1
|
Panwar B, Omenn GS, Guan Y. miRmine: a database of human miRNA expression profiles. Bioinformatics 2018; 33:1554-1560. [PMID: 28108447 DOI: 10.1093/bioinformatics/btx019] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 01/17/2017] [Indexed: 12/17/2022] Open
Abstract
Motivation MicroRNAs (miRNAs) are small non-coding RNAs that are involved in post-transcriptional regulation of gene expression. In this high-throughput sequencing era, a tremendous amount of RNA-seq data is accumulating, and full utilization of publicly available miRNA data is an important challenge. These data are useful to determine expression values for each miRNA, but quantification pipelines are in a primitive stage and still evolving; there are many factors that affect expression values significantly. Results We used 304 high-quality microRNA sequencing (miRNA-seq) datasets from NCBI-SRA and calculated expression profiles for different tissues and cell-lines. In each miRNA-seq dataset, we found an average of more than 500 miRNAs with higher than 5x coverage, and we explored the top five highly expressed miRNAs in each tissue and cell-line. This user-friendly miRmine database has options to retrieve expression profiles of single or multiple miRNAs for a specific tissue or cell-line, either normal or with disease information. Results can be displayed in multiple interactive, graphical and downloadable formats. Availability and Implementation http://guanlab.ccmb.med.umich.edu/mirmine. Contact bharatpa@umich.edu. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Bharat Panwar
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Gilbert S Omenn
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.,Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,Department of Human Genetics and School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Yuanfang Guan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.,Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Paik YK, Omenn GS, Hancock WS, Lane L, Overall CM. Advances in the Chromosome-Centric Human Proteome Project: looking to the future. Expert Rev Proteomics 2017; 14:1059-1071. [PMID: 29039980 DOI: 10.1080/14789450.2017.1394189] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION The mission of the Chromosome-Centric Human Proteome Project (C-HPP), is to map and annotate the entire predicted human protein set (~20,000 proteins) encoded by each chromosome. The initial steps of the project are focused on 'missing proteins (MPs)', which lacked documented evidence for existence at protein level. In addition to remaining 2,579 MPs, we also target those annotated proteins having unknown functions, uPE1 proteins, alternative splice isoforms and post-translational modifications. We also consider how to investigate various protein functions involved in cis-regulatory phenomena, amplicons lncRNAs and smORFs. Areas covered: We will cover the scope, historic background, progress, challenges and future prospects of C-HPP. This review also addresses the question of how we can best improve the methodological approaches, select the optimal biological samples, and recommend stringent protocols for the identification and characterization of MPs. A new strategy for functional analysis of some of those annotated proteins having unknown function will also be discussed. Expert commentary: If the project moves well by reshaping the original goals, the current working modules and team work in the proposed extended planning period, it is anticipated that a progressively more detailed draft of an accurate chromosome-based proteome map will become available with functional information.
