1
|
Schwegler N, Gebert T, Villiou M, Colombo F, Schamberger B, Selhuber-Unkel C, Thomas F, Blasco E. Multimaterial 3D Laser Printing of Cell-Adhesive and Cell-Repellent Hydrogels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401344. [PMID: 38708807 DOI: 10.1002/smll.202401344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Indexed: 05/07/2024]
Abstract
Here, a straightforward method is reported for manufacturing 3D microstructured cell-adhesive and cell-repellent multimaterials using two-photon laser printing. Compared to existing strategies, this approach offers bottom-up molecular control, high customizability, and rapid and precise 3D fabrication. The printable cell-adhesive polyethylene glycol (PEG) based material includes an Arg-Gly-Asp (RGD) containing peptide synthesized through solid-phase peptide synthesis, allowing for precise control of the peptide design. Remarkably, minimal amounts of RGD peptide (< 0.1 wt%) suffice for imparting cell-adhesiveness, while maintaining identical mechanical properties in the 3D printed microstructures to those of the cell-repellent, PEG-based material. Fluorescent labeling of the RGD peptide facilitates visualization of its presence in cell-adhesive areas. To demonstrate the broad applicability of the system, the fabrication of cell-adhesive 2.5D and 3D structures is shown, fostering the adhesion of fibroblast cells within these architectures. Thus, this approach allows for the printing of high-resolution, true 3D structures suitable for diverse applications, including cellular studies in complex environments.
Collapse
Affiliation(s)
- Niklas Schwegler
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Tanisha Gebert
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Maria Villiou
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Federico Colombo
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Barbara Schamberger
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Christine Selhuber-Unkel
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Franziska Thomas
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Eva Blasco
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
2
|
Darroch C, Digeronimo F, Asaro G, Minsart M, Pien N, van Vlierberghe S, Monaghan MG. Melt electrowriting of poly( ϵ-caprolactone)-poly(ethylene glycol) backbone polymer blend scaffolds with improved hydrophilicity and functionality. Biomed Mater 2024; 19:055011. [PMID: 38914083 DOI: 10.1088/1748-605x/ad5b41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/24/2024] [Indexed: 06/26/2024]
Abstract
Melt electrowriting (MEW) is an additive manufacturing technique that harnesses electro-hydrodynamic phenomena to produce 3D-printed fibres with diameters on the scale of 10s of microns. The ability to print at this small scale provides opportunities to create structures with incredibly fine resolution and highly defined morphology. The current gold standard material for MEW is poly(ϵ-caprolactone) (PCL), a polymer with excellent biocompatibility but lacking in chemical groups that can allow intrinsic additional functionality. To provide this functionality while maintaining PCL's positive attributes, blending was performed with a Poly(Ethylene Glycol) (PEG)-based Acrylate endcapped Urethane-based Precursor (AUP). AUPs are a group of polymers, built on a backbone of existing polymers, which introduce additional functionality by the addition of one or more acrylate groups that terminate the polymer chain of a backbone polymer. By blending with a 20kDa AUP-PEG in small amounts, it is shown that MEW attributes are preserved, producing high-quality meshes. Blends were produced in various PCL:AUP weight ratios (100:0, 90:10 and 0:100) and processed into both solvent-cast films and MEW meshes that were used to characterise the properties of the blends. It was found that the addition of AUP-PEG to PCL significantly increases the hydrophilicity of structures produced with these polymers, and adds swelling capability compared to the non-swelling PCL. The developed blend (90:10) is shown to be processable using MEW, and the quality of manufactured scaffolds is evaluated against pure PCL scaffolds by performing scanning electron microscopy image analysis, with the quality of the novel MEW blend scaffolds showing comparable quality to that of pure PCL. The presence of the functionalisable AUP material on the surface of the developed scaffolds is also confirmed using fluorescence labelling of the acrylate groups. Biocompatibility of the MEW-processable blend was confirmed through a cell viability study, which found a high degree of cytocompatibility.
