1
|
Opoku-Damoah Y, Xu ZP, Ta HT, Zhang R. Ultrasound-Responsive Lipid Nanoplatform with Nitric Oxide and Carbon Monoxide Release for Cancer Sono-Gaso-Therapy. ACS APPLIED BIO MATERIALS 2024; 7:7585-7594. [PMID: 39509170 DOI: 10.1021/acsabm.4c01165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Local gas therapy is emerging as a potential cancer treatment approach due to its specificity as gas-containing molecules can be packed into a nanodelivery system to release the corresponding gaseous molecules around the tumor site upon a suitable stimulus. Single-gas therapy has been reported, while synergistic dual-gas therapy has rarely been reported. Herein, we report a dual-gas-containing nanoplatform for synergistic cancer gasotherapy upon ultrasound irradiation. First, a robust ultrasound-responsive lipid-coated nanosystem was prepared with suitable particle size and characteristics. A low-intensity ultrasound (1.25 W/cm2) was found to simultaneously modulate carbon monoxide (CO) and nitric oxide (NO) release from the nanosystem in media and CT26 colon cancer cells for efficient therapeutic effect. The intracellular release promoted the overgeneration of reactive oxygen species (ROS) and triggered cancer cell apoptosis synergistically. The in vivo test demonstrated that the optimal dual-gas-containing formulation efficiently inhibited tumor growth (by ∼87%) at relatively low doses upon ultrasound irradiation (1.25 W/cm2, 5 min). This therapeutic efficacy shows that the current responsive lipid-coated delivery system has potential for ultrasound-triggered dual-gas therapy of both superficially and deeply seated cancers.
Collapse
Affiliation(s)
- Yaw Opoku-Damoah
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- Institute of Biomedical Health Technology and Engineering and Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, P. R. China
| | - Hang T Ta
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
2
|
Skládal P, Farka Z. Luminescent photon-upconversion nanoparticles with advanced functionalization for smart sensing and imaging. Mikrochim Acta 2024; 191:551. [PMID: 39167235 DOI: 10.1007/s00604-024-06615-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024]
Abstract
Photon-upconversion nanoparticles (UCNP) have already been established as labels for affinity assays in analog and digital formats. Here, advanced, or smart, systems based on UCNPs coated with active shells, fluorescent dyes, and metal and semiconductor nanoparticles participating in energy transfer reactions are reviewed. In addition, switching elements can be embedded in such assemblies and provide temporal and spatial control of action, which is important for intracellular imaging and monitoring activities. Demonstration and critical comments on representative approaches demonstrating the progress in the use of such UCNPs in bioanalytical assays, imaging, and monitoring of target molecules in cells are reported, including particular examples in the field of cancer theranostics.
Collapse
Affiliation(s)
- Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice, 5, 625 00, Brno, Czech Republic.
| | - Zdeněk Farka
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice, 5, 625 00, Brno, Czech Republic
| |
Collapse
|
3
|
Selva Sharma A, Marimuthu M, Varghese AW, Wu J, Xu J, Xiaofeng L, Devaraj S, Lan Y, Li H, Chen Q. A review of biomolecules conjugated lanthanide up-conversion nanoparticles-based fluorescence probes in food safety and quality monitoring applications. Crit Rev Food Sci Nutr 2024; 64:6129-6159. [PMID: 36688820 DOI: 10.1080/10408398.2022.2163975] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Upconversion nanoparticles (UCNPs) are known to possess unique characteristics, which allow them to overcome a number of issues that plague traditional fluorescence probes. UCNPs have been employed in a variety of applications, but it is arguably in the realm of optical sensors where they have shown the most promise. Biomolecule conjugated UCNPs-based fluorescence probes have been developed to detect and quantify a wide range of analytes, from metal ions to biomolecules, with great specificity and sensitivity. In this review, we have given much emphasis on the recent trends and progress in the preparation strategies of bioconjugated UCNPs and their potential application as fluorescence sensors in the trace level detection of food industry-based toxicants and adulterants. The paper discusses the preparation and functionalisation strategies of commonly used biomolecules over the surface of UCNPs. The use of different sensing strategies namely heterogenous and homogenous assays, underlying fluorescence mechanisms in the detection process of food adulterants are summarized in detail. This review might set a precedent for future multidisciplinary research including the development of novel biomolecules conjugated UCNPs for potential applications in food science and technology.
