1
|
Khodayari A, Hirn U, Spirk S, Ogawa Y, Seveno D, Thielemans W. Advancing plant cell wall modelling: Atomistic insights into cellulose, disordered cellulose, and hemicelluloses - A review. Carbohydr Polym 2024; 343:122415. [PMID: 39174111 DOI: 10.1016/j.carbpol.2024.122415] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/27/2024] [Accepted: 06/16/2024] [Indexed: 08/24/2024]
Abstract
The complexity of plant cell walls on different hierarchical levels still impedes the detailed understanding of biosynthetic pathways, interferes with processing in industry and finally limits applicability of cellulose materials. While there exist many challenges to readily accessing these hierarchies at (sub-) angström resolution, the development of advanced computational methods has the potential to unravel important questions in this field. Here, we summarize the contributions of molecular dynamics simulations in advancing the understanding of the physico-chemical properties of natural fibres. We aim to present a comprehensive view of the advancements and insights gained from molecular dynamics simulations in the field of carbohydrate polymers research. The review holds immense value as a vital reference for researchers seeking to undertake atomistic simulations of plant cell wall constituents. Its significance extends beyond the realm of molecular modeling and chemistry, as it offers a pathway to develop a more profound comprehension of plant cell wall chemistry, interactions, and behavior. By delving into these fundamental aspects, the review provides invaluable insights into future perspectives for exploration. Researchers within the molecular modeling and carbohydrates community can greatly benefit from this resource, enabling them to make significant strides in unraveling the intricacies of plant cell wall dynamics.
Collapse
Affiliation(s)
- Ali Khodayari
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven 3001, Belgium.
| | - Ulrich Hirn
- Institute of Bioproducts and Paper Technology, TU Graz, Inffeldgasse 23, Graz 8010, Austria
| | - Stefan Spirk
- Institute of Bioproducts and Paper Technology, TU Graz, Inffeldgasse 23, Graz 8010, Austria
| | - Yu Ogawa
- Centre de recherches sur les macromolécules végétales, CERMAV-CNRS, CS40700, 38041 Grenoble cedex 9, France
| | - David Seveno
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven 3001, Belgium
| | - Wim Thielemans
- Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| |
Collapse
|
2
|
Benselfelt T, Cinar Ciftci G, Wågberg L, Wohlert J, Hamedi MM. Entropy Drives Interpolymer Association in Water: Insights into Molecular Mechanisms. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6718-6729. [PMID: 38517289 PMCID: PMC10993416 DOI: 10.1021/acs.langmuir.3c02978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024]
Abstract
Interpolymer association in aqueous solutions is essential for many industrial processes, new materials design, and the biochemistry of life. However, our understanding of the association mechanism is limited. Classical theories do not provide molecular details, creating a need for detailed mechanistic insights. This work consolidates previous literature with complementary isothermal titration calorimetry (ITC) measurements and molecular dynamics (MD) simulations to investigate molecular mechanisms to provide such insights. The large body of ITC data shows that intermolecular bonds, such as ionic or hydrogen bonds, cannot drive association. Instead, polymer association is entropy-driven due to the reorganization of water and ions. We propose a unifying entropy-driven association mechanism by generalizing previously suggested polyion association principles to include nonionic polymers, here termed polydipoles. In this mechanism, complementary charge densities of the polymers are the common denominators of association, for both polyions and polydipoles. The association of the polymers results mainly from two processes: charge exchange and amphiphilic association. MD simulations indicate that the amphiphilic assembly alone is enough for the initial association. Our proposed mechanism is a step toward a molecular understanding of the formation of complexes between synthetic and biological polymers under ambient or biological conditions.