Collapse
Affiliation(s)
- Conor Darroch
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Francesco Digeronimo
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Giuseppe Asaro
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
- Advanced Materials and BioEngineering Research (AMBER) Centre at Trinity College Dublin and the Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Manon Minsart
- Polymer Chemistry & Biomaterials Research Group, Centre of Macromolecular Chemistry (CMaC), Ghent University, Krijgslaan 281 S4-bis, 9000 Ghent, Belgium
| | - Nele Pien
- Polymer Chemistry & Biomaterials Research Group, Centre of Macromolecular Chemistry (CMaC), Ghent University, Krijgslaan 281 S4-bis, 9000 Ghent, Belgium
- Faculty of Veterinary Medicine, Department of Translational Physiology, Infectiology and Public Health, Ghent University, Salisburylaan 133, 9280 Merelbeke, Belgium
| | - Sandra van Vlierberghe
- Polymer Chemistry & Biomaterials Research Group, Centre of Macromolecular Chemistry (CMaC), Ghent University, Krijgslaan 281 S4-bis, 9000 Ghent, Belgium
| | - Michael G Monaghan
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
- Advanced Materials and BioEngineering Research (AMBER) Centre at Trinity College Dublin and the Royal College of Surgeons in Ireland, Dublin 2, Ireland
- CÚRAM, Centre for Research in Medical Devices, National University of Ireland, Galway, Newcastle Road, H91 W2TY Galway, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, Ireland
| |
Collapse
|
3
|
Zhang M, Lee Y, Zheng Z, Khan MTA, Lyu X, Byun J, Giessen H, Sitti M. Micro- and nanofabrication of dynamic hydrogels with multichannel information. Nat Commun 2023; 14:8208. [PMID: 38081820 PMCID: PMC10713606 DOI: 10.1038/s41467-023-43921-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 11/23/2023] [Indexed: 04/28/2024] Open
Abstract
Creating micro/nanostructures containing multi-channel information within responsive hydrogels presents exciting opportunities for dynamically changing functionalities. However, fabricating these structures is immensely challenging due to the soft and dynamic nature of hydrogels, often resulting in unintended structural deformations or destruction. Here, we demonstrate that dehydrated hydrogels, treated by a programmable femtosecond laser, can allow for a robust fabrication of micro/nanostructures. The dehydration enhances the rigidity of the hydrogels and temporarily locks the dynamic behaviours, significantly promoting their structural integrity during the fabrication process. By utilizing versatile dosage domains of the femtosecond laser, we create micro-grooves on the hydrogel surface through the use of a high-dosage mode, while also altering the fluorescent intensity within the rest of the non-ablated areas via a low-dosage laser. In this way, we rationally design a pixel unit containing three-channel information: structural color, polarization state, and fluorescent intensity, and encode three complex image information sets into these channels. Distinct images at the same location were simultaneously printed onto the hydrogel, which can be observed individually under different imaging modes without cross-talk. Notably, the recovered dynamic responsiveness of the hydrogel enables a multi-information-encoded surface that can sequentially display different information as the temperature changes.
Collapse
Affiliation(s)
- Mingchao Zhang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Yohan Lee
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, 70569, Stuttgart, Germany
| | - Zhiqiang Zheng
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Muhammad Turab Ali Khan
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Xianglong Lyu
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zürich, 8092, Zürich, Switzerland
| | - Junghwan Byun
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Harald Giessen
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, 70569, Stuttgart, Germany
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany.
- Institute for Biomedical Engineering, ETH Zürich, 8092, Zürich, Switzerland.
- School of Medicine and College of Engineering, Koç University, 34450, Istanbul, Turkey.
| |
Collapse
|
4
|
De Vlieghere E, Van de Vijver K, Blondeel E, Carpentier N, Ghobeira R, Pauwels J, Riemann S, Minsart M, Fieuws C, Mestach J, Baeyens A, De Geyter N, Debbaut C, Denys H, Descamps B, Claes K, Vral A, Van Dorpe J, Gevaert K, De Geest BG, Ceelen W, Van Vlierberghe S, De Wever O. A preclinical platform for assessing long-term drug efficacy exploiting mechanically tunable scaffolds colonized by a three-dimensional tumor microenvironment. Biomater Res 2023; 27:104. [PMID: 37853495 PMCID: PMC10583378 DOI: 10.1186/s40824-023-00441-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 09/25/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Long-term drug evaluation heavily relies upon rodent models. Drug discovery methods to reduce animal models in oncology may include three-dimensional (3D) cellular systems that take into account tumor microenvironment (TME) cell types and biomechanical properties. METHODS In this study we reconstructed a 3D tumor using an elastic polymer (acrylate-endcapped urethane-based poly(ethylene glycol) (AUPPEG)) with clinical relevant stiffness. Single cell suspensions from low-grade serous ovarian cancer (LGSOC) patient-derived early passage cultures of cancer cells and cancer-associated fibroblasts (CAF) embedded in a collagen gel were introduced to the AUPPEG scaffold. After self-organization in to a 3D tumor, this model was evaluated by a long-term (> 40 days) exposure to a drug combination of MEK and HSP90 inhibitors. The drug-response results from this long-term in vitro model are compared with drug responses in an orthotopic LGSOC xenograft mouse model. RESULTS The in vitro 3D scaffold LGSOC model mimics the growth ratio and spatial organization of the LGSOC. The AUPPEG scaffold approach allows to test new targeted treatments and monitor long-term drug responses. The results correlate with those of the orthotopic LGSOC xenograft mouse model. CONCLUSIONS The mechanically-tunable scaffolds colonized by a three-dimensional LGSOC allow long-term drug evaluation and can be considered as a valid alternative to reduce, replace and refine animal models in drug discovery.
