1
|
Salatta BM, Muniz MMM, Fonseca LFS, Mota LFM, Teixeira CDS, Frezarim GB, Serna-García M, Arikawa LM, Schmidt PI, Nasner SLC, Silva DBDS, Pereira ASC, Baldi F, Albuquerque LGD. Differentially expressed messenger RNA isoforms in beef cattle skeletal muscle with different fatty acid profiles. Meat Sci 2025; 222:109751. [PMID: 39798396 DOI: 10.1016/j.meatsci.2025.109751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 12/26/2024] [Accepted: 01/04/2025] [Indexed: 01/15/2025]
Abstract
This study aimed to identify mRNA isoforms that were expressed differently in the muscle tissue of Nellore cattle based on their intramuscular fatty acid profile. Forty-eight young bulls were used to quantify beef fatty acids (FA) and perform RNA sequencing analysis. The young bulls were divided into three different groups based on quantifying FA using k-means analysis. The Grp1 clustered animals with significantly elevated levels of PUFA, ω6, ω3, linoleic acid, α-linolenic acid, and PUFA/SFA ratios, indicating a more favorable fatty acid profile. Animals in Group 3 demonstrated significantly higher levels of palmitic acid, stearic acid, myristic acid, and SFA, which are less favorable fatty acid profiles. Grp2 included bulls with intermediate levels of fatty acids, positioned between the profiles of Grp1 and Grp3. Differential expression (DE) analyses were performed to compare these three distinct groups through the contrasts: Grp1 vs. Grp2, Grp1 vs. Grp3, and Grp2 vs. Grp3. The DE analyses identified a total of 62, 26, and 30 transcripts for the contrasts Grp1 vs. Grp2, Grp1 vs. Grp3, and Grp2 vs. Grp3, respectively. In the comparison between the Grp1 and Grp2 groups, we identified three mRNA isoforms, C7-203, ADD1-204, and OXT-201, which are involved in glycogen and lipid metabolism. These mRNA isoforms regulate the key genes responsible for fatty acid synthesis, leading to a higher PUFA content profile. On the other hand, in the comparison between the Grp1 and Grp3 groups, the mRNA isoforms RBM3-202 and TRAG1-202 were identified and play a crucial role in muscle development, adipogenesis, and concentration of PUFA and MUFA, respectively. The downregulation of THRSP-201 and FABP4-201, isoforms identified in both, Grp1 vs. Grp2 and Grp2 vs. Grp3, contrasts may contribute to lower levels of MUFA and SFA and higher levels of PUFA. In addition, these mRNA isoforms were associated with lipogenesis, fatty acid transport, and inhibition of lipolysis. Our findings suggest that the identified mRNA isoforms could serve as promising candidates to help develop strategies to select animals of higher nutritional meat quality.
Collapse
Affiliation(s)
- Bruna Maria Salatta
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil.
| | - Maria Malane Magalhães Muniz
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil; University of Guelph, Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, Guelph, ON, Canada
| | - Larissa Fernanda Simielli Fonseca
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil
| | - Lucio Flavio Macedo Mota
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil
| | - Caio de Souza Teixeira
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil
| | - Gabriela Bonfá Frezarim
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil
| | - Marta Serna-García
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil
| | - Leonardo Machestropa Arikawa
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil
| | - Patrícia Iana Schmidt
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil
| | - Sindy Liliana Caivio Nasner
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil
| | - Danielly Beraldo Dos Santos Silva
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil
| | - Angélica Simone Cravo Pereira
- São Paulo University, College of Veterinary and Animal Science, Department of Nutrition and Animal Breeding, Avenida Duque de Caxias Norte, 225, Pirassununga, SP 13635-900, Brazil
| | - Fernando Baldi
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil; National Council for Science and Technological Development, Brasilia, DF 71605-001, Brazil
| | - Lucia Galvão de Albuquerque
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil; National Council for Science and Technological Development, Brasilia, DF 71605-001, Brazil.
| |
Collapse
|
2
|
Li J, Zhao X, Wang Y, Wang J. Non-Coding RNAs in Regulating Fat Deposition in Farm Animals. Animals (Basel) 2025; 15:797. [PMID: 40150326 PMCID: PMC11939817 DOI: 10.3390/ani15060797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/01/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
Fat deposition represents a crucial feature in the expenditure of physical energy and affects the meat quality of farm animals. It is regulated by multiple genes and regulators. Of them, non-coding RNAs (ncRNAs) play a critical role in modulating the fat deposition process. As well as being an important protein source, farm animals can be used as medical models, so many researchers worldwide have explored their mechanism of fat deposition. This article summarizes the transcription factors, regulatory genes, and signaling pathways involved in the molecular regulation process of fat deposition; outlines the progress of researching the roles of microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs) in fat deposition in common farm animals including pigs, cattle, sheep, ducks, and chickens; and identifies scientific problems in the field that must be further investigated. It has been demonstrated that ncRNAs play a critical role in regulating the fat deposition process and have great potential in improving meat quality traits.
