1
|
Karedla N, Schneider F, Enderlein J, Chen T. Leaflet-Specific Structure and Dynamics of Solid and Polymer Supported Lipid Bilayers. Angew Chem Int Ed Engl 2025; 64:e202423784. [PMID: 40059717 PMCID: PMC12087848 DOI: 10.1002/anie.202423784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/14/2025] [Accepted: 02/26/2025] [Indexed: 04/08/2025]
Abstract
Polymer-supported or tethered lipid bilayers serve as versatile platforms for mimicking plasma membrane structure and dynamics, yet the impact of polymer supports on lipid bilayers remains largely unresolved. In this study, we introduce a novel methodology that combines graphene-induced energy transfer (GIET) with line-scan fluorescence lifetime correlation spectroscopy (lsFLCS) to examine the structural and dynamic properties of lipid bilayers. Our findings reveal that polymer supports markedly influence both the structural parameters, such as the membrane height from the substrate, its thickness, as well as dynamic properties, including leaflet-specific diffusion coefficients and interleaflet coupling. These findings highlight the complex interplay between a polymer support and the lipid bilayers. By resolving leaflet-specific diffusion and heights of the two leaflets from the substrate, this study emphasizes the potential of GIET-lsFLCS for probing membrane dynamics and structure. These insights significantly advance the understanding and application of polymer-supported membranes across diverse research contexts.
Collapse
Affiliation(s)
- Narain Karedla
- Third Institute of Physics – BiophysicsGeorg August UniversityFriedrich‐Hund‐Platz 1Göttingen37077Germany
- The Rosalind Franklin InstituteHarwell CampusDidcotOX11 0FAUK
- Kennedy Institute of RheumatologyUniversity of OxfordRoosevelt DriveOxfordOX3 7LFUK
| | - Falk Schneider
- Translational Imaging CenterUniversity of Southern CaliforniaLos AngelesCA90089USA
- Biomedical SciencesWarwick Medical SchoolUniversity of WarwickCoventryCV4 7ALUK
| | - Jörg Enderlein
- Third Institute of Physics – BiophysicsGeorg August UniversityFriedrich‐Hund‐Platz 1Göttingen37077Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC)Universitätsmedizin GöttingenRobert‐Koch‐Str. 40Göttingen37075Germany
| | - Tao Chen
- Third Institute of Physics – BiophysicsGeorg August UniversityFriedrich‐Hund‐Platz 1Göttingen37077Germany
| |
Collapse
|
2
|
Tero R, Hagiwara Y, Saito S. Domain Localization by Graphene Oxide in Supported Lipid Bilayers. Int J Mol Sci 2023; 24:ijms24097999. [PMID: 37175707 PMCID: PMC10178265 DOI: 10.3390/ijms24097999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
The gel-phase domains in a binary supported lipid bilayer (SLB) comprising dioleoylphosphatidylcholine (DOPC) and dipalmitoylphosphatidylcholine (DPPC) were localized on graphene oxide (GO) deposited on a SiO2/Si substrate. We investigated the distribution of the gel-phase domains and the liquid crystalline (Lα) phase regions in DOPC+DPPC-SLB on thermally oxidized SiO2/Si substrates with GO flakes to understand the mechanism of the domain localization on GO. Fluorescence microscopy and atomic force microscopy revealed that the gel-phase domains preferably distributed on GO flakes, whereas the fraction of the Lα-phase increased on the bare SiO2 surface which was not covered with the GO flakes. The gel-phase domain was condensed on GO more effectively at the lower cooling rate. We propose that nucleation of the gel-phase domain preferentially occurred on GO, whose surface has amphiphilic property, during the gel-phase domain formation. The domains of the liquid ordered (Lo) phase were also condensed on GO in a ternary bilayer containing cholesterol that was phase-separated to the Lo phase and the liquid disordered phase. Rigid domains segregates on GO during their formation process, leaving fluid components to the surrounding region of GO.
