1
|
Jampilek J. Drug repurposing to overcome microbial resistance. Drug Discov Today 2022; 27:2028-2041. [PMID: 35561965 DOI: 10.1016/j.drudis.2022.05.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 12/15/2022]
Abstract
Infections are a growing global threat, and the number of resistant species of microbial pathogens is alarming. However, the rapid development of cross-resistant or multidrug-resistant strains and the development of so-called 'superbugs' are in stark contrast to the number of newly launched anti-infectives on the market. In this review, I summarize the causes of antimicrobial resistance, briefly discuss different approaches to the discovery and development of new anti-infective drugs, and focus on drug repurposing strategy, which is discussed from all possible perspectives. A comprehensive overview of drugs of other indications tested for their in vitro antimicrobial activity to support existing anti-infective therapeutics is provided, including several critical remarks on this strategy of repurposing non-antibiotics to antibacterial drugs.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia; Department of Chemical Biology, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
2
|
Dos Santos MC, Tairum CA, Cabrera VIM, Guimarães Cauz AC, Ribeiro LF, Toledo Junior JC, Toyama MH, Lago JHG, Brocchi M, Netto LES, de Oliveira MA. Adenanthin Is an Efficient Inhibitor of Peroxiredoxins from Pathogens, Inhibits Bacterial Growth, and Potentiates Antibiotic Activities. Chem Res Toxicol 2022; 36:570-582. [PMID: 35537067 DOI: 10.1021/acs.chemrestox.2c00049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The emergence and re-emergence of bacterial strains resistant to multiple drugs represent a global health threat, and the search for novel biological targets is a worldwide concern. AhpC are enzymes involved in bacterial redox homeostasis by metabolizing diverse kinds of hydroperoxides. In pathogenic bacteria, AhpC are related to several functions, as some isoforms are characterized as virulence factors. However, no inhibitor has been systematically evaluated to date. Here we show that the natural ent-kaurane Adenanthin (Adn) efficiently inhibits AhpC and molecular interactions were explored by computer assisted simulations. Additionally, Adn interferes with growth and potentializes the effect of antibiotics (kanamycin and PMBN), positioning Adn as a promising compound to treat infections caused by multiresistant bacterial strains.
Collapse
Affiliation(s)
- Melina Cardoso Dos Santos
- Instituto de Biociências, Universidade Estadual Paulista, UNESP, São Vicente, São Paulo 11330-900, Brazil
| | - Carlos Abrunhosa Tairum
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo 05508-090, Brazil
| | | | - Ana Carolina Guimarães Cauz
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, UNICAMP, Campinas, São Paulo 13083-862, Brazil
| | - Luiz Fernando Ribeiro
- Instituto de Biociências, Universidade Estadual Paulista, UNESP, São Vicente, São Paulo 11330-900, Brazil
| | - José Carlos Toledo Junior
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Marcos Hikari Toyama
- Instituto de Biociências, Universidade Estadual Paulista, UNESP, São Vicente, São Paulo 11330-900, Brazil
| | - João Henrique Ghilardi Lago
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo 09210-580, Brazil
| | - Marcelo Brocchi
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, UNICAMP, Campinas, São Paulo 13083-862, Brazil
| | - Luis Eduardo Soares Netto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo 05508-090, Brazil
| | - Marcos Antonio de Oliveira
- Instituto de Biociências, Universidade Estadual Paulista, UNESP, São Vicente, São Paulo 11330-900, Brazil
| |
Collapse
|
3
|
Schrank CL, Wilt IK, Monteagudo Ortiz C, Haney BA, Wuest WM. Using membrane perturbing small molecules to target chronic persistent infections. RSC Med Chem 2021; 12:1312-1324. [PMID: 34458737 PMCID: PMC8372208 DOI: 10.1039/d1md00151e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
After antibiotic treatment, a subpopulation of bacteria often remains and can lead to recalcitrant infections. This subpopulation, referred to as persisters, evades antibiotic treatment through numerous mechanisms such as decreased uptake of small molecules and slowed growth. Membrane perturbing small molecules have been shown to eradicate persisters as well as render these populations susceptible to antibiotic treatment. Chemotype similarities have emerged suggesting amphiphilic heteroaromatic compounds possess ideal properties to increase membrane fluidity and such molecules warrant further investigation as effective agents or potentiators against persister cells.