Collapse
Affiliation(s)
- Arumugam Selva Sharma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
- Division of Molecular Medicine, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Poojapura, Thiruvananthapuram, India
| | - Murugavelu Marimuthu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
- Department of Science & Humanities, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - Amal Wilson Varghese
- Division of Molecular Medicine, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Poojapura, Thiruvananthapuram, India
| | - Jizong Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Jing Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Luo Xiaofeng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Sabarinathan Devaraj
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Yang Lan
- Jiangxi Wuyuan Tea Vocational College, Jiangxi, PR China
| | - Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| |
Collapse
|
4
|
Ling H, Guan D, Wen R, Hu J, Zhang Y, Zhao F, Zhang Y, Liu Q. Effect of Surface Modification on the Luminescence of Individual Upconversion Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309035. [PMID: 38234137 DOI: 10.1002/smll.202309035] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/03/2024] [Indexed: 01/19/2024]
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs) hold promise for single-molecule imaging owing to their excellent photostability and minimal autofluorescence. However, their limited water dispersibility, often from the hydrophobic oleic acid ligand during synthesis, is a challenge. To address this, various surface modification strategies' impact on single-particle upconversion luminescence are studied. UCNPs are made hydrophilic through methods like ligand exchange with dye IR806, HCl or NOBF4 treatment, silica coating (SiO2 or mesoporous mSiO2), and self-assembly with polymer of DSPE-PEG or F127. The studies revealed that UCNPs modified with NOBF4 and DSPE-PEG exhibited notably higher single-particle brightness with minimal quenching (3% and 8%, respectively), followed by SiO2, F127, IR806, mSiO2, and HCl (84% quenching). HCl disrupted UCNPs's crystal lattice, weakening luminescence, while mSiO2 absorbed solvent molecules, causing luminescence quenching. Energy transfer to IR806 also reduced the brightness. Additionally, a prevalence of upconversion red emission over green is observed, with the red-to-green ratio increasing with irradiance. UCNPs coated with DSPE-PEG exhibited the brightest single-particle luminescence in water, retaining 48% of its original emission due to a lower critical micelle concentration and superior water protection. In summary, the investigation provides valuable insights into the role of surface chemistry on UCNPs at the single-particle level.
Collapse
Affiliation(s)
- Huan Ling
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Daoming Guan
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Rongrong Wen
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Jialing Hu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Yanxin Zhang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Fei Zhao
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Yunxiang Zhang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Qian Liu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| |
Collapse
|
5
|
Machová Urdzíková L, Mareková D, Vasylyshyn T, Matouš P, Patsula V, Oleksa V, Shapoval O, Vosmanská M, Liebl D, Benda A, Herynek V, Horák D, Jendelová P. Toxicity of Large and Small Surface-Engineered Upconverting Nanoparticles for In Vitro and In Vivo Bioapplications. Int J Mol Sci 2024; 25:5294. [PMID: 38791332 PMCID: PMC11121289 DOI: 10.3390/ijms25105294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
In this study, spherical or hexagonal NaYF4:Yb,Er nanoparticles (UCNPs) with sizes of 25 nm (S-UCNPs) and 120 nm (L-UCNPs) were synthesized by high-temperature coprecipitation and subsequently modified with three kinds of polymers. These included poly(ethylene glycol) (PEG) and poly(N,N-dimethylacrylamide-co-2-aminoethylacrylamide) [P(DMA-AEA)] terminated with an alendronate anchoring group, and poly(methyl vinyl ether-co-maleic acid) (PMVEMA). The internalization of nanoparticles by rat mesenchymal stem cells (rMSCs) and C6 cancer cells (rat glial tumor cell line) was visualized by electron microscopy and the cytotoxicity of the UCNPs and their leaches was measured by the real-time proliferation assay. The comet assay was used to determine the oxidative damage of the UCNPs. An in vivo study on mice determined the elimination route and potential accumulation of UCNPs in the body. The results showed that the L- and S-UCNPs were internalized into cells in the lumen of endosomes. The proliferation assay revealed that the L-UCNPs were less toxic than S-UCNPs. The viability of rMSCs incubated with particles decreased in the order S-UCNP@Ale-(PDMA-AEA) > S-UCNP@Ale-PEG > S-UCNPs > S-UCNP@PMVEMA. Similar results were obtained in C6 cells. The oxidative damage measured by the comet assay showed that neat L-UCNPs caused more oxidative damage to rMSCs than all coated UCNPs while no difference was observed in C6 cells. An in vivo study indicated that L-UCNPs were eliminated from the body via the hepatobiliary route; L-UCNP@Ale-PEG particles were almost eliminated from the liver 96 h after intravenous application. Pilot fluorescence imaging confirmed the limited in vivo detection capabilities of the nanoparticles.
