1
|
Aucar JJ, Maldonado AF. Parity violation effects on the electric field gradient. Phys Chem Chem Phys 2025; 27:7594-7604. [PMID: 40135262 DOI: 10.1039/d4cp04840g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
The parity violation (PV) effects on the electric field gradient (EFG) and the nuclear quadrupole coupling constant (NQCC) of a wide variety of chiral systems are studied in a four-component (4c) framework. Formal expressions and calculations of the PV effects on the EFG are presented for the first time at 4c Dirac Hartree-Fock level. The chiral systems studied are XHFClY (X = C, Sn; Y = Br, I, At) molecules together with NUHXY (X, Y = F, Cl, Br, I) and NUF XY (X, Y = Cl, Br, I) uranium containing systems. We found that for the latter, calculations of PV effects on NQCC are two orders of magnitude lower than the current experimental precision and they are suitable candidates for future PV measurements in NQCC, in particular the NUHFCl chiral molecule. The dependence on the basis set, the nuclear charge distribution model and the kinetic balance prescription related to the negative-energy states is also analysed.
Collapse
Affiliation(s)
- Juan J Aucar
- Institute for Modelling and Innovative Technology, IMIT (CONICET-UNNE), Avda Libertad 5460, Corrientes, W3404AAS, Argentina.
- Physics Department, Natural and Exact Science Faculty, National Northeastern University of Argentina, Avda Libertad 5460, Corrientes, W3404AAS, Argentina
| | - Alejandro F Maldonado
- Institute for Modelling and Innovative Technology, IMIT (CONICET-UNNE), Avda Libertad 5460, Corrientes, W3404AAS, Argentina.
| |
Collapse
|
2
|
Aucar JJ, Stroppa A, Aucar GA. A Relationship between the Molecular Parity-Violation Energy and the Electronic Chirality Measure. J Phys Chem Lett 2024; 15:234-240. [PMID: 38158620 DOI: 10.1021/acs.jpclett.3c03038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
When the weak forces producing parity-violating effects are taken into account, there is a tiny energy difference between the total electronic energies of two enantiomers (ΔEPV), which might be the key to understanding the evolution of the biological homochirality. We focus on the electronic chirality measure (ECM), a powerful descriptor based on the electronic charge density, for quantifying the chirality degree of a molecule, in a representative set of chiral molecules, together with their EPV energies. Our results show a novel, strong, and positive correlation between ΔEPV and ECM, supporting a subtle interplay between the weak forces acting within the nuclei of a given molecule and its chirality. These findings suggest that experimental investigations for molecular parity violation detection should consider molecules with ECM values as large as possible and may support that a chiral signature is imprinted on life by fundamental physics via the parity-violating weak interactions.
Collapse
Affiliation(s)
- Juan J Aucar
- Physics Department, Natural and Exact Science Faculty, National Northeastern University of Argentina, Avda Libertad, W3404AAS 5460, Corrientes, Argentina
- Institute for Modelling and Innovative Technology, IMIT (CONICET-UNNE), Avda Libertad, W3404AAS 5460, Corrientes, Argentina
| | - Alessandro Stroppa
- CNR-SPIN, c/o Dip.to di Scienze Fisiche e Chimiche 67100, Coppito (AQ), Via Vetoio, Italy
| | - Gustavo A Aucar
- Physics Department, Natural and Exact Science Faculty, National Northeastern University of Argentina, Avda Libertad, W3404AAS 5460, Corrientes, Argentina
- Institute for Modelling and Innovative Technology, IMIT (CONICET-UNNE), Avda Libertad, W3404AAS 5460, Corrientes, Argentina
| |
Collapse
|
3
|
Tuvi-Arad I, Shalit Y. The SARS-CoV-2 spike protein structure: a symmetry tale on distortion trail. Phys Chem Chem Phys 2023; 25:14430-14439. [PMID: 37184521 DOI: 10.1039/d3cp00163f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A preliminary step in the SARS-CoV-2 human infection process is a conformational change of the receptor binding domain (RBD) of its spike protein, characterized by a significant loss of symmetry. During this process, the residues which later on bind to the human angiotensin converting enzyme 2 (ACE2) receptor, become exposed at the surface of the protein. Symmetry analysis of a data set of 33 protein structures from experimental measurements and 32 structures from molecular dynamics simulation, show that the initial state carries clear indications on the structure of the final state, with respect to the local distortion along the sequence. This surprising finding implies that this type of analysis predicts the mechanism of change. We further show that the level of local distortion at the initial state increases with variant's transmissibility, for the wild type (WT) along with past and present variants of concern (WT ∼ alpha < beta < delta < Omicron BA.1), in accordance with the trend of their evolutionary path. In other words, the initial structure of the variant which is most infectious is also the most distorted, making its path to the final state shorter. It has been claimed that the RBD migration of the spike protein is allosterically controlled. Our analysis provides a quantitative support to a major theorem in this respect - that information about an allosteric process is encoded in the structure itself, suggesting that the path of local distortion is related to an allosteric information network.