Collapse
Affiliation(s)
- Elly De Vlieghere
- Department of Human Structure and Repair, Laboratory of Experimental Cancer Research, Ghent University, Ghent, Belgium
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Koen Van de Vijver
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University Hospital, Ghent, Belgium
| | - Eva Blondeel
- Department of Human Structure and Repair, Laboratory of Experimental Cancer Research, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Nathan Carpentier
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Rouba Ghobeira
- Department of Applied Physics, Research Unit Plasma Technology (RUPT), Ghent University, Ghent, Belgium
| | - Jarne Pauwels
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, VIB Center for Medical Biotechnology, Ghent University, Ghent, Belgium
| | - Sebastian Riemann
- Department of Human Structure and Repair, Laboratory of Experimental Cancer Research, Ghent University, Ghent, Belgium
| | - Manon Minsart
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Charlotte Fieuws
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Johanna Mestach
- Department of Human Structure and Repair, Laboratory of Experimental Cancer Research, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Ans Baeyens
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Human Structure and Repair, Radiobiology Group, Ghent University, Ghent, Belgium
| | - Nathalie De Geyter
- Department of Applied Physics, Research Unit Plasma Technology (RUPT), Ghent University, Ghent, Belgium
| | - Charlotte Debbaut
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Electronics and Information Systems, IBiTech-Biommeda, Ghent University, Ghent, Belgium
| | - Hannelore Denys
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Medical Oncology, Ghent University Hospital, Ghent, Belgium
| | - Benedicte Descamps
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Electronics and Information Systems, IbiTech-Medisip, Ghent University, Ghent, Belgium
| | - Kathleen Claes
- Department of Biomolecular Medicine, Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Anne Vral
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Human Structure and Repair, Radiobiology Group, Ghent University, Ghent, Belgium
| | - Jo Van Dorpe
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University Hospital, Ghent, Belgium
| | - Kris Gevaert
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, VIB Center for Medical Biotechnology, Ghent University, Ghent, Belgium
| | - Bruno G De Geest
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Wim Ceelen
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Human Structure and Repair, Experimental Surgery Lab, Ghent University, Ghent, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Olivier De Wever
- Department of Human Structure and Repair, Laboratory of Experimental Cancer Research, Ghent University, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium.
- Department of Pharmaceutics, Ghent University, Ghent, Belgium.
| |
Collapse
|
5
|
Delaey J, Parmentier L, Pyl L, Brancart J, Adriaensens P, Dobos A, Dubruel P, Van Vlierberghe S. Solid-State Crosslinkable, Shape-Memory Polyesters Serving Tissue Engineering. Macromol Rapid Commun 2023; 44:e2200955. [PMID: 36755500 DOI: 10.1002/marc.202200955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Indexed: 02/10/2023]
Abstract
Acrylate-endcapped urethane-based precursors constituting a poly(D,L-lactide)/poly(ε-caprolactone) (PDLLA/PCL) random copolymer backbone are synthesized with linear and star-shaped architectures and various molar masses. It is shown that the glass transition and thus the actuation temperature could be tuned by varying the monomer content (0-8 wt% ε-caprolactone, Tg,crosslinked = 10-42 °C) in the polymers. The resulting polymers are analyzed for their physico-chemical properties and viscoelastic behavior (G'max = 9.6-750 kPa). The obtained polymers are subsequently crosslinked and their shape-memory properties are found to be excellent (Rr = 88-100%, Rf = 78-99.5%). Moreover, their potential toward processing via various additive manufacturing techniques (digital light processing, two-photon polymerization and direct powder extrusion) is evidenced with retention of their shape-memory effect. Additionally, all polymers are found to be biocompatible in direct contact in vitro cell assays using primary human foreskin fibroblasts (HFFs) through MTS assay (up to ≈100% metabolic activity relative to TCP) and live/dead staining (>70% viability).