Collapse
Affiliation(s)
- Lucia Machová Urdzíková
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic; (L.M.U.); (D.M.)
| | - Dana Mareková
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic; (L.M.U.); (D.M.)
| | - Taras Vasylyshyn
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 16200 Prague, Czech Republic; (T.V.); (V.P.); (V.O.); (O.S.); (D.H.)
| | - Petr Matouš
- Center for Advanced Preclinical Imaging, First Faculty of Medicine, Charles University, Salmovská 3, 12000 Prague, Czech Republic; (P.M.); (V.H.)
| | - Vitalii Patsula
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 16200 Prague, Czech Republic; (T.V.); (V.P.); (V.O.); (O.S.); (D.H.)
| | - Viktoriia Oleksa
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 16200 Prague, Czech Republic; (T.V.); (V.P.); (V.O.); (O.S.); (D.H.)
| | - Oleksandr Shapoval
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 16200 Prague, Czech Republic; (T.V.); (V.P.); (V.O.); (O.S.); (D.H.)
| | - Magda Vosmanská
- Department of Analytical Chemistry, University of Chemistry and Technology, Technická 5, 16000 Prague, Czech Republic;
| | - David Liebl
- Imaging Methods Core Facility, BIOCEV, Faculty of Science, Charles University, Průmyslová 595, 25250 Vestec-Jesenice u Prahy, Czech Republic; (D.L.); (A.B.)
| | - Aleš Benda
- Imaging Methods Core Facility, BIOCEV, Faculty of Science, Charles University, Průmyslová 595, 25250 Vestec-Jesenice u Prahy, Czech Republic; (D.L.); (A.B.)
| | - Vít Herynek
- Center for Advanced Preclinical Imaging, First Faculty of Medicine, Charles University, Salmovská 3, 12000 Prague, Czech Republic; (P.M.); (V.H.)
| | - Daniel Horák
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 16200 Prague, Czech Republic; (T.V.); (V.P.); (V.O.); (O.S.); (D.H.)
| | - Pavla Jendelová
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic; (L.M.U.); (D.M.)
| |
Collapse
|
6
|
Bahari HR, Mousavi Khaneghah A, Eş I. Upconversion nanoparticles-modified aptasensors for highly sensitive mycotoxin detection for food quality and safety. Compr Rev Food Sci Food Saf 2024; 23:e13369. [PMID: 38767851 DOI: 10.1111/1541-4337.13369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/29/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024]
Abstract
Mycotoxins, highly toxic and carcinogenic secondary metabolites produced by certain fungi, pose significant health risks as they contaminate food and feed products globally. Current mycotoxin detection methods have limitations in real-time detection capabilities. Aptasensors, incorporating aptamers as specific recognition elements, are crucial for mycotoxin detection due to their remarkable sensitivity and selectivity in identifying target mycotoxins. The sensitivity of aptasensors can be improved by using upconversion nanoparticles (UCNPs). UCNPs consist of lanthanide ions in ceramic host, and their ladder-like energy levels at f-orbitals have unique photophysical properties, including converting low-energy photons to high-energy emissions by a series of complex processes and offering sharp, low-noise, and sensitive near-infrared to visible detection strategy to enhance the efficacy of aptasensors for novel mycotoxin detection. This article aims to review recent reports on the scope of the potential of UCNPs in mycotoxin detection, focusing on their integration with aptasensors to give readers clear insight. We briefly describe the upconversion photoluminescence (UCPL) mechanism and relevant energy transfer processes influencing UCNP design and optimization. Furthermore, recent studies and advancements in UCNP-based aptasensors will be reviewed. We then discuss the potential impact of UCNP-modified aptasensors on food safety and present an outlook on future directions and challenges in this field. This review article comprehensively explains the current state-of-the-art UCNP-based aptasensors for mycotoxin detection. It provides insights into potential applications by addressing technical and practical challenges for practical implementation.
Collapse
Affiliation(s)
- Hamid-Reza Bahari
- Center of Innovation for Green and High Technologies, Tehran, Iran
- UNAM-National Nanotechnology Research Center, Institute of Materials Science and Nanotechnology, Ankara, Turkey
| | | | - Ismail Eş
- Institute of Biomedical Engineering, Old Road Campus Research Building, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Ferrera-González J, González-Béjar M, Pérez-Prieto J. Synergistic or antagonistic effect of lanthanides on Rose Bengal photophysics in upconversion nanohybrids? NANOSCALE 2023. [PMID: 38050867 DOI: 10.1039/d3nr03774f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
A nanohybrid made of a xanthenic dye, rose bengal, grafted to an ytterbium and erbium codoped upconversion nanoparticle (UCNP) served as a proof-of-concept to evaluate the fundamental mechanisms which govern the dye photophysics upon interaction with the UCNP. Both photoactive lanthanides strongly influence the singlet and triplet excited states of rose bengal.