Collapse
Affiliation(s)
- Ryugo Tero
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi 441-8580, Japan
| | - Yoshi Hagiwara
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi 441-8580, Japan
| | - Shun Saito
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi 441-8580, Japan
| |
Collapse
|
3
|
Giakoumatos EC, Gascoigne L, Gumí-Audenis B, García ÁG, Tuinier R, Voets IK. Impact of poly(ethylene glycol) functionalized lipids on ordering and fluidity of colloid supported lipid bilayers. SOFT MATTER 2022; 18:7569-7578. [PMID: 36165127 PMCID: PMC9555145 DOI: 10.1039/d2sm00806h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Colloid supported lipid bilayers (CSLBs) are highly appealing building blocks for functional colloids. In this contribution, we critically evaluate the impact on lipid ordering and CSLB fluidity of inserted additives. We focus on poly(ethylene glycol) (PEG) bearing lipids, which are commonly introduced to promote colloidal stability. We investigate whether their effect on the CSLB is related to the incorporated amount and chemical nature of the lipid anchor. To this end, CSLBs were prepared from lipids with a low or high melting temperature (Tm), DOPC, and DPPC, respectively. Samples were supplemented with either 0, 5 or 10 mol% of either a low or high Tm PEGylated lipid, DOPE-PEG2000 or DSPE-PEG2000, respectively. Lipid ordering was probed via differential scanning calorimetry and fluidity by fluorescence recovery after photobleaching. We find that up to 5 mol% of either PEGylated lipids could be incorporated into both membranes without any pronounced effects. However, the fluorescence recovery of the liquid-like DOPC membrane was markedly decelerated upon incorporating 10 mol% of either PEGylated lipids, whilst insertion of the anchoring lipids (DOPE and DSPE without PEG2000) had no detectable impact. Therefore, we conclude that the amount of incorporated PEG stabilizer, not the chemical nature of the lipid anchor, should be tuned carefully to achieve sufficient colloidal stability without compromising the membrane dynamics. These findings offer guidance for the experimental design of studies using CSLBs, such as those focusing on the consequences of intra- and inter-particle inhomogeneities for multivalent binding and the impact of additive mobility on superselectivity.
Collapse
Affiliation(s)
- Emma C Giakoumatos
- Laboratory of Self-Organizing Soft Matter, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Levena Gascoigne
- Laboratory of Self-Organizing Soft Matter, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Berta Gumí-Audenis
- Laboratory of Self-Organizing Soft Matter, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Álvaro González García
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Remco Tuinier
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ilja K Voets
- Laboratory of Self-Organizing Soft Matter, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
4
|
Ureña J, Knight A, Lee IH. Membrane Cargo Density-Dependent Interaction between Protein and Lipid Domains on the Giant Unilamellar Vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4702-4712. [PMID: 35385290 DOI: 10.1021/acs.langmuir.2c00247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Protein cargos anchored on the lipid membrane can be segregated by fluidic domain phase separation. Lipid membranes at certain compositions may separate into lipid domains to segregate cargos, and protein cargos themselves may be involved in protein condensate domain formation with multivalent binding proteins to segregate cargos. Recent studies suggest that these two driving forces of phase separation closely interact on the lipid membranes to promote codomain formation. In this report, we studied the effect of cargo density on the outcome of the cargo phase separation on giant unilamellar vesicles. Proteins and lipids are connected only by the anchored cargos, so it was originally hypothesized that higher cargo density would increase the degree of interaction between the lipid and protein domains, promoting more phase separation. However, fluorescence image analysis on different cargo densities showed that the cooperative domain formation and steric pressure are at a tug of war opposing each other. Cooperative domain formation is dominant under lower anchor density conditions, and above a threshold density, steric pressure was dominant opposing the domain formation. The result suggests that the cargo density is a key parameter affecting the outcome of cargo organization on the lipid membranes by phase separation.
Collapse
Affiliation(s)
- Juan Ureña
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, New Jersey 07043, United States
| | - Ashlynn Knight
- Department of Biology, Montclair State University, Montclair, New Jersey 07043, United States
| | - Il-Hyung Lee
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, New Jersey 07043, United States
| |
Collapse
|
5
|
Quenching Efficiency of Quantum Dots Conjugated to Lipid Bilayers on Graphene Oxide Evaluated by Fluorescence Single Particle Tracking. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A single particle observation of quantum dots (QDs) was performed on lipid bilayers formed on graphene oxide (GO). The long-range fluorescence quenching of GO has been applied to biosensing for various biomolecules. We demonstrated the single particle observation of a QD on supported lipid bilayers in this study, aiming to detect the quenching efficiency of lipid and protein molecules in a lipid bilayer by fluorescence single particle tacking (SPT). A single lipid bilayer or double lipid bilayers were formed on GO flakes deposited on a thermally oxidized silicon substrate by the vesicle fusion method. The QDs were conjugated on the lipid bilayers, and single particle images of the QDs were obtained under the quenching effect of GO. The quenching efficiency of a single QD was evaluated from the fluorescence intensities on the regions with and without GO. The quenching efficiency reflecting the layer numbers of the lipid bilayers was obtained.