Collapse
Affiliation(s)
| | - Ingrid K Wilt
- Department of Chemistry Emory University Atlanta GA 30322 USA
| | | | | | - William M Wuest
- Department of Chemistry Emory University Atlanta GA 30322 USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine Atlanta GA 30322 USA
| |
Collapse
|
4
|
Seixas N, Ravanello BB, Morgan I, Kaluđerović GN, Wessjohann LA. Chlorambucil Conjugated Ugi Dendrimers with PAMAM-NH₂ Core and Evaluation of Their Anticancer Activity. Pharmaceutics 2019; 11:E59. [PMID: 30717083 PMCID: PMC6409784 DOI: 10.3390/pharmaceutics11020059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/15/2019] [Accepted: 01/23/2019] [Indexed: 12/16/2022] Open
Abstract
Herein, a new Ugi multicomponent reaction strategy is described to enhance activity and solubility of the chemotherapeutic drug chlorambucil through its conjugation to poly(amidoamine) (PAMAM-NH₂) dendrimers with the simultaneous introduction of lipidic (i-Pr) and cationic (⁻NH₂) or anionic (⁻COOH) groups. Standard viability assays were used to evaluate the anticancer potential of the water-soluble dendrimers against PC-3 prostate and HT-29 colon cancer cell lines, as well as non-cancerous mouse NIH3T3 fibroblasts. It could be demonstrated that the anticancer activity against PC-3 cells was considerably improved when both chlorambucil and ⁻NH₂ (cationic) groups were present on the dendrimer surface (1b). Additionally, this dendrimer showed activity only against the prostate cancer cells (PC-3), while it did not affect colon cancer cells and fibroblasts significantly. The cationic chlorambucil-dendrimer 1b blocks PC-3 cells in the G2/M phase and induces caspase independent apoptosis.
Collapse
Affiliation(s)
- Nalin Seixas
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany.
| | - Bruno B Ravanello
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany.
| | - Ibrahim Morgan
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany.
| | - Goran N Kaluđerović
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany.
- Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, Eberhard-Leibnitz-Strasse 2, 06217 Merseburg, Germany.
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany.
| |
Collapse
|
5
|
Tran TB, Wang J, Doi Y, Velkov T, Bergen PJ, Li J. Novel Polymyxin Combination With Antineoplastic Mitotane Improved the Bacterial Killing Against Polymyxin-Resistant Multidrug-Resistant Gram-Negative Pathogens. Front Microbiol 2018; 9:721. [PMID: 29706941 PMCID: PMC5906568 DOI: 10.3389/fmicb.2018.00721] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/27/2018] [Indexed: 11/13/2022] Open
Abstract
Due to limited new antibiotics, polymyxins are increasingly used to treat multidrug-resistant (MDR) Gram-negative bacteria, in particular carbapenem-resistant Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Unfortunately, polymyxin monotherapy has led to the emergence of resistance. Polymyxin combination therapy has been demonstrated to improve bacterial killing and prevent the emergence of resistance. From a preliminary screening of an FDA drug library, we identified antineoplastic mitotane as a potential candidate for combination therapy with polymyxin B against polymyxin-resistant Gram-negative bacteria. Here, we demonstrated that the combination of polymyxin B with mitotane enhances the in vitro antimicrobial activity of polymyxin B against 10 strains of A. baumannii, P. aeruginosa, and K. pneumoniae, including polymyxin-resistant MDR clinical isolates. Time-kill studies showed that the combination of polymyxin B (2 mg/L) and mitotane (4 mg/L) provided superior bacterial killing against all strains during the first 6 h of treatment, compared to monotherapies, and prevented regrowth and emergence of polymyxin resistance in the polymyxin-susceptible isolates. Electron microscopy imaging revealed that the combination potentially affected cell division in A. baumannii. The enhanced antimicrobial activity of the combination was confirmed in a mouse burn infection model against a polymyxin-resistant A. baumannii isolate. As mitotane is hydrophobic, it was very likely that the synergistic killing of the combination resulted from that polymyxin B permeabilized the outer membrane of the Gram-negative bacteria and allowed mitotane to enter bacterial cells and exert its antimicrobial effect. These results have important implications for repositioning non-antibiotic drugs for antimicrobial purposes, which may expedite the discovery of novel therapies to combat the rapid emergence of antibiotic resistance.