Collapse
Affiliation(s)
- Young-Ki Paik
- a Yonsei Proteome Research Center and Department of Biochemistry , Yonsei University , Seoul , Korea
| | - Gilbert S Omenn
- b Department of Computational Medicine & Bioinformatics , University of Michigan , Ann Arbor , MI , USA
| | - William S Hancock
- c Department of Chemical Biology , Northeastern University , Boston , Massachusetts 02115 , USA
| | - Lydie Lane
- d Department of Human Protein Sciences, Faculty of Medicine , University of Geneva , Geneva , Switzerland.,e Swiss Institute of Bioinformatics , Geneva , Switzerland
| | - Christopher M Overall
- f Centre for Blood Research, Departments of Oral Biological & Medical Sciences, and Biochemistry & Molecular Biology, Faculty of Dentistry , University of British Columbia , Vancouver , Canada
| |
Collapse
|
3
|
Paik YK, Omenn GS, Overall CM, Deutsch EW, Hancock WS. Recent Advances in the Chromosome-Centric Human Proteome Project: Missing Proteins in the Spot Light. J Proteome Res 2016; 14:3409-14. [PMID: 26337862 DOI: 10.1021/acs.jproteome.5b00785] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Young-Ki Paik
- Yonsei Proteome Research Center, Yonsei University , Seoul 120-749, Korea
| | - Gilbert S Omenn
- Center for Computational Medicine and Bioinformatics, University of Michigan , Ann Arbor, Michigan 48109, United States.,Yonsei Proteome Research Center, Yonsei University , Seoul 120-749, Korea
| | - Christopher M Overall
- Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z3, Canada.,Yonsei Proteome Research Center, Yonsei University , Seoul 120-749, Korea
| | - Eric W Deutsch
- Institute for Systems Biology , Seattle, Washington 98109, United States.,Yonsei Proteome Research Center, Yonsei University , Seoul 120-749, Korea
| | - William S Hancock
- Department of Chemical Biology, Northeastern University , Boston, Massachusetts 02115, United States.,Yonsei Proteome Research Center, Yonsei University , Seoul 120-749, Korea
| |
Collapse
|
4
|
Panwar B, Menon R, Eksi R, Li HD, Omenn GS, Guan Y. Genome-Wide Functional Annotation of Human Protein-Coding Splice Variants Using Multiple Instance Learning. J Proteome Res 2016; 15:1747-53. [PMID: 27142340 DOI: 10.1021/acs.jproteome.5b00883] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The vast majority of human multiexon genes undergo alternative splicing and produce a variety of splice variant transcripts and proteins, which can perform different functions. These protein-coding splice variants (PCSVs) greatly increase the functional diversity of proteins. Most functional annotation algorithms have been developed at the gene level; the lack of isoform-level gold standards is an important intellectual limitation for currently available machine learning algorithms. The accumulation of a large amount of RNA-seq data in the public domain greatly increases our ability to examine the functional annotation of genes at isoform level. In the present study, we used a multiple instance learning (MIL)-based approach for predicting the function of PCSVs. We used transcript-level expression values and gene-level functional associations from the Gene Ontology database. A support vector machine (SVM)-based 5-fold cross-validation technique was applied. Comparatively, genes with multiple PCSVs performed better than single PCSV genes, and performance also improved when more examples were available to train the models. We demonstrated our predictions using literature evidence of ADAM15, LMNA/C, and DMXL2 genes. All predictions have been implemented in a web resource called "IsoFunc", which is freely available for the global scientific community through http://guanlab.ccmb.med.umich.edu/isofunc .
Collapse
Affiliation(s)
- Bharat Panwar
- Department of Computational Medicine and Bioinformatics, ‡Department of Internal Medicine, §Department of Human Genetics and School of Public Health, and ∥Department of Electrical Engineering and Computer Science, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Rajasree Menon
- Department of Computational Medicine and Bioinformatics, ‡Department of Internal Medicine, §Department of Human Genetics and School of Public Health, and ∥Department of Electrical Engineering and Computer Science, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Ridvan Eksi
- Department of Computational Medicine and Bioinformatics, ‡Department of Internal Medicine, §Department of Human Genetics and School of Public Health, and ∥Department of Electrical Engineering and Computer Science, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Hong-Dong Li
- Department of Computational Medicine and Bioinformatics, ‡Department of Internal Medicine, §Department of Human Genetics and School of Public Health, and ∥Department of Electrical Engineering and Computer Science, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Gilbert S Omenn
- Department of Computational Medicine and Bioinformatics, ‡Department of Internal Medicine, §Department of Human Genetics and School of Public Health, and ∥Department of Electrical Engineering and Computer Science, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Yuanfang Guan
- Department of Computational Medicine and Bioinformatics, ‡Department of Internal Medicine, §Department of Human Genetics and School of Public Health, and ∥Department of Electrical Engineering and Computer Science, University of Michigan , Ann Arbor, Michigan 48109, United States
| |
Collapse
|