1
|
Beck KM, Ruder L, Nicolai TS, Pham RL, Risgaard NA, Hornum M, Nielsen P. Double‐Headed Nucleotides with Non‐Native Nucleobases: Synthesis and Duplex Studies. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Kasper M. Beck
- Department of Physics Chemistry and Pharmacy University of Southern Denmark Campusvej 55 5230 Odense M Denmark
| | - Linette Ruder
- Department of Physics Chemistry and Pharmacy University of Southern Denmark Campusvej 55 5230 Odense M Denmark
| | - Tine S. Nicolai
- Department of Physics Chemistry and Pharmacy University of Southern Denmark Campusvej 55 5230 Odense M Denmark
| | - Robert L. Pham
- Department of Physics Chemistry and Pharmacy University of Southern Denmark Campusvej 55 5230 Odense M Denmark
| | - Nikolaj A. Risgaard
- Department of Physics Chemistry and Pharmacy University of Southern Denmark Campusvej 55 5230 Odense M Denmark
| | - Mick Hornum
- Department of Physics Chemistry and Pharmacy University of Southern Denmark Campusvej 55 5230 Odense M Denmark
| | - Poul Nielsen
- Department of Physics Chemistry and Pharmacy University of Southern Denmark Campusvej 55 5230 Odense M Denmark
| |
Collapse
|
2
|
Behera B, Das P, Jena NR. Accurate Base Pair Energies of Artificially Expanded Genetic Information Systems (AEGIS): Clues for Their Mutagenic Characteristics. J Phys Chem B 2019; 123:6728-6739. [PMID: 31290661 DOI: 10.1021/acs.jpcb.9b04653] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recently, several artificial nucleobases, such as B, S, J, V, X, K, P, and Z, have been proposed to help in the expansion of the genetic information system and diagnosis of diseases. Among these bases, P and Z were identified to form stable DNA and to participate in the replication. However, the stabilities of P:Z and other artificial base pairs are not fully understood. The abilities of these unnatural nucleobases in mispairing with themselves and with natural bases are also not known. Here, the ωB97X-D dispersion-corrected density functional theoretical and complete basis set (CBS-QB3) methods are used to obtain accurate structural and energetic data related to base pair interactions involving these unnatural nucleobases. The roles of protonation and deprotonation of certain artificial bases in inducing mutations are also studied. It is found that each artificial purine has a complementary artificial pyrimidine, the base pair interactions between which are similar to those of the natural Watson-Crick base pairs. Hence, these base pairs will function naturally and would not impart mutagenicity. Among these base pairs, the J:V complex is found to be the most stable and promising artificial base pair. Remarkably, the noncomplementary artificial nucleobases are found to form stable mispairs, which may generate mutagenic products in DNA. Similarly, the misinsertions of natural bases opposite artificial bases are also found to be mutagenic. The mechanisms of these mutations are explained in detail. These results are in agreement with earlier biochemical studies. It is thus expected that this study would aid in the advancement of the synthetic biology to design more robust artificial nucleotides.