Collapse
Affiliation(s)
- Thien B. Tran
- Monash Biomedicine Discovery Institute, Department of Microbiology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Jiping Wang
- Monash Biomedicine Discovery Institute, Department of Microbiology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Yohei Doi
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Tony Velkov
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Phillip J. Bergen
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
- Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Jian Li
- Monash Biomedicine Discovery Institute, Department of Microbiology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Salmelin C, Vilpo J. expression profiling of all protein-coding genes in wild-type and three DNA repair-deficient substrains of Escherichia coli K-12. Comp Funct Genomics 2010; 3:3-13. [PMID: 18628877 PMCID: PMC2447237 DOI: 10.1002/cfg.140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2001] [Accepted: 12/06/2001] [Indexed: 11/11/2022] Open
Abstract
Gene chips or cDNA arrays of the entire set of Escherichia coli (E. coli) K12 genes were used to measure the expression, at the mRNA level, of all 4290 protein-coding genes in wild-type (WT) and three DNA repair-deficient derivative strains: (i) AB1157 (WT), (ii) LR39 (ada, ogt), (iii) MV1932 (alkA1, tag-1) and (iv) GM5555 (mutS). The aim was to investigate whether disruption of a single gene would result in significant deviation in the expression of other genes in these organisms. We describe here a simple approach for a stringent statistical evaluation of cDNA array data. This includes: (i) determination of intra- and interassay variation coefficients for different expression levels, (ii) rejection of biased duplicates, (iii) mathematical background determination, and (iv) comparison of expression levels of identical copies of a gene. The results demonstrated a highly significant correlation of gene expression when the mutants were individually compared with the wildtype. Altogether, 81 deviations of the expression of 59 genes were noted, out of 12,870, when 3-fold or greater up- or down-regulation was used as a criterion of differential expression. In the light of current knowledge of E. coli biology, the differential expression did not follow any logical pattern. In fact, the deviations may simply represent inter-assay variation. The results obtained here with a simple model organism are different from those obtained with most mammalian knockouts: disruption of the function of a single gene does not, under good growth conditions, necessarily result in great changes in the expression of other genes.
Collapse
Affiliation(s)
- Camilla Salmelin
- Leukemia Research Laboratory, Department of Clinical Chemistry, Tampere University Hospital, and Tampere University Medical School, Tampere, Finland
| | | |
Collapse
|
7
|
Florea-Wang D, Pawlowicz AJ, Sinkkonen J, Kronberg L, Vilpo J, Hovinen J. Reactions of 4-[Bis(2-chloroethyl)amino]benzenebutanoic acid (chlorambucil) with DNA. Chem Biodivers 2009; 6:1002-13. [PMID: 19623547 DOI: 10.1002/cbdv.200800327] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
4-[Bis(2-chloroethyl)amino]benzenebutanoic acid (=chlorambucil, 1; 2.5 mM) was allowed to react with single- and double-stranded calf thymus DNA at physiological pH (cacodylic acid, 50% base) at 37 degrees . The DNA-chlorambucil adducts were identified by analyzing the DNA hydrolysates by NMR, UV, HPLC, LC/ESI-MS/MS techniques as well as by spiking with authentic materials. ssDNA was more reactive than dsDNA, and the order of reactivity in ssDNA was Ade-N1>Gua-N7>Cyt-N3>Ade-N3. The most reactive site in dsDNA was Ade-N3. The Gua-N7 and Ade-N3 adducts were hydrolytically labile. Ade-N7 adduct could not be identified in the hydrolysates of ssDNA or dsDNA. The adduct Gua-N7,N7, which consists of two units of Gua bound together with a unit derived from chlorambucil, is a cross-linking adduct, and it was detected in the hydrolysates of ssDNA and dsDNA. Also several other adducts were detected which could be characterized by spiking with previously isolated authentic adducts or tentatively by MS. The role of chlorambucil-DNA adducts on the cytotoxicity and mutagenity of 1 is also discussed.