Collapse
Affiliation(s)
- Tobias Benselfelt
- Department of Fibre and Polymer
Technology, School of Engineering Sciences in Chemistry, Biotechnology
and Health, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - Goksu Cinar Ciftci
- Department of Fibre and Polymer
Technology, School of Engineering Sciences in Chemistry, Biotechnology
and Health, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - Lars Wågberg
- Department of Fibre and Polymer
Technology, School of Engineering Sciences in Chemistry, Biotechnology
and Health, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - Jakob Wohlert
- Department of Fibre and Polymer
Technology, School of Engineering Sciences in Chemistry, Biotechnology
and Health, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - Mahiar Max Hamedi
- Department of Fibre and Polymer
Technology, School of Engineering Sciences in Chemistry, Biotechnology
and Health, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| |
Collapse
|
3
|
Barrios N, Parra JG, Venditti RA, Pal L. Elucidation of temperature-induced water structuring on cellulose surfaces for environmental and energy sustainability. Carbohydr Polym 2024; 329:121799. [PMID: 38286532 DOI: 10.1016/j.carbpol.2024.121799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/29/2023] [Accepted: 01/06/2024] [Indexed: 01/31/2024]
Abstract
Optimizing drying energy in the forest products industry is critical for integrating lignocellulosic feedstocks across all manufacturing sectors. Despite substantial efforts to reduce thermal energy consumption during drying, further enhancements are possible. Cellulose, the main component of forest products, is Earth's most abundant biopolymer and a promising renewable feedstock. This study employs all-atom molecular dynamics (MD) simulations to explore the structural dynamics of a small Iβ-cellulose microcrystallite and surrounding water layers during drying. Molecular and atomistic profiles revealed localized water near the cellulose surface, with water structuring extending beyond 8 Å into the water bulk, influencing solvent-accessible surface area and solvation energy. With increasing temperature, there was a ∼20 % reduction in the cellulose surface available for interaction with water molecules, and a ∼22 % reduction in solvation energy. The number of hydrogen bonds increased with thicker water layers, facilitated by a "bridging" effect. Electrostatic interactions dominated the intermolecular interactions at all temperatures, creating an energetic barrier that hinders water removal, slowing the drying processes. Understanding temperature-dependent cellulose-water interactions at the molecular level will help in designing novel strategies to address drying energy consumption, advancing the adoption of lignocellulosics as viable manufacturing feedstocks.
Collapse
Affiliation(s)
- Nelson Barrios
- Department of Forest Biomaterials, NC State University, 431 Dan Allen Drive, Campus Box 8005, Raleigh, NC 27695-8005, USA
| | - José G Parra
- Department of Forest Biomaterials, NC State University, 431 Dan Allen Drive, Campus Box 8005, Raleigh, NC 27695-8005, USA; Universidad de Carabobo, Facultad Experimental de Ciencias y Tecnología, Dpto. De Química, Lab. De Química Computacional (QUIMICOMP), Edificio de Química, Avenida Salvador Allende, Bárbula, Venezuela
| | - Richard A Venditti
- Department of Forest Biomaterials, NC State University, 431 Dan Allen Drive, Campus Box 8005, Raleigh, NC 27695-8005, USA
| | - Lokendra Pal
- Department of Forest Biomaterials, NC State University, 431 Dan Allen Drive, Campus Box 8005, Raleigh, NC 27695-8005, USA.
| |
Collapse
|
4
|
Jing S, Wu L, Siciliano AP, Chen C, Li T, Hu L. The Critical Roles of Water in the Processing, Structure, and Properties of Nanocellulose. ACS NANO 2023; 17:22196-22226. [PMID: 37934794 DOI: 10.1021/acsnano.3c06773] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
The cellulose industry depends heavily on water owing to the hydrophilic nature of cellulose fibrils and its potential for sustainable and innovative production methods. The emergence of nanocellulose, with its excellent properties, and the incorporation of nanomaterials have garnered significant attention. At the nanoscale level, nanocellulose offers a higher exposure of hydroxyl groups, making it more intimate with water than micro- and macroscale cellulose fibers. Gaining a deeper understanding of the interaction between nanocellulose and water holds the potential to reduce production costs and provide valuable insights into designing functional nanocellulose-based materials. In this review, water molecules interacting with nanocellulose are classified into free water (FW) and bound water (BW), based on their interaction forces with surface hydroxyls and their mobility in different states. In addition, the water-holding capacity of cellulosic materials and various water detection methods are also discussed. The review also examines water-utilization and water-removal methods in the fabrication, dispersion, and transport of nanocellulose, aiming to elucidate the challenges and tradeoffs in these processes while minimizing energy and time costs. Furthermore, the influence of water on nanocellulose properties, including mechanical properties, ion conductivity, and biodegradability, are discussed. Finally, we provide our perspective on the challenges and opportunities in developing nanocellulose and its interplay with water.