Collapse
|
6
|
Motegi T, Takiguchi K, Tanaka-Takiguchi Y, Itoh T, Tero R. Physical Properties and Reactivity of Microdomains in Phosphatidylinositol-Containing Supported Lipid Bilayer. MEMBRANES 2021; 11:membranes11050339. [PMID: 34063660 PMCID: PMC8147626 DOI: 10.3390/membranes11050339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 01/03/2023]
Abstract
We characterized the size, distribution, and fluidity of microdomains in a lipid bilayer containing phosphatidylinositol (PI) and revealed their roles during the two-dimensional assembly of a membrane deformation protein (FBP17). The morphology of the supported lipid bilayer (SLB) consisting of PI and phosphatidylcholine (PC) on a mica substrate was observed with atomic force microscope (AFM). Single particle tracking (SPT) was performed for the PI+PC-SLB on the mica substrate by using the diagonal illumination setup. The AFM topography showed that PI-derived submicron domains existed in the PI+PC-SLB. The spatiotemporal dependence of the lateral lipid diffusion obtained by SPT showed that the microdomain had lower fluidity than the surrounding region and worked as the obstacles for the lipid diffusion. We observed the two-dimensional assembly of FBP17, which is one of F-BAR family proteins included in endocytosis processes and has the function generating lipid bilayer tubules in vitro. At the initial stage of the FBP17 assembly, the PI-derived microdomain worked as a scaffold for the FBP17 adsorption, and the fluid surrounding region supplied FBP17 to grow the FBP17 domain via the lateral molecular diffusion. This study demonstrated an example clearly revealing the roles of two lipid microregions during the protein reaction on a lipid bilayer.
Collapse
Affiliation(s)
- Toshinori Motegi
- Electronics-Inspired Interdisciplinary Research Institute, Toyohashi University of Technology, Toyohashi 441-8580, Japan
- Correspondence: (T.M.); (R.T.)
| | - Kingo Takiguchi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan; (K.T.); (Y.T.-T.)
| | - Yohko Tanaka-Takiguchi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan; (K.T.); (Y.T.-T.)
| | - Toshiki Itoh
- Biosignal Research Center, Kobe University, Kobe 657-8501, Japan;
| | - Ryugo Tero
- Electronics-Inspired Interdisciplinary Research Institute, Toyohashi University of Technology, Toyohashi 441-8580, Japan
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi 441-8580, Japan
- Correspondence: (T.M.); (R.T.)
| |
Collapse
|
7
|
Goh MWS, Tero R. Cholesterol-induced microdomain formation in lipid bilayer membranes consisting of completely miscible lipids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183626. [PMID: 33901442 DOI: 10.1016/j.bbamem.2021.183626] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/19/2022]
Abstract
Recently, we reported that a ternary lipid bilayer comprising phosphatidylethanolamine (PE), phosphatidylcholine (PC), which were both derived from chicken egg, and cholesterol (Chol) generates microdomains that function as specific fusion sites for proteoliposomes. Chol-induced microdomain formation in a completely miscible lipid bilayer is an exceptional phenomenon. Numerous studies have elucidated the formation of domains in liquid ordered (Lo) and liquid disordered (Ld) phases of ternary bilayers, which comprise two partially miscible lipids and Chol. Herein, we investigated the composition and mechanism of formation of these unique microdomains in supported lipid bilayers (SLBs) using a fluorescence microscope and an atomic force microscope (AFM). We prepared ternary SLBs using egg-derived PC (eggPC), Chol and three different types of PE: egg-derived PE, 1-palmitoyl-2-oleoyl-PE, and 1,2-didocosahexaenoyl-PE (diDHPE). Fluorescence microscopy observations revealed that fluid and continuous SLBs were formed at PE concentrations (CPE) of ≥6 mol%. Fluorescence recovery after photobleaching measurement revealed that the microdomain was more fluid than the surrounding region that showed typical diffusion coefficient of the Lo phase. The microdomains were observed as depressions in the AFM topographies. Their area fraction (θ) increased with CPE, and diDHPE produced a significantly large θ among the three PEs. The microdomains in the PE+eggPC+Chol-SLBs were rich in polyunsaturated PE and were in the Ld-like phase. Associating eggPC and Chol caused polyunsaturated PE to segregate, resulting in a microdomain formation by conferring the umbrella effect on Chol, entropic effect of disordered acyl chains, and π-π interactions in the hydrophobic core.