Collapse
|
8
|
Loeber R, Michaelson E, Fang Q, Campbell C, Pegg A, Tretyakova N. Cross-linking of the DNA repair protein Omicron6-alkylguanine DNA alkyltransferase to DNA in the presence of antitumor nitrogen mustards. Chem Res Toxicol 2008; 21:787-95. [PMID: 18324787 PMCID: PMC2825382 DOI: 10.1021/tx7004508] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The antitumor activity of chemotherapeutic nitrogen mustards including chlorambucil, cyclophosphamide, and melphalan is commonly attributed to their ability to induce DNA-DNA cross-links by consecutive alkylation of two nucleophilic sites within the DNA duplex. DNA-protein cross-linking by nitrogen mustards is not well characterized, probably because of its inherent complexity and the insufficient sensitivity of previous methodologies. If formed, DNA-protein conjugates are likely to contribute to both target and off-target cytotoxicity of nitrogen mustard drugs. Here, we show that the DNA repair protein, O (6)-alkylguanine DNA alkyltransferase (AGT), can be readily cross-linked to DNA in the presence of nitrogen mustards. Both chlorambucil and mechlorethamine induced the formation of covalent conjugates between (32)P-labeled double-stranded oligodeoxynucleotides and recombinant human AGT protein, which were detected by SDS-PAGE. Capillary HPLC-electrospray ionization mass spectrometry (ESI-MS) analysis of AGT that had been treated with the guanine half-mustards of chlorambucil or mechlorethamine revealed the ability of the protein to form either one or two cross-links to guanine. C145A AGT (a variant containing a single point mutation in the protein's active site) was found capable of forming a single guanine conjugate, while cross-linking was virtually abolished upon treatment of the C145A/C150S AGT double mutant with the guanine half-mustards. HPLC-ESI (+)-MS/MS sequencing of tryptic peptides obtained from the wild-type AGT protein that had been treated with nitrogen mustards in the presence of DNA confirmed that the cross-linking took place between the N7 position of guanine in DNA and two active site residues within the AGT protein (Cys (145) and Cys (150)). The exact chemical structures of AGT-DNA cross-links induced by chlorambucil and mechlorethamine were identified as N-(2-[ S-cysteinyl]ethyl)- N-(2-[guan-7-yl]ethyl)- p-aminophenylbuyric acid and N-(2-[ S-cysteinyl]ethyl)- N-(2-[guan-7-yl]ethyl)methylamine, respectively, based upon HPLC-MS/MS analysis of protein hydrolysates in parallel with the corresponding amino acid conjugates prepared synthetically. Mechlorethamine-induced AGT-DNA conjugates were isolated from protein extracts of AGT-expressing CHO cells but not control cells, demonstrating that nitrogen mustards can cross-link the AGT protein to DNA in the presence of other nuclear proteins. Because AGT is overexpressed in many tumor types, further investigations of the potential role of AGT-DNA cross-linking in the antitumor and mutagenic activity of antitumor nitrogen mustards are warranted.