Collapse
Affiliation(s)
- Jingxuan Li
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (J.L.); (X.Z.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| | - Xueyan Zhao
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (J.L.); (X.Z.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| | - Yanping Wang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (J.L.); (X.Z.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| | - Jiying Wang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (J.L.); (X.Z.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| |
Collapse
|
3
|
Qin C, Xu F, Yue B, Zhong J, Chai Z, Wang H. SRSF3 and hnRNP A1-mediated m6A-modified circCDK14 regulates intramuscular fat deposition by acting as miR-4492-z sponge. Cell Mol Biol Lett 2025; 30:26. [PMID: 40038607 PMCID: PMC11881307 DOI: 10.1186/s11658-025-00699-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 02/06/2025] [Indexed: 03/06/2025] Open
Abstract
The intramuscular fat (IMF) content of yak beef is critical for determining its quality. Circular RNAs (circRNAs) are a group of endogenous non-coding RNAs that have emerged as important factors in the regulation of IMF deposition. However, the molecular mechanisms through which circRNAs regulate IMF deposition, particularly in yaks, remain unclear. In the present study, a novel circRNA, circCDK14 (originating from the yak's CDK14 gene), was identified by sequencing and RNase R treatment. In our previous study, we successfully established a ceRNA network map and identified miR-4492-z, which interacts with circCDK14. Furthermore, using methylation prediction software, we predicted two genes, SRSF3 and hnRNP A1, that have a strong binding relationship with circCDK14; existing research has confirmed their close association with m6A methylation modifications. On the basis of these findings, we comprehensively evaluated the effects of circCDK14, miR-4492-z, SRSF3 and hnRNP A1 on the proliferation and differentiation of yak intramuscular pre-adipocytes using EdU, CCK-8, BODIPY, Oil Red O and qRT-PCR analyses. Mechanistically, the interaction between circCDK14 and miR-4492-z was validated using a dual-luciferase reporter gene assay and rescue experiments. RIP assays revealed the binding interaction of circCDK14 with SRSF3 and hnRNP A1. The MeRIP experiments showed modification of circCDK14 methylation, with SRSF3 and hnRNP A1 promoting the methylation and translocation of circCDK14 from the nucleus to the cytoplasm. In summary, our results suggest that m6A-modified circCDK14 plays a crucial role as an miR-4492-z sponge in regulating IMF deposition in yaks and that the nuclear export of circCDK14 correlates with the expression levels of SRSF3 and hnRNP A1. This study provides a theoretical basis for the improvement of yak meat quality and promotes the development of molecular yak breeding.
Collapse
Affiliation(s)
- Chunyu Qin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610225, China
| | - Fang Xu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610225, China
| | - Binglin Yue
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610225, China
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610225, China
| | - Zhixin Chai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610225, China
| | - Hui Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610225, China.
| |
Collapse
|
4
|
Ma X, Zhang D, Yang Z, Sun M, Mei C, Zan L. Bta-miR-484 regulates proliferation and apoptosis of bovine intramuscular preadipocytes via targeting MAP3K9 to inhibit the JNK signaling pathway. Int J Biol Macromol 2025; 286:138082. [PMID: 39603290 DOI: 10.1016/j.ijbiomac.2024.138082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/09/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
Intramuscular fat (IMF) plays a crucial role in enhancing the tenderness, flavor, and juiciness of beef, making the increase of IMF content a significant objective in beef breeding. A key factor influencing IMF levels is the number of intramuscular preadipocytes. Previous studies have indicated a correlation between bta-miR-484 and IMF content. In this study, we found that bta-miR-484 is differentially expressed during the proliferation of intramuscular preadipocytes. Our research identified that bta-miR-484 targets MAP3K9, revealing a novel mechanism for regulating both proliferation and apoptosis via the JNK signaling pathway. Functional gain and loss experiments demonstrated that bta-miR-484 inhibits the transition of bovine intramuscular preadipocytes from the G0/G1 phase to the S phase, and significant increase the proportion of early apoptotic cells. Additionally, miRNA pulldown and luciferase reporter assays confirmed MAP3K9 as the target gene of bta-miR-484. Furthermore, rescue experiments indicated that bta-miR-484 mediates its effects on proliferation and apoptosis through the MAP3K9/JNK/CCND1 and MAP3K9/JNK/BCL2 axes. These findings suggest that bta-miR-484 is a non-coding RNA that inhibits the proliferation and promotes the apoptosis of intramuscular preadipocytes, indicating that treatment with bta-miR-484 may offers a novel strategy for enhancing IMF content.
Collapse
Affiliation(s)
- Xinhao Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Dianqi Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zhimei Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Meijun Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Chugang Mei
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, PR China; National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China; National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
5
|
Zhan S, Jiang R, An Z, Zhang Y, Zhong T, Wang L, Guo J, Cao J, Li L, Zhang H. CircRNA profiling of skeletal muscle satellite cells in goats reveals circTGFβ2 promotes myoblast differentiation. BMC Genomics 2024; 25:1075. [PMID: 39533172 PMCID: PMC11555921 DOI: 10.1186/s12864-024-11008-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) function as essential regulatory elements with pivotal roles in various biological processes. However, their expression profiles and functional regulation during the differentiation of goat myoblasts have not been thoroughly explored. This study conducts an analysis of circRNA expression profiles during the proliferation phase (cultured in growth medium, GM) and differentiation phase (cultured in differentiation medium, DM1/DM5) of skeletal muscle satellite cells (MuSCs) in goats. RESULTS A total of 2,094 circRNAs were identified, among which 84 were differentially expressed as determined by pairwise comparisons across three distinct groups. Validation of the expression levels of six randomly selected circRNAs was performed using reverse transcription PCR (RT-PCR) and quantitative RT-PCR (qRT-PCR), with confirmation of their back-splicing junction sites. Enrichment analysis of the host genes associated with differentially expressed circRNAs (DEcircRNAs) indicated significant involvement in biological processes such as muscle contraction, muscle hypertrophy, and muscle tissue development. Additionally, these host genes were implicated in key signaling pathways, including Hippo, TGF-beta, and MAPK pathways. Subsequently, employing Cytoscape, we developed a circRNA-miRNA interaction network to elucidate the complex regulatory mechanisms underlying goat muscle development, encompassing 21 circRNAs and 47 miRNAs. Functional assays demonstrated that circTGFβ2 enhances myogenic differentiation in goats, potentially through a miRNA sponge mechanism. CONCLUSION In conclusion, we identified the genome-wide expression profiles of circRNAs in goat MuSCs during both proliferation and differentiation phases, and established that circTGFβ2 plays a role in the regulation of myogenesis. This study offers a significant resource for the advanced exploration of the biological functions and mechanisms of circRNAs in the myogenesis of goats.