Collapse
Affiliation(s)
- Shuangshuang Jing
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Lianping Wu
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Amanda P Siciliano
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Chaoji Chen
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Teng Li
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Liangbing Hu
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
- Center for Materials Innovation, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
5
|
Solhi L, Guccini V, Heise K, Solala I, Niinivaara E, Xu W, Mihhels K, Kröger M, Meng Z, Wohlert J, Tao H, Cranston ED, Kontturi E. Understanding Nanocellulose-Water Interactions: Turning a Detriment into an Asset. Chem Rev 2023; 123:1925-2015. [PMID: 36724185 PMCID: PMC9999435 DOI: 10.1021/acs.chemrev.2c00611] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Modern technology has enabled the isolation of nanocellulose from plant-based fibers, and the current trend focuses on utilizing nanocellulose in a broad range of sustainable materials applications. Water is generally seen as a detrimental component when in contact with nanocellulose-based materials, just like it is harmful for traditional cellulosic materials such as paper or cardboard. However, water is an integral component in plants, and many applications of nanocellulose already accept the presence of water or make use of it. This review gives a comprehensive account of nanocellulose-water interactions and their repercussions in all key areas of contemporary research: fundamental physical chemistry, chemical modification of nanocellulose, materials applications, and analytical methods to map the water interactions and the effect of water on a nanocellulose matrix.
Collapse
Affiliation(s)
- Laleh Solhi
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Valentina Guccini
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Katja Heise
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Iina Solala
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Elina Niinivaara
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Department of Wood Science, University of British Columbia, Vancouver, British ColumbiaV6T 1Z4, Canada
| | - Wenyang Xu
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Laboratory of Natural Materials Technology, Åbo Akademi University, TurkuFI-20500, Finland
| | - Karl Mihhels
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Marcel Kröger
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Zhuojun Meng
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325001, China
| | - Jakob Wohlert
- Wallenberg Wood Science Centre (WWSC), Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10044Stockholm, Sweden
| | - Han Tao
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Emily D Cranston
- Department of Wood Science, University of British Columbia, Vancouver, British ColumbiaV6T 1Z4, Canada.,Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British ColumbiaV6T 1Z3, Canada
| | - Eero Kontturi
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| |
Collapse
|
6
|
Dissolution of cellulose into supercritical water and its dissolving state followed by structure formation from the solution system. Carbohydr Polym 2022; 275:118669. [PMID: 34742408 DOI: 10.1016/j.carbpol.2021.118669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/30/2021] [Accepted: 09/11/2021] [Indexed: 11/24/2022]
Abstract
Cellulose was treated with supercritical water at 668 K and 25 MPa for 0.04 s in this study. The cellulose/water system was transparent at room temperature for a while after supercritical water treatment before a precipitate gradually appeared over several hours. The precipitation process was monitored by synchrotron X-ray scattering. The scattering functions of fractal systems and flat-like structures were utilized to explain the experimentally observed small-angle scattering profiles. Immediately after supercritical water treatment, the cellulose appeared to dissolve with a fractal dimension D of approximately 1, indicating that the cellulose molecules were rigid, followed by aggregation into a 5-nm-thick flat-like structure. The flat-like structure was determined to be similar to the molecular sheets observed during the early stages of precipitation in the cellulose/aqueous sodium hydroxide and cellulose/aqueous lithium hydroxide/urea systems. Resultant regenerated cellulose had high crystallinity, large crystal size, and a low degree of polymerization.
Collapse
|
7
|
Ma YL, Gao T, Sun Y, Zhu Y, Lin F, Zhong Y, Li Y, Ji W. Ni-based Multifunctional Catalysts derived from layered double hydroxides for Catalytic conversion of Cellulose to Polyols. NEW J CHEM 2022. [DOI: 10.1039/d2nj02104h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The catalytic conversion of biomass into high value-added products has attracted wide attention, especially the efficient and selective conversion of cellulose into valuable chemicals and fuels. In this paper, using...
Collapse
|
8
|
Bregado JL, Tavares FW, Secchi AR, Segtovich ISV. Molecular dynamics of dissolution of a 36-chain cellulose Iβ microfibril at different temperatures above the critical pressure of water. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Kishani S, Benselfelt T, Wågberg L, Wohlert J. Entropy drives the adsorption of xyloglucan to cellulose surfaces - A molecular dynamics study. J Colloid Interface Sci 2021; 588:485-493. [PMID: 33429345 DOI: 10.1016/j.jcis.2020.12.113] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 11/27/2022]
Abstract
The adsorption of nonionic polymers to cellulose is of large importance both in the plant cell wall during synthesis and for the development of sustainable materials from wood. Here, the thermodynamics of adsorption of the polysaccharide xyloglucan (XG) to both native and chemically modified cellulose with carboxyl groups was investigated using molecular dynamics simulations. The free energy of adsorption was calculated as the potential of mean force between an XG oligomer and model cellulose surfaces in a range of temperatures from 298 K to 360 K. It was found that the adsorption near room temperature is an endothermic process dominated by the entropy of released interfacial water molecules. This was corroborated by quantitative assessment of the absolute entropy per water molecule both at the interface and in the bulk. In the case of native cellulose, the adsorption became exothermic at higher temperatures, while the relatively strong interactions between water and the charged groups of the oxidized cellulose impede such a transition. The results also indicate that the extraction of strongly associated hemicelluloses would be facilitated by low temperature.