Collapse
Affiliation(s)
- B Behera
- Discipline of Natural Sciences , Indian Institute of Information Technology, Design and Manufacturing , Jabalpur 482005 , India
| | - P Das
- Discipline of Natural Sciences , Indian Institute of Information Technology, Design and Manufacturing , Jabalpur 482005 , India
| | - N R Jena
- Discipline of Natural Sciences , Indian Institute of Information Technology, Design and Manufacturing , Jabalpur 482005 , India
| |
Collapse
|
3
|
Padroni G, Withers JM, Taladriz-Sender A, Reichenbach LF, Parkinson JA, Burley GA. Sequence-Selective Minor Groove Recognition of a DNA Duplex Containing Synthetic Genetic Components. J Am Chem Soc 2019; 141:9555-9563. [DOI: 10.1021/jacs.8b12444] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Giacomo Padroni
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Jamie M. Withers
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Andrea Taladriz-Sender
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Linus F. Reichenbach
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - John A. Parkinson
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Glenn A. Burley
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| |
Collapse
|
4
|
Strazewski P. Low-Digit and High-Digit Polymers in the Origin of Life. Life (Basel) 2019; 9:life9010017. [PMID: 30717360 PMCID: PMC6463190 DOI: 10.3390/life9010017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/23/2019] [Accepted: 01/26/2019] [Indexed: 01/22/2023] Open
Abstract
Extant life uses two kinds of linear biopolymers that mutually control their own production, as well as the cellular metabolism and the production and homeostatic maintenance of other biopolymers. Nucleic acids are linear polymers composed of a relatively low structural variety of monomeric residues, and thus a low diversity per accessed volume. Proteins are more compact linear polymers that dispose of a huge compositional diversity even at the monomeric level, and thus bear a much higher catalytic potential. The fine-grained diversity of proteins makes an unambiguous information transfer from protein templates too error-prone, so they need to be resynthesized in every generation. But proteins can catalyse both their own reproduction as well as the efficient and faithful replication of nucleic acids, which resolves in a most straightforward way an issue termed “Eigen’s paradox”. Here the importance of the existence of both kinds of linear biopolymers is discussed in the context of the emergence of cellular life, be it for the historic orgin of life on Earth, on some other habitable planet, or in the test tube. An immediate consequence of this analysis is the necessity for translation to appear early during the evolution of life.
Collapse
Affiliation(s)
- Peter Strazewski
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (Unité Mixte de Recherche 5246), Université de Lyon, Claude Bernard Lyon 1, 43 bvd du 11 Novembre 1918, 69622 Villeurbanne CEDEX, France.
| |
Collapse
|
5
|
Biondi E, Benner SA. Artificially Expanded Genetic Information Systems for New Aptamer Technologies. Biomedicines 2018; 6:E53. [PMID: 29747381 PMCID: PMC6027400 DOI: 10.3390/biomedicines6020053] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/04/2018] [Accepted: 05/06/2018] [Indexed: 01/04/2023] Open
Abstract
Directed evolution was first applied to diverse libraries of DNA and RNA molecules a quarter century ago in the hope of gaining technology that would allow the creation of receptors, ligands, and catalysts on demand. Despite isolated successes, the outputs of this technology have been somewhat disappointing, perhaps because the four building blocks of standard DNA and RNA have too little functionality to have versatile binding properties, and offer too little information density to fold unambiguously. This review covers the recent literature that seeks to create an improved platform to support laboratory Darwinism, one based on an artificially expanded genetic information system (AEGIS) that adds independently replicating nucleotide “letters” to the evolving “alphabet”.
Collapse
Affiliation(s)
- Elisa Biondi
- Foundation for Applied Molecular Evolution, Alachua, FL 32615, USA.
- Firebird Biomolecular Sciences, LLC, Alachua, FL 32615, USA.
| | - Steven A Benner
- Foundation for Applied Molecular Evolution, Alachua, FL 32615, USA.
- Firebird Biomolecular Sciences, LLC, Alachua, FL 32615, USA.
| |
Collapse
|
6
|
Schneider C, Becker S, Okamura H, Crisp A, Amatov T, Stadlmeier M, Carell T. Noncanonical RNA Nucleosides as Molecular Fossils of an Early Earth-Generation by Prebiotic Methylations and Carbamoylations. Angew Chem Int Ed Engl 2018. [PMID: 29533524 DOI: 10.1002/anie.201801919] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The RNA-world hypothesis assumes that life on Earth started with small RNA molecules that catalyzed their own formation. Vital to this hypothesis is the need for prebiotic routes towards RNA. Contemporary RNA, however, is not only constructed from the four canonical nucleobases (A, C, G, and U), it also contains many chemically modified (noncanonical) bases. A still open question is whether these noncanonical bases were formed in parallel to the canonical bases (chemical origin) or later, when life demanded higher functional diversity (biological origin). Here we show that isocyanates in combination with sodium nitrite establish methylating and carbamoylating reactivity compatible with early Earth conditions. These reactions lead to the formation of methylated and amino acid modified nucleosides that are still extant. Our data provide a plausible scenario for the chemical origin of certain noncanonical bases, which suggests that they are fossils of an early Earth.