Collapse
Affiliation(s)
- Siyuan Zhan
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Rui Jiang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Zongqi An
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Yang Zhang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Tao Zhong
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Linjie Wang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Jiazhong Guo
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Jiaxue Cao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Hongping Zhang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, P. R. China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, P. R. China.
| |
Collapse
|
6
|
Bai Y, Bo D, Bi Y, Areb E, Zhu H, Pan C, Lan X. Analysis of goat PPP6C mRNA profile, detection of genetic variations, and their associations with litter size. Anim Reprod Sci 2024; 268:107544. [PMID: 38981196 DOI: 10.1016/j.anireprosci.2024.107544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024]
Abstract
The Protein Phosphatase 6 Catalytic Subunit (PPP6C) is evolutionarily a conserved gene in eukaryotes known to play a significant role in mammalian reproduction. This study aimed to investigate expression patterns of PPP6C and explore its association with litter size in Shaanbei white cashmere (SBWC) goats. Initially, we determined the mRNA expression levels of PPP6C in both male and female goats across multiple tissues. The results showed that PPP6C mRNA was expressed in multiple tissues, with higher levels in the testis and fallopian tubes, suggesting its involvement in goat reproduction. Additionally, we identified a novel 19 bp InDel within the PPP6C gene in a population of 1030 SBWC goats, which exhibited polymorphism. Statistical analysis revealed a significant association between the19 bp InDel mutation and litter size (P < 0.05). Subsequent, bioinformatics analysis, including linkage disequilibrium (LD) block and selective scanning, highlighted the linkage tendency among most InDel loci did not stand out within B-8 block, there were still some InDel loci linked to the 19 bp within a relatively narrow region. Furthermore, comparative analysis with Bezoars, these selective signals all indicated that this gene was under higher selection pressure, implying that the 19 bp InDel locus within the PPP6C is potentially associated with domesticated traits, particularly in relation to litter size. The results of the present study suggest that the PPP6C is a vital candidate gene affecting prolificacy in goats, with implications for selective breeding programs for goat breeds.
Collapse
Affiliation(s)
- Yangyang Bai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Didi Bo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yutian Bi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ebadu Areb
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Central Ethiopia Agricultural Research Institute at Worabe Agricultural Research Center, Worabe, Ethiopia
| | - Haijing Zhu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, Shaanxi 719000, China
| | - Chuanying Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
7
|
Hu C, Yang M, Feng X, Wang S, Ma Y, Ma Y. miR-10167-3p targets TCF7L1 to inhibit bovine adipocyte differentiation and promote bovine adipocyte proliferation. Genomics 2024; 116:110903. [PMID: 39069233 DOI: 10.1016/j.ygeno.2024.110903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/09/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
MicroRNAs (miRNAs) are widely involved in various lipogenic processes, including adipocyte proliferation and differentiation, lipid droplet formation, and adipocyte-specific gene activation. The present study aimed to investigate the gene expression profiles of bovine preadipocytes under high miR-10167-3p expression using the RNA-seq technique and to verify the functions of its downstream target genes on the proliferation and differentiation of bovine preadipocytes. First, RNA-seq identified 573 differentially expressed genes (DEGs), of which 243 were downregulated and 330 were upregulated. Then, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that 15.19% of the DEGs were enriched in pathways related to lipid metabolism. Meanwhile, dual-luciferase reporter gene assay verified the target-binding relationship between miR-10167-3p and TCF7L1. The function of TCF7L1 was assessed using several experiments in adipocytes with high TCF7L1 expression and RNA interference. The mRNA and protein expression of proliferation, differentiation, and apoptosis marker genes were detected using qPCR and western blot, respectively; lipid droplet synthesis was detected using oil red O, Nile red, and bodipy staining; adipocyte proliferation was detected by EdU; and apoptosis was detected using flow cytometry. The results revealed that TCF7L1 overexpression inhibited bovine preadipocyte differentiation and apoptosis and promoted their proliferation, with opposite results obtained with its RNA interference. These results may provide a reference for the subsequent investigation of the molecular mechanism of bovine fat deposition.