Collapse
Affiliation(s)
- Rachel Loeber
- Department of Medicinal Chemistry and Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Erin Michaelson
- Department of Medicinal Chemistry and Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Qingming Fang
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Colin Campbell
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455
| | - Anthony Pegg
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Natalia Tretyakova
- Department of Medicinal Chemistry and Cancer Center, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
9
|
Florea-Wang D, Ijäs I, Hakala K, Mattinen J, Vilpo J, Hovinen J. Reactions of {4-[Bis(2-chloroethyl)amino]phenyl}acetic Acid (Phenylacetic Acid Mustard) with 2′-Deoxyribonucleosides. Chem Biodivers 2007; 4:406-23. [PMID: 17372943 DOI: 10.1002/cbdv.200790033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Phenylacetic acid mustard (PAM; 2), a major metabolite of the anticancer agent chlorambucil (CLB; 1), was allowed to react with 2'-deoxyadenosine (dA), 2'-deoxyguanosine (dG), 2'-deoxycytidine (dC), 2'-deoxy-5-methylcytidine (dMeC), and thymidine (T) at physiological pH (cacodylic acid, 50% base). The reactions were followed by HPLC and analyzed by HPLC/MS and/or (1)H-NMR techniques. Although the predominant reaction observed was hydrolysis of PAM, 2 also reacted with various heteroatoms of the nucleosides to give a series of products: compounds 5-31. PAM (2) was found to be hydrolytically slightly more stable than CLB (1). The principal reaction sites of 2 with dA, dG, and with all pyrimidine nucleosides were N(1), N(7), and N(3), resp. Also, several other adducts were detected and characterized. There was no significant difference in the reactivity of 1 and 2 with dG, dA or T, but the N(3) dC-PAM adduct was deaminated easier than the corresponding CLB derivative. The role of PAM-2'-deoxyribonucleoside adducts on the cytotoxic and mutagenic properties of CLB (1) is discussed.
Collapse
|
10
|
Lage C, de Pádula M, de Alencar TAM, da Fonseca Gonçalves SR, da Silva Vidal L, Cabral-Neto J, Leitão AC. New insights on how nucleotide excision repair could remove DNA adducts induced by chemotherapeutic agents and psoralens plus UV-A (PUVA) in Escherichia coli cells. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2003; 544:143-57. [PMID: 14644316 DOI: 10.1016/j.mrrev.2003.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Chemotherapeutic agents such as mitomycin C or nitrogen mustards induce DNA inter-strand cross-links (ICL) and are highly toxic, thus constituting an useful tool to treat some human degenerative diseases, such as cancer. Additionally, psoralens plus UV-A (PUVA), which also induce ICL, find use in treatment of patients afflicted with psoriasis and vitiligo. The repair of DNA ICL generated by different molecules involves a number of multi-step DNA repair pathways. In bacteria, as in eukaryotic cells, if DNA ICL are not tolerated or repaired via nucleotide excision repair (NER), homologous recombination or translesion synthesis pathways, these DNA lesions may lead to mutations and cell death. Herein, we bring new insights to the role of Escherichia coli nucleotide excision repair genes uvrA, uvrB and uvrC in the repair of DNA damage induced by some chemotherapeutic agents and psoralen derivatives plus UV-A. These new observations point to a novel role for the UvrB protein, independent of its previously described role in the Uvr(A)BC complex, which could be specific for repair of monoadducts, intra-strand biadducts and/or ICL.