Collapse
Affiliation(s)
- Inbal Tuvi-Arad
- Department of Natural Sciences, The Open University of Israel, Raanana, Israel.
| | - Yaffa Shalit
- Department of Natural Sciences, The Open University of Israel, Raanana, Israel.
| |
Collapse
|
4
|
Sidorova A, Bystrov V, Lutsenko A, Shpigun D, Belova E, Likhachev I. Quantitative Assessment of Chirality of Protein Secondary Structures and Phenylalanine Peptide Nanotubes. NANOMATERIALS 2021; 11:nano11123299. [PMID: 34947648 PMCID: PMC8707344 DOI: 10.3390/nano11123299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/26/2021] [Accepted: 12/02/2021] [Indexed: 01/25/2023]
Abstract
In this study we consider the features of spatial-structure formation in proteins and their application in bioengineering. Methods for the quantitative assessment of the chirality of regular helical and irregular structures of proteins are presented. The features of self-assembly of phenylalanine (F) into peptide nanotubes (PNT), which form helices of different chirality, are also analyzed. A method is proposed for calculating the magnitude and sign of the chirality of helix-like peptide nanotubes using a sequence of vectors for the dipole moments of individual peptides.
Collapse
Affiliation(s)
- Alla Sidorova
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.L.); (D.S.); (E.B.)
- Correspondence:
| | - Vladimir Bystrov
- Institute of Mathematical Problems of Biology, The Branch of Keldysh Institute of Applied Mathematics, RAS, 142290 Pushchino, Russia; (V.B.); (I.L.)
| | - Aleksey Lutsenko
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.L.); (D.S.); (E.B.)
| | - Denis Shpigun
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.L.); (D.S.); (E.B.)
| | - Ekaterina Belova
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.L.); (D.S.); (E.B.)
| | - Ilya Likhachev
- Institute of Mathematical Problems of Biology, The Branch of Keldysh Institute of Applied Mathematics, RAS, 142290 Pushchino, Russia; (V.B.); (I.L.)
| |
Collapse
|
5
|
|
6
|
Shalit Y, Tuvi-Arad I. Side chain flexibility and the symmetry of protein homodimers. PLoS One 2020; 15:e0235863. [PMID: 32706779 PMCID: PMC7380632 DOI: 10.1371/journal.pone.0235863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/24/2020] [Indexed: 01/22/2023] Open
Abstract
A comprehensive analysis of crystallographic data of 565 high-resolution protein homodimers comprised of over 250,000 residues suggests that amino acids form two groups that differ in their tendency to distort or symmetrize the structure of protein homodimers. Residues of the first group tend to distort the protein homodimer and generally have long or polar side chains. These include: Lys, Gln, Glu, Arg, Asn, Met, Ser, Thr and Asp. Residues of the second group contribute to protein symmetry and are generally characterized by short or aromatic side chains. These include: Ile, Pro, His, Val, Cys, Leu, Trp, Tyr, Phe, Ala and Gly. The distributions of the continuous symmetry measures of the proteins and the continuous chirality measures of their building blocks highlight the role of side chain geometry and the interplay between entropy and symmetry in dictating the conformational flexibility of proteins.
Collapse
Affiliation(s)
- Yaffa Shalit
- Department of Natural Sciences, The Open University of Israel, Raanana, Israel
| | - Inbal Tuvi-Arad
- Department of Natural Sciences, The Open University of Israel, Raanana, Israel
- * E-mail:
| |
Collapse
|
7
|
Bonjack M, Avnir D. The near-symmetry of protein oligomers: NMR-derived structures. Sci Rep 2020; 10:8367. [PMID: 32433550 PMCID: PMC7239866 DOI: 10.1038/s41598-020-65097-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/18/2020] [Indexed: 02/07/2023] Open
Abstract
The majority of oligomeric proteins form clusters which have rotational or dihedral symmetry. Despite the many advantages of symmetric packing, protein oligomers are only nearly symmetric, and the origin of this phenomenon is still in need to be fully explored. Here we apply near-symmetry analyses by the Continuous Symmetry Measures methodology of protein homomers to their natural state, namely their structures in solution. NMR-derived structural data serves us for that purpose. We find that symmetry deviations of proteins are by far higher in solution, compared to the crystalline state; that much of the symmetry distortion is due to amino acids along the interface between the subunits; that the distortions are mainly due to hydrophilic amino acids; and that distortive oligomerization processes such as the swap-domain mechanism can be identified by the symmetry analysis. Most of the analyses were carried out on distorted C2-symmetry dimers, but C3 and D2 cases were analyzed as well. Our NMR analysis supports the idea that the crystallographic B-factor represents non-classical crystals, in which different conformers pack in the crystal, perhaps from the conformers which the NMR analysis provides.
Collapse
Affiliation(s)
- Maayan Bonjack
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - David Avnir
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
| |
Collapse
|