Collapse
Affiliation(s)
- Chunli Hu
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Mengli Yang
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Xue Feng
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Shuzhe Wang
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Yanfen Ma
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China.
| | - Yun Ma
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
8
|
Jiao Z, Xie T, Wang X, Guo D, Lin S, An L, Lin J, Zhang L. Novel Circular RNA CircSLC2A13 Regulates Chicken Muscle Development by Sponging MiR-34a-3p. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15530-15540. [PMID: 38963795 DOI: 10.1021/acs.jafc.4c01550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The skeletal muscle is the major muscle tissue in animals, and its production is subject to a complex and strict regulation. The proliferation and differentiation of myoblasts are important factors determining chicken muscle development. Circular RNAs (circRNAs) are endogenous RNAs that are widely present in various tissues of organisms. Recent studies have shown that circRNA plays key roles in the development of skeletal muscles. The solute carrier (SLC) family functions in the transport of metabolites such as amino acids, glucose, nucleotides, and essential nutrients and is widely involved in various basic physiological metabolic processes within the body. In this study, we have cloned a novel chicken circular RNA circSLC2A13 generated from the solute carrier family 2 member 13 gene (SLC2A13). Also, circSLC2A1 was confirmed by sequencing verification, RNase R treatment, and reverse transcription analysis. Currently, our results show that circSLC2A13 promoted the proliferation and differentiation of chicken myoblasts. The double luciferase reporter system revealed that circSLC2A13 regulated the proliferation and differentiation of myoblasts by competitive binding with miR-34a-3p. In addition, results indicated that circSLC2A13 acts as a miR-34a-3p sponge to relieve its inhibitory effect on the target SMAD3 gene. In summary, this study found that chicken circSLC2A13 can bind to miR-34a-3p and weaken its inhibitory effect on the SMAD family member 3 gene (SMAD3), thereby promoting the proliferation and differentiation of myoblasts. This study laid foundations for broiler industry and muscle development research.
Collapse
Affiliation(s)
- Zhenhai Jiao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China
| | - Tingting Xie
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China
| | - Xiaotong Wang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China
| | - Dongxue Guo
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China
| | - Shudai Lin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China
| | - Lilong An
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China
| | - Junyuan Lin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China
| | - Li Zhang
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation in Zhanjiang, Guangdong Ocean University, 524088 Zhanjiang, Guangdong, P. R. China
| |
Collapse
|
9
|
Cao M, Xiong L, Wang X, Guo S, Hu L, Kang Y, Wu X, Bao P, Chu M, Liang C, Pei J, Guo X. Comprehensive analysis of differentially expressed mRNAs, circRNAs, and miRNAs and their ceRNA network in the testis of cattle-yak, yak, and cattle. Genomics 2024; 116:110872. [PMID: 38849017 DOI: 10.1016/j.ygeno.2024.110872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/14/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024]
Abstract
Cattle-yak is a hybrid offspring resulting from the crossbreeding of yak and cattle, and it exhibits substantial heterosis in production performance. However, male sterility in cattle-yak remains a concern. Reports suggest that noncoding RNAs are involved in the regulation of spermatogenesis. Therefore, in this study, we comprehensively compared testicular transcription profiles among cattle, yak, and cattle-yak. Numerous differentially expressed genes (DEGs), differentially expressed circRNAs (DECs), and differentially expressed miRNAs (DEMs) were identified in the intersection of two comparison groups, namely cattle versus cattle-yak and yak versus cattle-yak, with the number of DEGs, DECs, and DEMs being 4968, 360, and 59, respectively. The DEGs in cattle-yaks, cattle, and yaks were mainly associated with spermatogenesis, male gamete generation, and sexual reproduction. Concurrently, GO and KEGG analyses indicated that DEC host genes and DEM source genes were involved in the regulation of spermatogenesis. The construction of a potential competing endogenous RNA network revealed that some differentially expressed noncoding RNAs may be involved in regulating the expression of genes related to testicular spermatogenesis, including miR-423-5p, miR-449b, miR-34b/c, and miR-15b, as well as previously unreported miR-6123 and miR-1306, along with various miRNA-circRNA interaction pairs. This study serves as a valuable reference for further investigations into the mechanisms underlying male sterility in cattle-yaks.
Collapse
Affiliation(s)
- Mengli Cao
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Lin Xiong
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xingdong Wang
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Shaoke Guo
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Liyan Hu
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Yandong Kang
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xiaoyu Wu
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Min Chu
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Jie Pei
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China.
| | - Xian Guo
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China.
| |
Collapse
|
10
|
Zeng H, Li S, Chang H, Zhai Y, Wang H, Weng H, Han Z. Circ_002033 Regulates Proliferation, Apoptosis, and Oxidative Damage of Bovine Mammary Epithelial Cells via the miR-199a-5p-MAP3K11 Axis in Heat Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14386-14401. [PMID: 38869955 DOI: 10.1021/acs.jafc.3c09835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Heat stress is becoming the major factor regarding dairy cow health and milk quality because of global warming. Circular RNAs (circRNAs) represent a special type of noncoding RNAs, which are related to regulating many biological processes. Nonetheless, little is known concerning their effects on heat-stressed bovine mammary epithelial cells (BMECs). Here, this study found a novel circRNA, circ_002033, using RNA sequencing (RNA-seq) and explored the role and underlying regulatory mechanism in proliferation, apoptosis, and oxidative damage in a heat-stressed bovine mammary epithelial cell line (MAC-T). According to the previous RNA-seq analysis, the abundance of circ_002033 in mammary gland tissue of heat-stressed cows increased relative to nonheat-stressed counterparts. This study found that the knockdown of circ_002033 promoted proliferation and alleviated apoptosis and oxidative damage in heat-stressed MAC-T. Mechanistically, circ_002033 localizes to miR-199a-5p in the cytoplasm of MAC-T to regulate mitogen-activated protein kinase kinase 11 (MAP3K11) expression. Meanwhile, miR-199a-5p and MAP3K11 are also involved in regulating the proliferation and apoptosis of heat-stressed MAC-T. Importantly, circ_002033 knockdown promoted the expression of miR-199a-5p while decreasing that of MAP3K11, thereby enhancing proliferation while alleviating apoptosis and oxidative damage in heat-stressed MAC-T. In summary, we found that circ_002033 regulates the proliferation, apoptosis, and oxidative damage of heat-stressed BMECs through the miR-199a-5p/MAP3K11 axis, providing the theoretical molecular foundation for mitigating heat stress of dairy cows.