Collapse
Affiliation(s)
- Jasper Delaey
- Polymer Chemistry & Biomaterials group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, 9000, Belgium
| | - Laurens Parmentier
- Polymer Chemistry & Biomaterials group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, 9000, Belgium
| | - Lincy Pyl
- Department of Mechanics of Materials and Constructions (MeMC), Vrije Universiteit Brussel (VUB), Brussels, 1050, Belgium
| | - Joost Brancart
- Physical Chemistry and Polymer Science (FYSC), Vrije Universiteit Brussel, Brussels, 1050, Belgium
| | - Peter Adriaensens
- Applied and Analytical Chemistry, Institute for Materials Research, Hasselt University, Diepenbeek, 3590, Belgium
| | - Agnes Dobos
- Polymer Chemistry & Biomaterials group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, 9000, Belgium.,BIO INX BV, Tech Lane 66, Zwijnaarde, 9052, Belgium
| | - Peter Dubruel
- Polymer Chemistry & Biomaterials group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, 9000, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry & Biomaterials group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, 9000, Belgium.,BIO INX BV, Tech Lane 66, Zwijnaarde, 9052, Belgium
| |
Collapse
|
6
|
Dos Santos LMS, de Oliveira JM, da Silva ECO, Fonseca VML, Silva JP, Barreto E, Dantas NO, Silva ACA, Jesus-Silva AJ, Mendonça CR, Fonseca EJS. Mechanical and morphological responses of osteoblast-like cells to two-photon polymerized microgrooved surfaces. J Biomed Mater Res A 2023; 111:234-244. [PMID: 36239143 DOI: 10.1002/jbm.a.37454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/18/2022] [Accepted: 09/27/2022] [Indexed: 01/10/2023]
Abstract
Microgrooved surfaces are recognized as an important strategy of tissue engineering to promote the alignment of bone cells. In this work, we have investigated the mechanical and morphological aspects of osteoblasts cells after interaction with different micro-structured polymeric surfaces. Femtosecond laser writing technique was used for the construction of circular and parallel microgrooved patterns in biocompatible polymeric surfaces based on pentaerythritol triacrylate. Additionally, we have studied the influence of the biocompatible TiO2 nanocrystals (NCs) related to the cell behavior, when incorporated to the photoresin. The atomic force microscopy technique was used to investigate the biomechanical reaction of the human osteoblast-like MG-63 cells for the different microgroove. It was demonstrated that osteoblasts grown on circular microgrooved surfaces exhibited significantly larger Young's modulus compared to cells sown on flat films. Furthermore, we could observe that TiO2 NCs improved the circular microgrooves effects, resulting in more populated sites, 34% more elongated cells, and increasing the cell stiffness by almost 160%. These results can guide the design and construction of effective scaffold surfaces with circular microgrooves for tissue engineering and bone regeneration.
Collapse
Affiliation(s)
- Laura M S Dos Santos
- Optics and Nanoscopy Group, Institute of Physics, Federal University of Alagoas (UFAL), Maceió, Brazil
| | | | - Elaine C O da Silva
- Optics and Nanoscopy Group, Institute of Physics, Federal University of Alagoas (UFAL), Maceió, Brazil
| | - Vitor M L Fonseca
- Laboratory of Cell Biology, Institute of Biological Sciences and Health, Federal University of Alagoas (ICBS/UFAL), Maceió, Brazil
| | - Juliane P Silva
- Laboratory of Cell Biology, Institute of Biological Sciences and Health, Federal University of Alagoas (ICBS/UFAL), Maceió, Brazil
| | - Emiliano Barreto
- Laboratory of Cell Biology, Institute of Biological Sciences and Health, Federal University of Alagoas (ICBS/UFAL), Maceió, Brazil
| | | | - Anielle C A Silva
- Institute of Physics, Federal University of Alagoas (UFAL), Maceió, Brazil
| | - Alcenísio J Jesus-Silva
- Optics and Nanoscopy Group, Institute of Physics, Federal University of Alagoas (UFAL), Maceió, Brazil
| | - Cléber R Mendonça
- Institute of Physics of São Carlos, University of São Paulo, São Carlos, Brazil
| | - Eduardo J S Fonseca
- Optics and Nanoscopy Group, Institute of Physics, Federal University of Alagoas (UFAL), Maceió, Brazil
| |
Collapse
|