Collapse
Affiliation(s)
- Claudia Lage
- Laboratório de Radiobiologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Bloco G, Centro de Ciencias da Saude, Universidade de Federal do Rio de Janeiro, 21949-900 Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | |
Collapse
|
11
|
Salmelin C, Vilpo J. Induction of SOS response, cellular efflux and oxidative stress response genes by chlorambucil in DNA repair-deficient Escherichia coli cells (ada, ogt and mutS). Mutat Res 2003; 522:33-44. [PMID: 12517410 DOI: 10.1016/s0027-5107(02)00231-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chlorambucil (CLB) is a bifunctional alkylating drug widely used as an anticancer agent and as an immunosuppressant. It is known to be mutagenic, teratogenic and carcinogenic. The cellular actions of CLB have remained poorly investigated. It is very likely that DNA damage and its repair are the key elements determining the destiny of CLB-exposed cells. We investigated the role of two specific DNA repair pathways involved in CLB-induced mutagenicity and gene expression changes by using Escherichia coli strains lacking either (i) two DNA methyltransferase functions (O(6)-methylguanine-DNA methyltransferase I (ada) and II (ogt)), or (ii) mismatch repair (MutS (mutS)). Mutagenicity was determined as the development of ciproxin and rifampicin resistance and the gene expression changes were assessed using expression profiling of all E. coli 4290 open reading frames (ORFs) by cDNA array. Chlorambucil-induced mutants in mutS cells, implying the importance of mismatch repair in preventing CLB-induced mutations. It also induced mutants in the ada, ogt strain, but to a lesser extent than in the wild-type strain. The simultaneous upregulation of several genes of the SOS response, cellular efflux and oxidative stress response, was demonstrated in both of the DNA repair-deficient strains but not in the wild-type cells. These and our previous results show that single-gene knock-out cells use specific gene regulation strategies to avoid mutations and cell death induced by agents such as chlorambucil.
Collapse
Affiliation(s)
- Camilla Salmelin
- Department of Clinical Chemistry, Tampere University Hospital and Tampere University Medical School, PO Box 2000, FIN-33521 Tampere, Finland.
| | | |
Collapse
|
12
|
Salmelin C, Vilpo J. Chlorambucil-induced high mutation rate and suicidal gene downregulation in a base excision repair-deficient Escherichia coli strain. Mutat Res 2002; 500:125-34. [PMID: 11890942 DOI: 10.1016/s0027-5107(02)00004-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chlorambucil (CLB; N,N-bis(2-chloroethyl)-p-aminophenylbutyric acid) is a bifunctional alkylating agent widely used as an anticancer drug and also as an immunosuppressant. Its chemical structure and clinical experience indicate that CLB is mutagenic and carcinogenic. We have investigated the ability of CLB to induce mutations and gene expression changes in the wild-type (WT) Escherichia coli strain AB1157 and in the base excision repair-deficient (alkA1, tag-1) E. coli strain MV1932 using a rifampicin (rif) forward mutation system and a cDNA array method. The results showed that CLB is a potent mutagen in MV1932 cells compared with the E. coli WT strain AB1157, emphasizing the role of 3-methyladenine DNA glycosylases I and II in protecting the cells from CLB-induced DNA damage and subsequent mutations. Global gene expression profiling revealed that nine genes in WT E. coli and 100 genes in MV1932, of a total of 4290 genes, responded at least 2.5-fold to CLB. Interestingly, all of these MV1932 genes were downregulated, while 22% were upregulated in WT cells. The downregulated genes in MV1932 represented most (19/23) functional categories, and unexpectedly, many of them code for proteins responsible for genomic integrity. These include: (i) RecF (SOS-response, adaptive mutation), (ii) RecC (resistance to cross-linking agents), (iii) HepA (DNA repair, a possible substitute of RecBCD), (iv) Ssb (DNA recombination repair, controls RecBCD), and (v) SbcC (genetic recombination). Our results strongly suggest that in addition to the DNA damage itself, the downregulation of central protecting genes is responsible for the decreased cell survival (demonstrated in a previous work) and the increased mutation rate (this work) of DNA repair-deficient cells, when exposed to CLB.
Collapse
Affiliation(s)
- Camilla Salmelin
- Leukemia Research Laboratory, Department of Clinical Chemistry, Tampere University Hospital and Tampere University Medical School, P.O. Box 2000, FIN-33521 Tampere, Finland
| | | |
Collapse
|