Collapse
Affiliation(s)
- Hanfang Zeng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shujie Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Haomiao Chang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunfei Zhai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Haihui Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hantong Weng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaoyu Han
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
11
|
Liang Y, Zhao B, Shen Y, Peng M, Qiao L, Liu J, Pan Y, Yang K, Liu W. Elucidating the Role of circTIAM1 in Guangling Large-Tailed Sheep Adipocyte Proliferation and Differentiation via the miR-485-3p/PLCB1 Pathway. Int J Mol Sci 2024; 25:4588. [PMID: 38731807 PMCID: PMC11083075 DOI: 10.3390/ijms25094588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/10/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
Fat tissue-a vital energy storage organ-is intricately regulated by various factors, including circular RNA, which plays a significant role in modulating fat development and lipid metabolism. Therefore, this study aims to clarify the regulatory mechanism of sheep adipocyte proliferation and differentiation by investigating the involvement of circTIAM1, miR-485-3p, and its target gene PLCB1. Through previous sequencing data, circTIAM1 was identified in sheep adipocytes, with its circularization mechanism elucidated, confirming its cytoplasmic localization. Experimental evidence from RNase R treatment and transcription inhibitors highlighted that circTIAM1 is more stable than linear RNA. Additionally, circTIAM1 promoted sheep adipocyte proliferation and differentiation. Furthermore, bioinformatic analysis demonstrated a robust interaction between miR-485-3p and circTIAM1. Further experiments revealed that miR-485-3p inhibits fat cell proliferation and differentiation by inhibiting PLCB1, with circTIAM1 alleviating the inhibitory effect via competitive binding. In summary, our findings elucidate the mechanism through which circTIAM1 regulates Guangling Large-Tailed sheep adipocyte proliferation and differentiation via the miR-485-3p-PLCB1 pathway, offering a novel perspective for further exploring fat metabolism regulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Wenzhong Liu
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| |
Collapse
|
12
|
Liang D, Li G. Pulling the trigger: Noncoding RNAs in white adipose tissue browning. Rev Endocr Metab Disord 2024; 25:399-420. [PMID: 38157150 DOI: 10.1007/s11154-023-09866-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
White adipose tissue (WAT) serves as the primary site for energy storage and endocrine regulation in mammals, while brown adipose tissue (BAT) is specialized for thermogenesis and energy expenditure. The conversion of white adipocytes to brown-like fat cells, known as browning, has emerged as a promising therapeutic strategy for reversing obesity and its associated co-morbidities. Noncoding RNAs (ncRNAs) are a class of transcripts that do not encode proteins but exert regulatory functions on gene expression at various levels. Recent studies have shed light on the involvement of ncRNAs in adipose tissue development, differentiation, and function. In this review, we aim to summarize the current understanding of ncRNAs in adipose biology, with a focus on their role and intricate mechanisms in WAT browning. Also, we discuss the potential applications and challenges of ncRNA-based therapies for overweight and its metabolic disorders, so as to combat the obesity epidemic in the future.
Collapse
Affiliation(s)
- Dehuan Liang
- The Key Laboratory of Geriatrics, Institute of Geriatric Medicine, Beijing Institute of Geriatrics, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, People's Republic of China
- Fifth School of Clinical Medicine (Beijing Hospital), Peking University, Beijing, 100730, People's Republic of China
| | - Guoping Li
- The Key Laboratory of Geriatrics, Institute of Geriatric Medicine, Beijing Institute of Geriatrics, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, People's Republic of China.
| |
Collapse
|
13
|
Qin C, Wang H, Peng W, Yue B, Fu C, Shu S, Zhong J, Wang H. Circular RNA mapping reveals CircCWC22 as a MiR-3059-x sponge in yak fat deposition by regulating HMGCL. Int J Biol Macromol 2024; 257:128531. [PMID: 38042314 DOI: 10.1016/j.ijbiomac.2023.128531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023]
Abstract
The regulatory mechanisms and functions of circular RNAs (circRNAs) in yak intramuscular fat (IMF) deposition remain unclear. This study aimed to investigate yak circRNAs with high and low IMF content using high-throughput sequencing. A total of 270 differentially expressed circRNAs were identified, of which 129 were upregulated and 141 were downregulated. Among these circRNAs, circCWC22, derived from the yak CWC22 gene, was further studied to understand its functions and regulatory mechanisms. Sequencing and RNase R processing confirmed the circular nature of circCWC22. By constructing a circRNA-miRNA-mRNA co-expression network, the potential regulatory pathway of circCWC22/miR-3059-x/HMGCL was identified. To investigate the roles of circCWC22, miR-3059-x, and HMGCL in the deposition of yak intramuscular preadipocytes (YIMAs), CCK-8, EdU, BODIPY, triglyceride content, and qRT-PCR analyses were performed. The results demonstrated that circCWC22, miR-3059-x, and HMGCL promoted the differentiation and inhibited the proliferation of YIMAs. Using the dual-luciferase reporter system and qRT-PCR, we confirmed that circCWC22 adsorbed miR-3059-x, and HMGCL was identified as a target gene of miR-3059-x. In conclusion, this study uncovered a large number of potential circRNAs involved in IMF deposition and highlighted the significant role of circCWC22 in yak IMF deposition via the circCWC22/miR-3059-x/HMGCL axis.