Collapse
Affiliation(s)
- Christina Schneider
- Center for Integrated Protein Science (CiPSM) at the Department, of Chemistry, LMU München, Butenandtstrasse 5-13, 81377, München, Germany
| | - Sidney Becker
- Center for Integrated Protein Science (CiPSM) at the Department, of Chemistry, LMU München, Butenandtstrasse 5-13, 81377, München, Germany
| | - Hidenori Okamura
- Center for Integrated Protein Science (CiPSM) at the Department, of Chemistry, LMU München, Butenandtstrasse 5-13, 81377, München, Germany
| | - Antony Crisp
- Center for Integrated Protein Science (CiPSM) at the Department, of Chemistry, LMU München, Butenandtstrasse 5-13, 81377, München, Germany
| | - Tynchtyk Amatov
- Center for Integrated Protein Science (CiPSM) at the Department, of Chemistry, LMU München, Butenandtstrasse 5-13, 81377, München, Germany
| | - Michael Stadlmeier
- Center for Integrated Protein Science (CiPSM) at the Department, of Chemistry, LMU München, Butenandtstrasse 5-13, 81377, München, Germany
| | - Thomas Carell
- Center for Integrated Protein Science (CiPSM) at the Department, of Chemistry, LMU München, Butenandtstrasse 5-13, 81377, München, Germany
| |
Collapse
|
7
|
Schneider C, Becker S, Okamura H, Crisp A, Amatov T, Stadlmeier M, Carell T. Nicht-kanonische RNA-Nukleoside als molekulare Fossilien einer frühen Erde - Generierung durch präbiotische Methylierungen und Carbamoylierungen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801919] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Christina Schneider
- Center for Integrated Protein Science (CiPS ) am, Department Chemie; LMU München; Butenandtstraße 5-13 81377 München Deutschland
| | - Sidney Becker
- Center for Integrated Protein Science (CiPS ) am, Department Chemie; LMU München; Butenandtstraße 5-13 81377 München Deutschland
| | - Hidenori Okamura
- Center for Integrated Protein Science (CiPS ) am, Department Chemie; LMU München; Butenandtstraße 5-13 81377 München Deutschland
| | - Antony Crisp
- Center for Integrated Protein Science (CiPS ) am, Department Chemie; LMU München; Butenandtstraße 5-13 81377 München Deutschland
| | - Tynchtyk Amatov
- Center for Integrated Protein Science (CiPS ) am, Department Chemie; LMU München; Butenandtstraße 5-13 81377 München Deutschland
| | - Michael Stadlmeier
- Center for Integrated Protein Science (CiPS ) am, Department Chemie; LMU München; Butenandtstraße 5-13 81377 München Deutschland
| | - Thomas Carell
- Center for Integrated Protein Science (CiPS ) am, Department Chemie; LMU München; Butenandtstraße 5-13 81377 München Deutschland
| |
Collapse
|
8
|
Singh I, Kim MJ, Molt RW, Hoshika S, Benner SA, Georgiadis MM. Structure and Biophysics for a Six Letter DNA Alphabet that Includes Imidazo[1,2-a]-1,3,5-triazine-2(8H)-4(3H)-dione (X) and 2,4-Diaminopyrimidine (K). ACS Synth Biol 2017; 6:2118-2129. [PMID: 28752992 DOI: 10.1021/acssynbio.7b00150] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A goal of synthetic biology is to develop new nucleobases that retain the desirable properties of natural nucleobases at the same time as expanding the genetic alphabet. The nonstandard Watson-Crick pair between imidazo[1,2-a]-1,3,5-triazine-2(8H)-4(3H)-dione (X) and 2,4-diaminopyrimidine (K) does exactly this, pairing via complementary arrangements of hydrogen bonding in these two nucleobases, which do not complement any natural nucleobase. Here, we report the crystal structure of a duplex DNA oligonucleotide in B-form including two consecutive X:K pairs in GATCXK DNA determined as a host-guest complex at 1.75 Å resolution. X:K pairs have significant propeller twist angles, similar to those observed for A:T pairs, and a calculated hydrogen bonding pairing energy that is weaker than that of A:T. Thus, although inclusion of X:K pairs results in a duplex DNA structure that is globally similar to that of an analogous G:C structure, the X:K pairs locally and energetically more closely resemble A:T pairs.