Collapse
Affiliation(s)
- Saina Kishani
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, SE-10044, Sweden; Wallenberg Wood Science Center, KTH Royal Institute of Technology, SE-10044, Sweden
| | - Tobias Benselfelt
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, SE-10044, Sweden; Wallenberg Wood Science Center, KTH Royal Institute of Technology, SE-10044, Sweden
| | - Lars Wågberg
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, SE-10044, Sweden; Wallenberg Wood Science Center, KTH Royal Institute of Technology, SE-10044, Sweden
| | - Jakob Wohlert
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, SE-10044, Sweden; Wallenberg Wood Science Center, KTH Royal Institute of Technology, SE-10044, Sweden.
| |
Collapse
|
10
|
Bregado JL, Tavares FW, Secchi AR, Segtovich ISV. Thermophysical Properties of Amorphous‐Paracrystalline Celluloses by Molecular Dynamics. MACROMOL THEOR SIMUL 2020. [DOI: 10.1002/mats.202000007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jurgen Lange Bregado
- Programa de Engenharia Química/COPPEUniversidade Federal do Rio de JaneiroCidade Universitária Rio de Janeiro CP 21941‐914 Brazil
| | - Frederico Wanderley Tavares
- Programa de Engenharia Química/COPPEUniversidade Federal do Rio de JaneiroCidade Universitária Rio de Janeiro CP 21941‐914 Brazil
- Escola de QuímicaDepartamento de Engenharia QuímicaUniversidade Federal do Rio de JaneiroCidade Universitária Rio de Janeiro CP 21941‐972 Brazil
| | - Argimiro Resende Secchi
- Programa de Engenharia Química/COPPEUniversidade Federal do Rio de JaneiroCidade Universitária Rio de Janeiro CP 21941‐914 Brazil
- Escola de QuímicaDepartamento de Engenharia QuímicaUniversidade Federal do Rio de JaneiroCidade Universitária Rio de Janeiro CP 21941‐972 Brazil
| | - Iuri Soter Viana Segtovich
- Programa de Engenharia Química/COPPEUniversidade Federal do Rio de JaneiroCidade Universitária Rio de Janeiro CP 21941‐914 Brazil
| |
Collapse
|
11
|
Carlier S, Hermans S. Highly Efficient and Recyclable Catalysts for Cellobiose Hydrolysis: Systematic Comparison of Carbon Nanomaterials Functionalized With Benzyl Sulfonic Acids. Front Chem 2020; 8:347. [PMID: 32395460 PMCID: PMC7198230 DOI: 10.3389/fchem.2020.00347] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/02/2020] [Indexed: 11/13/2022] Open
Abstract
Carbon materials such as activated coal, nanotubes, nanofibers, or graphene nanoplatelets were functionalized with sulfonic acid moieties by a diazonium coupling strategy. High acidity was obtained for the majority of the carbon solids except for the carbon nanofibers. The activity of these acidic catalysts for the hydrolysis of cellobiose, as model molecule for cellulose, into glucose in neutral water medium was studied. The conversion of cellobiose is increasing with the acidity of the catalyst. We found that a minimum threshold amount of acidic functions is required for triggering the hydrolysis. The selectivity toward glucose is very high as soon as sulfonic functions are present on the catalyst. The robustness of the sulfonic functions grafted on the carbons has been highlighted by successful recyclability over six runs.