Collapse
Affiliation(s)
- Chunyu Qin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610225, China
| | - Haibo Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610225, China
| | - Wei Peng
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China
| | - Binglin Yue
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610225, China
| | - Changqi Fu
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China
| | - Shi Shu
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610225, China
| | - Hui Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610225, China.
| |
Collapse
|
14
|
Qin C, Wang H, Zhong J, Ran H, Peng W. miR-129 Regulates Yak Intramuscular Preadipocyte Proliferation and Differentiation through the PI3K/AKT Pathway. Int J Mol Sci 2024; 25:632. [PMID: 38203803 PMCID: PMC10779486 DOI: 10.3390/ijms25010632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/19/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
miR-129 plays a crucial role in regulating various cellular processes, including adipogenesis; however, its downstream molecular mechanisms remain unclear. In this study, we demonstrated that miR-129 promotes yak adipogenesis in vitro via the PI3K/AKT pathway. Overexpression and interference of miR-129 in yak intramuscular preadipocytes (YIMAs) enhanced and inhibited cell differentiation, respectively, with corresponding changes in cell proliferation. Further investigation revealed that miR-129 enhances AKT and p-AKT activity in the AKT pathway without affecting cell apoptosis, and a specific inhibitor (LY294002) was used to confirm that miR-129 regulates YIMAs proliferation and differentiation through the PI3K/AKT pathway. Our findings suggest that miR-129 promotes yak adipogenesis by enhancing PI3K/AKT pathway activity. This study provides the foundation to precisely elucidate the molecular mechanism of miR-129 in YIMAs adipogenesis and develop advanced miRNA-based strategies to improve meat nutrition and obesity-related ailments in beef production.
Collapse
Affiliation(s)
- Chunyu Qin
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China;
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610225, China; (H.W.); (J.Z.); (H.R.)
| | - Hui Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610225, China; (H.W.); (J.Z.); (H.R.)
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610225, China; (H.W.); (J.Z.); (H.R.)
| | - Hongbiao Ran
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610225, China; (H.W.); (J.Z.); (H.R.)
| | - Wei Peng
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China;
| |
Collapse
|
15
|
Song X, Bai Y, Yuan R, Zhu H, Lan X, Qu L. InDel and CNV within the AKAP13 Gene Revealing Strong Associations with Growth Traits in Goat. Animals (Basel) 2023; 13:2746. [PMID: 37685010 PMCID: PMC10487263 DOI: 10.3390/ani13172746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
A-kinase-anchoring protein 13 (AKAP13) is a member of the AKAP protein family that has been found to be associated with bone formation. Thus, we investigated the AKAP13 gene as a potential candidate gene for molecular-marker-assisted selection (MAS) in breeding. Our aim was to explore genetic variations (InDel and CNV) within the AKAP13 gene of Shaanbei white cashmere (SBWC) goats and analyze their relationship with growth traits. Ultimately, we identified three InDel loci (16-bp deletion, 15-bp insertion, and 25-bp deletion) and three CNVs, and the 16-bp and 15-bp loci were significantly associated with goat body length (p < 0.05). Both the 16-bp deletion variant and the 15-bp insertion variant facilitated an increase in body length in goats. In addition to this, there was a certain superposition effect between 16-bp and 15-bp loci, although there was no linkage. Additionally, the CNV1 locus was significantly correlated with body height and body length of goats (p < 0.05), and CNV2 was significantly correlated with chest depth, chest circumference, and cannon circumference of goats (p < 0.05). Individuals with gain type showed excellent growth performance. In conclusion, the InDel and CNV loci that we have identified could possibly serve as effective molecular markers in goat breeding, which is very essential for improving efficiency and success of breeding. Moreover, our findings provide a new avenue for further research into the function of the AKAP13 gene.
Collapse
Affiliation(s)
- Xiaoyue Song
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China; (X.S.); (Y.B.); (R.Y.); (H.Z.)
- College of Life Sciences, Yulin University, Yulin 719000, China
| | - Yangyang Bai
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China; (X.S.); (Y.B.); (R.Y.); (H.Z.)
- College of Life Sciences, Yulin University, Yulin 719000, China
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Rongrong Yuan
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China; (X.S.); (Y.B.); (R.Y.); (H.Z.)
- College of Life Sciences, Yulin University, Yulin 719000, China
| | - Haijing Zhu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China; (X.S.); (Y.B.); (R.Y.); (H.Z.)
- College of Life Sciences, Yulin University, Yulin 719000, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Lei Qu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China; (X.S.); (Y.B.); (R.Y.); (H.Z.)
