleus. It leads to intracellular reorganisation and wide-scale modulation of cellular metabolism which results in accumulation of newly synthesised proteins and/or secondary metabolites which, in turn, have to be distributed to the appropriate cell compartments. And again, in plant cells, the secretory vesicles that govern polar cellular transport are delivered to their target membranes by interaction with actin microfilaments. In search for factors that could govern subsequent steps of the cell response delineated above we focused on an evolutionary conserved protein family, the annexins, that bind in a calcium-dependent manner to membrane phospholipids. Annexins were proposed to regulate dynamic changes in membrane architecture and to organise the interface between secretory vesicles and the membrane. Certain proteins from this family were also identified as actin binding, making them ideal mediators in cell membrane and cytoskeleton interactions.
Collapse
Affiliation(s)
- D Konopka-Postupolska
- Laboratory of Plant Pathogenesis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
7
|
Gorecka KM, Konopka-Postupolska D, Hennig J, Buchet R, Pikula S. Peroxidase activity of annexin 1 from Arabidopsis thaliana. Biochem Biophys Res Commun 2005; 336:868-75. [PMID: 16153598 DOI: 10.1016/j.bbrc.2005.08.181] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Accepted: 08/23/2005] [Indexed: 11/30/2022]
Abstract
On the basis of earlier reports suggesting that annexin A1 from Arabidopsis thaliana (AnnAt1) participates in limiting the excessive levels of reactive oxygen species during oxidative burst in plants, we examined the sensitivity of recombinant AnnAt1 to hydrogen peroxide and its peroxidase activity. Purified recombinant protein remains mostly alpha-helical and binds to lipids in a calcium-dependent manner. Upon oxidation recombinant AnnAt1 exhibits a tendency to form dimers in vitro. AnnAt1 is also sensitive to the presence of reducing agents, suggesting that AnnAt1 is a redox sensor in plant cells. Moreover, using two independent methods we found that AnnAt1 displayed peroxidase activity which is probably related to the presence of a heme-binding domain within AnnAt1, as present in other peroxidases. Indeed, site-directed mutagenesis within this domain resulted in a complete abrogation of the activity of AnnAt1. Furthermore, this activity was found to be sensitive to the phosphorylation state of the protein.
Collapse
Affiliation(s)
- Karolina M Gorecka
- Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093 Warsaw, Poland
| | | | | | | | | |
Collapse
|
8
|
Vanyushin BF, Bakeeva LE, Zamyatnina VA, Aleksandrushkina NI. Apoptosis in plants: specific features of plant apoptotic cells and effect of various factors and agents. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 233:135-79. [PMID: 15037364 DOI: 10.1016/s0074-7696(04)33004-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Apoptosis is an integral part of plant ontogenesis; it is controlled by cellular oxidative status, phytohormones, and DNA methylation. In wheat plants apoptosis appears at early stages of development in coleoptile and initial leaf of 5- to 6-day-old seedlings. Distinct ultrastructural features of apoptosis observed are (1). compaction and vacuolization of cytoplasm in the apoptotic cell, (2). specific fragmentation of cytoplasm and appearance in the vacuole of unique single-membrane vesicles containing active organelles, (3). cessation of nuclear DNA synthesis, (4). condensation and margination of chromatin in the nucleus, (5). internucleosomal fragmentation of nuclear DNA, and (6). intensive synthesis of mitochondrial DNA in vacuolar vesicles. Peroxides, abscisic acid, ethylene releaser ethrel, and DNA methylation inhibitor 5-azacytidine induce and stimulate apoptosis. Modulation of the reactive oxygen species (ROS) level in seedling by antioxidants and peroxides results in tissue-specific changes in the target date for the appearance and the intensity of apoptosis. Antioxidant butylated hydroxytoluene (BHT) reduces the amount of ROS and prevents apoptosis in etiolated seedlings, prolongs coleoptile life span, and prevents the appearance of all apoptotic features mentioned. Besides, BHT induces large structural changes in the organization of all cellular organelles and the formation of new unusual membrane structures in the cytoplasm. BHT distorts mitosis and this results in the appearance of multiblade polyploid nuclei and multinuclear cells. In roots of etiolated wheat seedlings, BHT induces differentiation of plastids with the formation of chloro(chromo)plasts. Therefore, ROS controlled by BHT seems to regulate mitosis, trigger apoptosis, and control plastid differentiation and the organization of various cellular structures formed by endocytoplasmic reticulum.
Collapse
Affiliation(s)
- B F Vanyushin
- Belozersky Institute of Physico Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | | | | | | |
Collapse
|
9
|
Ullrich CI, Aloni R. Vascularization is a general requirement for growth of plant and animal tumours. JOURNAL OF EXPERIMENTAL BOTANY 2000; 51:1951-1960. [PMID: 11141169 DOI: 10.1093/jexbot/51.353.1951] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Solid-tumour growth in animals as in humans depends on angiogenesis. Tumours that fail to induce the formation of new blood vessels do not enlarge beyond a few millimetres in diameter. Plant tumours induced by Agrobacterium tumefaciens can reach diameters of more than 100 mm, thus raising the question of how they are sufficiently supplied with nutrients and water. Until recently, these rapidly growing tumours were considered unorganized or partly organized masses. However, in analogy to animal and human tumours, growth of leaf and stem tumours depends on neovascularization. Plant tumour cells induce the formation of a sophisticated vascular network consisting of water-conducting vessels and assimilate-transporting sieve elements. Similar to animal and human tumours that overexpress angiogenic growth factors, plant tumours overexpress the T-DNA-encoded vascularization-promoting growth factors auxin and cytokinin upon AGROBACTERIUM: infection. High auxin levels induce ethylene emission from the tumours, which has a strong impact on tumour and host stem, as well as on root structure and function. Ethylene apparently stimulates abscisic acid synthesis in the leaves above the tumour, which reduces transpiration and thus protects the host plant from rapid wilting. Hence, for the elucidation of phytohormone-dependent vascular development in plants, such tumours are regarded as an excellent model system. The comparison of analogous requirement of neovascularization for tumour growth in plants, as in animals and humans, is discussed in terms of interdisciplinary strategies of possible prevention and therapy.
Collapse
Affiliation(s)
- C I Ullrich
- Institut für Botanik, Technische Universität, D-64287 Darmstadt, Germany.
| | | |
Collapse
|
10
|
Abstract
Out of the almost 17 members of the TNF superfamily, TNF is probably the most potent inducer of apoptosis. TNF activates both cell-survival and cell-death mechanisms simultaneously. Activation of NF-kB-dependent genes regulates the survival and proliferative effects pf TNF, whereas activation of caspases regulates the apoptotic effects. TNF-induced apoptosis is mediated primarily through the activation of type I receptors, the death domain of which recruits more than a dozen different signaling proteins, which together are considered part of an apoptotic cascade. This cascade does not, however, account for the role of reactive oxygen intermediates, ceramide, phospholipases, and serine proteases which are also implicated in TNF-induced apoptosis. This cascade also does not explain how type II TNF receptors which lack the death domain, induce apoptosis. Nevertheless, this review of apoptosis signaling will be limited to those proteins that makeup the cascade.
Collapse
Affiliation(s)
- P C Rath
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | |
Collapse
|