Collapse
Affiliation(s)
| | - Sophie Hermans
- Université Catholique de Louvain, IMCN Institute, Louvain-la-Neuve, Belgium
| |
Collapse
|
12
|
Heterogeneity in structure and dynamics of water near bilayers using TIP3P and TIP4P/2005 water models. Chem Phys 2019. [DOI: 10.1016/j.chemphys.2019.110396] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
|
14
|
Jiang Z, Zhao P, Li J, Liu X, Hu C. Effect of Tetrahydrofuran on the Solubilization and Depolymerization of Cellulose in a Biphasic System. CHEMSUSCHEM 2018; 11:397-405. [PMID: 29148211 DOI: 10.1002/cssc.201701861] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/14/2017] [Indexed: 06/07/2023]
Abstract
The dissolution of cellulose from biomass is a crucial but complicated issue for maximizing the utilization of biomass resources to produce valuable chemicals, because of the extreme insolubility of cellulose. A biphasic NaCl-H2 O-tetrahydrofuran (THF) system was studied, in which most of the pure microcrystalline cellulose (M-cellulose, 96.6 % conversion at 220 °C) and that contained in actual biomass were converted. Nearly half of the O6-H⋅⋅⋅O3 intermolecular hydrogen bonds could be broken by THF in the H2 O-THF co-solvent system, whereas the cleavage of O2-H⋅⋅⋅O6 intramolecular hydrogen bonds by H2 O was significantly inhibited. In the NaCl-H2 O-THF system, THF could significantly promote the effects of both H2 O and NaCl on the disruption of O2-H⋅⋅⋅O6 and O3-H⋅⋅⋅O5 intramolecular hydrogen bonds, respectively. In addition, THF could protect and transfer the cellulose-derived products to the organic phase by forming hydrogen bonds between the oxygen atom in THF and the hydrogen atom of C4-OH in the glucose or aldehyde group in 5-hydroxymethylfurfural (HMF), which can lead more NaCl to combine with the -OH of M-cellulose and further disrupt hydrogen bonding in M-cellulose, thereby improving the yield of small molecular weight products (especially HMF) and further promoting the dissolution of cellulose. As a cheap and reusable system, NaCl-H2 O-THF system may be a promising approach for the dissolution and further conversion of cellulose in lignocellulosic biomass without any enzymes, ionic liquids, or conventional catalysts.
Collapse
Affiliation(s)
- Zhicheng Jiang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Pingping Zhao
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Jianmei Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Xudong Liu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Changwei Hu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China
| |
Collapse
|
15
|
Fongarland P, Essayem N, Rataboul F. Noncatalyzed Liquefaction of Celluloses in Hydrothermal Conditions: Influence of Reactant Physicochemical Characteristics and Modeling Studies. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.6b03846] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Pascal Fongarland
- CNRS, UMR 5256, IRCELYON,
Institut de recherches sur la catalyse et l’environnement de
Lyon, Université Lyon 1, 2 avenue Albert Einstein, 69626 Villeurbanne, France
| | - Nadine Essayem
- CNRS, UMR 5256, IRCELYON,
Institut de recherches sur la catalyse et l’environnement de
Lyon, Université Lyon 1, 2 avenue Albert Einstein, 69626 Villeurbanne, France
| | - Franck Rataboul
- CNRS, UMR 5256, IRCELYON,
Institut de recherches sur la catalyse et l’environnement de
Lyon, Université Lyon 1, 2 avenue Albert Einstein, 69626 Villeurbanne, France
| |
Collapse
|
16
|
|
17
|
Rabideau BD, Ismail AE. Effect of Water Content in N-Methylmorpholine N-Oxide/Cellulose Solutions on Thermodynamics, Structure, and Hydrogen Bonding. J Phys Chem B 2015; 119:15014-22. [DOI: 10.1021/acs.jpcb.5b07500] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Brooks D. Rabideau
- Department
of Mechanical
Engineering, RWTH Aachen University, Aachen, Germany
| | - Ahmed E. Ismail
- Department
of Mechanical
Engineering, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
18
|
Overview of Methods for the Direct Molar Mass Determination of Cellulose. Molecules 2015; 20:10313-41. [PMID: 26053488 PMCID: PMC6272693 DOI: 10.3390/molecules200610313] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/06/2015] [Accepted: 05/27/2015] [Indexed: 11/17/2022] Open
Abstract
The purpose of this article is to provide the reader with an overview of the methods used to determine the molecular weights of cellulose. Methods that employ direct dissolution of the cellulose polymer are described; hence methods for investigating the molecular weight of cellulose in derivatized states, such as ethers or esters, only form a minor part of this review. Many of the methods described are primarily of historical interest since they have no use in modern cellulose chemistry. However, older methods, such as osmometry or ultracentrifuge experiments, were the first analytical methods used in polymer chemistry and continue to serve as sources of fundamental information (such as the cellulose structure in solution). The first part of the paper reviews methods, either absolute or relative, for the estimation of average molecular weights. Regardless of an absolute or relative approach, the outcome is a molecular weight average (MWA). In the final section, coupling methods are described. The primary benefit of performing a pre-separation step on the molecules is the discovery of the molecular weight distribution (MWD). Here, size exclusion chromatography (SEC) is unquestionably the most powerful and most commonly-applied method in modern laboratories and industrial settings.
Collapse
|