- College of Life Sciences, Yulin University, Yulin 719000, China
| |
Collapse
|
16
|
Sun P, Chen M, Sooranna SR, Shi D, Liu Q, Li H. The emerging roles of circRNAs in traits associated with livestock breeding. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1775. [PMID: 36631071 DOI: 10.1002/wrna.1775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/13/2023]
Abstract
Many indicators can be used to evaluate the productivity and quality of livestock, such as meat and milk production as well as fat deposition. Meat and milk production are measures of livestock performance, while fat deposition affects the taste and flavor of the meat. The circRNAs, are non-coding RNAs, that are involved in the regulation of all these three traits. We review the functions and mechanisms of circRNAs in muscle and fat development as well as lactation to provide a theoretical basis for circRNA research in animal husbandry. Various phenotypic changes presented in livestock may be produced by different circRNAs. Our current concern is how to use the roles played by circRNAs to our advantage to produce the best possible livestock. Hence, we describe the advantages and disadvantages of knockout techniques for circRNAs. In addition, we also put forward our thoughts regarding the mechanism and network of circRNAs to provide researchers with novel ideas of how molecular biology can help us advance our goals in animal farming. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Ping Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Mengjie Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Suren R Sooranna
- Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Hui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
17
|
Ru W, Zhang S, Liu J, Liu W, Huang B, Chen H. Non-Coding RNAs and Adipogenesis. Int J Mol Sci 2023; 24:9978. [PMID: 37373126 PMCID: PMC10298535 DOI: 10.3390/ijms24129978] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Adipogenesis is regarded as an intricate network in which multiple transcription factors and signal pathways are involved. Recently, big efforts have focused on understanding the epigenetic mechanisms and their involvement in the regulation of adipocyte development. Multiple studies investigating the regulatory role of non-coding RNAs (ncRNAs) in adipogenesis have been reported so far, especially lncRNA, miRNA, and circRNA. They regulate gene expression at multiple levels through interactions with proteins, DNA, and RNA. Exploring the mechanism of adipogenesis and developments in the field of non-coding RNA may provide a new insight to identify therapeutic targets for obesity and related diseases. Therefore, this article outlines the process of adipogenesis, and discusses updated roles and mechanisms of ncRNAs in the development of adipocytes.
Collapse
Affiliation(s)
- Wenxiu Ru
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (W.R.); (W.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China;
| | - Sihuan Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China;
| | - Jianyong Liu
- Yunnan Academy of Grassland and Animal Science, Kunming 650212, China;
| | - Wujun Liu
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (W.R.); (W.L.)
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming 650212, China;
| | - Hong Chen
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (W.R.); (W.L.)
| |
Collapse
|
18
|
Bovine HOXA11 Gene Identified from RNA-Seq: mRNA Profile Analysis and Genetic Variation Detection Using ME Method and Their Associations with Carcass Traits. Cells 2023; 12:cells12040539. [PMID: 36831206 PMCID: PMC9953915 DOI: 10.3390/cells12040539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/21/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
The Homeobox A11 (HOXA11) gene regulates limb skeletal development and muscle growth, thus, it was selected as a candidate gene for bovine carcass traits. In this study, we analyzed the mRNA expression level of HOXA11 in various tissues and cells, and determined the genetic variations in the HOXA11 gene, which might be used as molecular markers for cattle breeding. The mRNA expression profiles of HOXA11 in bovine different tissues showed that HOXA11 was highly expressed in both fat and muscle. The gene expression trend of HOXA11 in myoblasts and adipocytes indicated that HOXA11 might be involved in the differentiation of bovine myoblasts and adipocytes. The data in the Ensembl database showed that there are two putative insertion/deletion (InDel) polymorphisms in the bovine HOXA11 gene. The insertion site (rs515880802) was located in the upstream region (NC_037331.1: g. 68853364-68853365) and named as P1-Ins-4-bp, and the deletion site (rs517582703) was located in the intronic region (NC_037331.1: g. 68859510-68859517) and named as P2-Del-8-bp. These polymorphisms within the HOXA11 gene were identified and genotyped by PCR amplification, agarose gel electrophoresis and DNA sequencing in the 640 Shandong Black Cattle Genetic Resource (SDBCGR) population. Moreover, the mutation frequency was very low after detection, so the mathematical expectation (ME) method was used for detection. Statistical analysis demonstrated that P1-Ins-4-bp was significantly correlated with the beef shoulder (p = 0.012) and tongue root (p = 0.004). Meanwhile, P2-Del-8-bp displayed a significant correlation with the back tendon (p = 0.008), money tendon (p = 2.84 × 10-4), thick flank (p = 0.034), beef shin (p = 9.09 × 10-7), triangle thick flank (p = 0.04), triangle flank (p = 1.00 × 10-6), rump (p = 0.018) and small tenderloin (p = 0.043) in the female SDBCGR population. In summary, these outcomes may provide a new perspective for accelerating the molecular breeding of cattle through marker-assisted selection (MAS) strategies.