Collapse
Affiliation(s)
- Isha Singh
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Myong-Jung Kim
- Foundation for Applied Molecular Evolution, and the Westheimer Institute of Science & Technology, 13709 Progress Boulevard, Box 7, Alachua, Florida 32615, United States
- Firebird Biomolecular
Sciences LLC, 13709 Progress Boulevard, Box 17, Alachua, Florida 32615, United States
| | - Robert W. Molt
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- ENSCO, Inc., 4849 North Wickham Road, Melbourne, Florida 32940, United States
| | - Shuichi Hoshika
- Foundation for Applied Molecular Evolution, and the Westheimer Institute of Science & Technology, 13709 Progress Boulevard, Box 7, Alachua, Florida 32615, United States
- Firebird Biomolecular
Sciences LLC, 13709 Progress Boulevard, Box 17, Alachua, Florida 32615, United States
| | - Steven A. Benner
- Foundation for Applied Molecular Evolution, and the Westheimer Institute of Science & Technology, 13709 Progress Boulevard, Box 7, Alachua, Florida 32615, United States
- Firebird Biomolecular
Sciences LLC, 13709 Progress Boulevard, Box 17, Alachua, Florida 32615, United States
| | - Millie M. Georgiadis
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Department
of Chemistry and Chemical Biology, Indiana University, Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| |
Collapse
|
9
|
Matsuura MF, Winiger CB, Shaw RW, Kim MJ, Kim MS, Daugherty AB, Chen F, Moussatche P, Moses JD, Lutz S, Benner SA. A Single Deoxynucleoside Kinase Variant from Drosophila melanogaster Synthesizes Monophosphates of Nucleosides That Are Components of an Expanded Genetic System. ACS Synth Biol 2017; 6:388-394. [PMID: 27935283 DOI: 10.1021/acssynbio.6b00228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Deoxynucleoside kinase from D. melanogaster (DmdNK) has broad specificity; although it catalyzes the phosphorylation of natural pyrimidine more efficiently than natural purine nucleosides, it accepts all four 2'-deoxynucleosides and many analogues, using ATP as a phosphate donor to give the corresponding deoxynucleoside monophosphates. Here, we show that replacing a single amino acid (glutamine 81 by glutamate) in DmdNK creates a variant that also catalyzes the phosphorylation of nucleosides that form part of an artificially expanded genetic information system (AEGIS). By shuffling hydrogen bonding groups on the nucleobases, AEGIS adds potentially as many as four additional nucleobase pairs to the genetic "alphabet". Specifically, we show that DmdNK Q81E creates the monophosphates from the AEGIS nucleosides dP, dZ, dX, and dK (respectively 2-amino-8-(1'-β-d-2'-deoxyribofuranosyl)-imidazo[1,2-a]-1,3,5-triazin-4(8H)-one, dP; 6-amino-3-(1'-β-d-2'-deoxyribofuranosyl)-5-nitro-1H-pyridin-2-one, dZ; 8-(1'β-d-2'-deoxy-ribofuranosyl)imidazo[1,2-a]-1,3,5-triazine-2(8H)-4(3H)-dione, dX; and 2,4-diamino-5-(1'-β-d-2'-deoxyribofuranosyl)-pyrimidine, dK). Using a coupled enzyme assay, in vitro kinetic parameters were obtained for three of these nucleosides (dP, dX, and dK; the UV absorbance of dZ made it impossible to get its precise kinetic parameters). Thus, DmdNK Q81E appears to be a suitable enzyme to catalyze the first step in the biosynthesis of AEGIS 2'-deoxynucleoside triphosphates in vitro and, perhaps, in vivo, in a cell able to manage plasmids containing AEGIS DNA.