Collapse
Affiliation(s)
- Melvin Wei Shern Goh
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan
| | - Ryugo Tero
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan.
| |
Collapse
|
8
|
An J, Forchheimer D, Sävmarker J, Brülls M, Frenning G. Nanoscale characterization of PEGylated phospholipid coatings formed by spray drying on silica microparticles. J Colloid Interface Sci 2020; 577:92-100. [DOI: 10.1016/j.jcis.2020.05.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/29/2020] [Accepted: 05/09/2020] [Indexed: 10/24/2022]
|
9
|
Kim M, Heinrich F, Haugstad G, Yu G, Yuan G, Satija SK, Zhang W, Seo HS, Metzger JM, Azarin SM, Lodge TP, Hackel BJ, Bates FS. Spatial Distribution of PEO-PPO-PEO Block Copolymer and PEO Homopolymer in Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3393-3403. [PMID: 32216370 PMCID: PMC8097911 DOI: 10.1021/acs.langmuir.9b03208] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Maintaining the integrity of cell membranes is indispensable for cellular viability. Poloxamer 188 (P188), a poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymer with a number-average molecular weight of 8700 g/mol and containing 80% by mass PEO, protects cell membranes from various external injuries and has the potential to be used as a therapeutic agent in diverse applications. The membrane protection mechanism associated with P188 is intimately connected with how this block copolymer interacts with the lipid bilayer, the main component of a cell membrane. Here, we report the distribution of P188 in a model lipid bilayer comprising 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) using neutron reflectivity (NR) and atomic force microscopy (AFM). We also investigated the association of a PEO homopolymer (PEO8.4K; Mn = 8400 g/mol) that does not protect living cell membranes. These experiments were conducted following incubation of a 4.5 mmol/L polymer solution in a buffer that mimics physiological conditions with supported POPC bilayer membranes followed by washing with the aqueous medium. In contrast to previous reports, which dealt with P188 and PEO in salt-free solutions, both P188 and PEO8.4K penetrate into the inner portion of the lipid bilayer as revealed by NR, with approximately 30% by volume occupancy across the membrane without loss of bilayer structural integrity. These results indicate that PEO is the chemical moiety that principally drives P188 binding to bilayer membranes. No defects or phase-separated domains were observed in either P188- or PEO8.4K-incubated lipid bilayers when examined by AFM, indicating that polymer chains mingle homogeneously with lipid molecules in the bilayer. Remarkably, the breakthrough force required for penetration of the AFM tip through the bilayer membrane is unaffected by the presence of the large amount of P188 and PEO8.4K.
Collapse
Affiliation(s)
- Mihee Kim
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Frank Heinrich
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- National Institute of Standards and Technology Center for Neutron Research, Gaithersburg, Maryland 20899, United States
| | - Greg Haugstad
- Characterization Facility, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Guichuan Yu
- Informatics Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Guangcui Yuan
- National Institute of Standards and Technology Center for Neutron Research, Gaithersburg, Maryland 20899, United States
- Department of Physics, Georgetown University, Washington, D.C. 20057, United States
| | - Sushil K Satija
- National Institute of Standards and Technology Center for Neutron Research, Gaithersburg, Maryland 20899, United States
| | - Wenjia Zhang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Hannah S Seo
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph M Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States
| | - Samira M Azarin
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Timothy P Lodge
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Benjamin J Hackel
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Frank S Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
10
|
Lemaalem M, Hadrioui N, Derouiche A, Ridouane H. Structure and dynamics of liposomes designed for drug delivery: coarse-grained molecular dynamics simulations to reveal the role of lipopolymer incorporation. RSC Adv 2020; 10:3745-3755. [PMID: 35492626 PMCID: PMC9048902 DOI: 10.1039/c9ra08632c] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/06/2020] [Indexed: 12/22/2022] Open
Abstract
In this work, coarse-grained molecular dynamics simulations are carried out in NPTH and NVTE statistical ensembles in order to study the structure and dynamics properties of liposomes coated with polyethylene glycol (PEG).
Collapse
Affiliation(s)
- Mohammed Lemaalem
- Laboratoire de Physique des Polymères et Phénomènes Critiques Sciences Faculty Ben M'Sik
- Hassan II University
- Casablanca
- Morocco
| | - Nourddine Hadrioui
- Laboratoire de Physique des Polymères et Phénomènes Critiques Sciences Faculty Ben M'Sik
- Hassan II University
- Casablanca
- Morocco
| | - Abdelali Derouiche
- Laboratoire de Physique des Polymères et Phénomènes Critiques Sciences Faculty Ben M'Sik
- Hassan II University
- Casablanca
- Morocco
| | - Hamid Ridouane
- Laboratoire de Physique des Polymères et Phénomènes Critiques Sciences Faculty Ben M'Sik
- Hassan II University
- Casablanca
- Morocco
| |
Collapse
|