Collapse
|
19
|
Yu D, Xin L, Qing X, Hao Z, Yong W, Jiangjiang Z, Yaqiu L. Key circRNAs from goat: discovery, integrated regulatory network and their putative roles in the differentiation of intramuscular adipocytes. BMC Genomics 2023; 24:51. [PMID: 36707755 PMCID: PMC9883971 DOI: 10.1186/s12864-023-09141-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/17/2023] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The procession of preadipocytes differentiation into mature adipocytes involves multiple cellular and signal transduction pathways. Recently. a seirces of noncoding RNAs (ncRNAs), including circular RNAs (circRNAs) were proved to play important roles in regulating differentiation of adipocytes. RESULT In this study, we aimed to identificate the potential circRNAs in the early and late stages of goat intramuscular adipocytes differentiation. Using bioinformatics methods to predict their biological functions and map the circRNA-miRNA interaction network. Over 104 million clean reads in goat intramuscular preadipocytes and adipocytes were mapped, of which16 circRNAs were differentially expressed (DE-circRNAs). Furthermore, we used real-time fluorescent quantitative PCR (qRT-PCR) technology to randomly detect the expression levels of 8 circRNAs among the DE-circRNAs, and our result verifies the accuracy of the RNA-seq data. From the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the DE-circRNAs, two circRNAs, circ_0005870 and circ_0000946, were found in Focal adhesion and PI3K-Akt signaling pathway. Then we draw the circRNA-miRNA interaction network and obtained the miRNAs that possibly interact with circ_0005870 and circ_0000946. Using TargetScan, miRTarBase and miR-TCDS online databases, we further obtained the mRNAs that may interact with the miRNAs, and generated the final circRNA-miRNA-mRNA interaction network. Combined with the following GO (Gene Ontology) and KEGG enrichment analysis, we obtained 5 key mRNAs related to adipocyte differentiation in our interaction network, which are FOXO3(forkhead box O3), PPP2CA (protein phosphatase 2 catalytic subunit alpha), EEIF4E (eukaryotic translation initiation factor 4), CDK6 (cyclin dependent kinase 6) and ACVR1 (activin A receptor type 1). CONCLUSIONS By using Illumina HiSeq and online databases, we generated the final circRNA-miRNA-mRNA interaction network that have valuable functions in adipocyte differentiation. Our work serves as a valuable genomic resource for in-depth exploration of the molecular mechanism of ncRNAs interaction network regulating adipocyte differentiation.
Collapse
Affiliation(s)
- Du Yu
- grid.412723.10000 0004 0604 889XKey Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China ,grid.412723.10000 0004 0604 889XKey Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu, China ,grid.412723.10000 0004 0604 889XCollege of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Li Xin
- grid.412723.10000 0004 0604 889XKey Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China ,grid.412723.10000 0004 0604 889XKey Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu, China ,grid.412723.10000 0004 0604 889XCollege of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Xu Qing
- grid.412723.10000 0004 0604 889XKey Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China ,grid.412723.10000 0004 0604 889XKey Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu, China ,grid.412723.10000 0004 0604 889XCollege of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Zhang Hao
- grid.412723.10000 0004 0604 889XKey Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China ,grid.412723.10000 0004 0604 889XKey Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu, China ,grid.412723.10000 0004 0604 889XCollege of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Wang Yong
- grid.412723.10000 0004 0604 889XKey Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China ,grid.412723.10000 0004 0604 889XKey Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu, China ,grid.412723.10000 0004 0604 889XCollege of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Zhu Jiangjiang
- grid.412723.10000 0004 0604 889XKey Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China ,grid.412723.10000 0004 0604 889XKey Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Lin Yaqiu
- grid.412723.10000 0004 0604 889XKey Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China ,grid.412723.10000 0004 0604 889XKey Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu, China ,grid.412723.10000 0004 0604 889XCollege of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| |
Collapse
|
20
|
Tang W, Xu QH, Chen X, Guo W, Ao Z, Fu K, Ji T, Zou Y, Chen JJ, Zhang Y. Transcriptome sequencing reveals the effects of circRNA on testicular development and spermatogenesis in Qianbei Ma goats. Front Vet Sci 2023; 10:1167758. [PMID: 37180060 PMCID: PMC10172654 DOI: 10.3389/fvets.2023.1167758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/04/2023] [Indexed: 05/15/2023] Open
Abstract
Circular RNAs (circRNAs) play an important role in regulating the mammalian reproductive system, especially testicular development and spermatogenesis. However, their functions in testicular development and spermatogenesis in the Qianbei Ma goat, the Guizhou endemic breed are still unclear. In this study, tissue sectioning and circRNAs transcriptome analysis were conducted to compare the changes of morphology and circular RNAs gene expression profile at four different developmental stages (0Y, 0-month-old; 6Y, 6-month-old; 12Y, 12-month-old; 18Y, 18-month-old). The results showed that the circumferences and area of the seminiferous tubule gradually increased with age, and the lumen of the seminiferous tubule in the testis differentiated significantly. 12,784 circRNAs were detected from testicular tissues at four different developmental stages by RNA sequencing, and 8,140 DEcircRNAs (differentially expressed circRNAs) were found in 0Y vs. 6Y, 6Y vs. 12Y, 12Y vs. 18Y and 0Y vs. 18Y, 0Y vs. 12Y, 6Y vs. 18Y Functional enrichment analysis of the source genes showed that they were mainly enriched in testicular development and spermatogenesis. In addition, the miRNAs and mRNAs associated with DECircRNAs in 6 control groups were predicted by bioinformatics, and 81 highly expressed DECircRNAs and their associated miRNAs and mRNAs were selected to construct the ceRNA network. Through functional enrichment analysis of the target genes of circRNAs in the network, some candidate circRNAs related to testicular development and spermatogenesis were obtained. Such as circRNA_07172, circRNA_04859, circRNA_07832, circRNA_00032 and circRNA_07510. These results will help to reveal the mechanism of circRNAs in testicular development and spermatogenesis, and also provide some guidance for goat reproduction.
Collapse
Affiliation(s)
- Wen Tang
- College of Life Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
| | - Qiang Hou Xu
- College of Life Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
- *Correspondence: Qiang Hou Xu,
| | - Xiang Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
- Xiang Chen,
| | - Wei Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Zheng Ao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Kaibin Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Taotao Ji
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Yue Zou
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Jing Jia Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Yuan Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|