Collapse
Affiliation(s)
- Mariko F. Matsuura
- The Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
- Department
of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Christian B. Winiger
- The Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| | - Ryan W. Shaw
- The Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
- Firebird Biomolecular Sciences, LLC, 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| | - Myong-Jung Kim
- The Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
- Firebird Biomolecular Sciences, LLC, 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| | - Myong-Sang Kim
- The Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
- Firebird Biomolecular Sciences, LLC, 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| | - Ashley B. Daugherty
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Fei Chen
- The Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| | - Patricia Moussatche
- The Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
- Firebird Biomolecular Sciences, LLC, 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| | - Jennifer D. Moses
- The Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| | - Stefan Lutz
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Steven A. Benner
- The Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
- Firebird Biomolecular Sciences, LLC, 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| |
Collapse
|
10
|
Winiger CB, Shaw RW, Kim MJ, Moses JD, Matsuura MF, Benner SA. Expanded Genetic Alphabets: Managing Nucleotides That Lack Tautomeric, Protonated, or Deprotonated Versions Complementary to Natural Nucleotides. ACS Synth Biol 2017; 6:194-200. [PMID: 27648724 DOI: 10.1021/acssynbio.6b00193] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
2,4-Diaminopyrimidine (trivially K) and imidazo[1,2-a]-1,3,5-triazine-2(8H)-4(3H)-dione (trivially X) form a nucleobase pair with Watson-Crick geometry as part of an artificially expanded genetic information system (AEGIS). Neither K nor X can form a Watson-Crick pair with any natural nucleobase. Further, neither K nor X has an accessible tautomeric form or a protonated/deprotonated state that can form a Watson-Crick pair with any natural nucleobase. In vitro experiments show how DNA polymerase I from E. coli manages replication of DNA templates with one K:X pair, but fails with templates containing two adjacent K:X pairs. In analogous in vivo experiments, E. coli lacking dKTP/dXTP cannot rescue chloramphenicol resistance from a plasmid containing two adjacent K:X pairs. These studies identify bacteria able to serve as selection environments for engineering cells that replicate AEGIS pairs that lack forms that are Watson-Crick complementary to any natural nucleobase.
Collapse
Affiliation(s)
- Christian B. Winiger
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd. Box 17, Alachua, Florida 32615, United States
| | - Ryan W. Shaw
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd. Box 17, Alachua, Florida 32615, United States
- Firebird Biomolecular Sciences LLC, 13709 Progress Blvd. Box 7, Alachua, Florida 32615, United States
| | - Myong-Jung Kim
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd. Box 17, Alachua, Florida 32615, United States
- Firebird Biomolecular Sciences LLC, 13709 Progress Blvd. Box 7, Alachua, Florida 32615, United States
| | - Jennifer D. Moses
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd. Box 17, Alachua, Florida 32615, United States
- Firebird Biomolecular Sciences LLC, 13709 Progress Blvd. Box 7, Alachua, Florida 32615, United States
| | - Mariko F. Matsuura
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd. Box 17, Alachua, Florida 32615, United States
- Department
of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Steven A. Benner
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd. Box 17, Alachua, Florida 32615, United States
- Firebird Biomolecular Sciences LLC, 13709 Progress Blvd. Box 7, Alachua, Florida 32615, United States
| |
Collapse
|