Collapse
Affiliation(s)
- Juan Ferrera-González
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Orgánica, Universitat de València, C/ Catedrático José Beltrán, 2, Paterna, Valencia 46980, Spain.
| | - María González-Béjar
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Orgánica, Universitat de València, C/ Catedrático José Beltrán, 2, Paterna, Valencia 46980, Spain.
| | - Julia Pérez-Prieto
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Orgánica, Universitat de València, C/ Catedrático José Beltrán, 2, Paterna, Valencia 46980, Spain.
| |
Collapse
|
8
|
Opoku-Damoah Y, Zhang R, Ta HT, Xu ZP. Simultaneous Light-Triggered Release of Nitric Oxide and Carbon Monoxide from a Lipid-Coated Upconversion Nanosystem Inhibits Colon Tumor Growth. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38038959 DOI: 10.1021/acsami.3c13165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Gas therapy has gained noteworthy attention in biomedical research, with the rise of gas-releasing molecules enhancing their therapeutic potential, especially when integrated into nano-based drug delivery systems. Herein, we present a lipid-coated gas delivery system to simultaneously shuttle two gas-releasing molecules carrying nitric oxide (NO) and carbon monoxide (CO), respectively. Upconversion nanoparticles (UCNPs) are designed to generate photons at 360 nm upon 808 nm of near-infrared (NIR) irradiation. These in situ-generated UV photons trigger simultaneous NO and CO release from S-nitrosoglutathione (GSNO) and the CO-releasing molecule (CORM), respectively, which are coloaded into lipid-coated UCNP/GSNO/CORM/FA nanoparticles (LUGCF). LUGCF with a GSNO/CORM mass ratio of 2:1 is determined to be optimal in terms of synergistically instigating apoptosis in HCT116 and CT26 colon cancer cells, where both NO/CO are released and subsequent production of ROS are detected. This CO/NO combination nanoplatform exhibits a very effective inhibition of colon tumor growth in vivo at relatively low doses upon a mild 808 nm irradiation. Overall, we effectively integrated two therapeutic gas-releasing molecules in one NIR-responsive nanosystem, presenting a promising therapeutic strategy for future biomedical applications in dual-gas cancer therapy.
Collapse
Affiliation(s)
- Yaw Opoku-Damoah
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Hang T Ta
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
- School of Environment and Science, Griffith University, Brisbane, Queensland 4111, Australia
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, Queensland 4111, Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
9
|
Li H, Sheng W, Haruna SA, Hassan MM, Chen Q. Recent advances in rare earth ion-doped upconversion nanomaterials: From design to their applications in food safety analysis. Compr Rev Food Sci Food Saf 2023; 22:3732-3764. [PMID: 37548602 DOI: 10.1111/1541-4337.13218] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 08/08/2023]
Abstract
The misuse of chemicals in agricultural systems and food production leads to an increase in contaminants in food, which ultimately has adverse effects on human health. This situation has prompted a demand for sophisticated detection technologies with rapid and sensitive features, as concerns over food safety and quality have grown around the globe. The rare earth ion-doped upconversion nanoparticle (UCNP)-based sensor has emerged as an innovative and promising approach for detecting and analyzing food contaminants due to its superior photophysical properties, including low autofluorescence background, deep penetration of light, low toxicity, and minimal photodamage to the biological samples. The aim of this review was to discuss an outline of the applications of UCNPs to detect contaminants in food matrices, with particular attention on the determination of heavy metals, pesticides, pathogenic bacteria, mycotoxins, and antibiotics. The review briefly discusses the mechanism of upconversion (UC) luminescence, the synthesis, modification, functionality of UCNPs, as well as the detection principles for the design of UC biosensors. Furthermore, because current UCNP research on food safety detection is still at an early stage, this review identifies several bottlenecks that must be overcome in UCNPs and discusses the future prospects for its application in the field of food analysis.
Collapse
Affiliation(s)
- Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Wei Sheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Suleiman A Haruna
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Md Mehedi Hassan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
- College of Food and Biological Engineering, Jimei University, Xiamen, P. R. China
| |
Collapse
|
10
|
Srivastava P, Tavernaro I, Scholtz L, Genger C, Welker P, Schreiber F, Meyer K, Resch-Genger U. Dual color pH probes made from silica and polystyrene nanoparticles and their performance in cell studies. Sci Rep 2023; 13:1321. [PMID: 36693888 PMCID: PMC9873940 DOI: 10.1038/s41598-023-28203-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/13/2023] [Indexed: 01/25/2023] Open
Abstract
Ratiometric green-red fluorescent nanosensors for fluorometrically monitoring pH in the acidic range were designed from 80 nm-sized polystyrene (PS) and silica (SiO2) nanoparticles (NPs), red emissive reference dyes, and a green emissive naphthalimide pH probe, analytically and spectroscopically characterized, and compared regarding their sensing performance in aqueous dispersion and in cellular uptake studies. Preparation of these optical probes, which are excitable by 405 nm laser or LED light sources, involved the encapsulation of the pH-inert red-fluorescent dye Nile Red (NR) in the core of self-made carboxylated PSNPs by a simple swelling procedure and the fabrication of rhodamine B (RhB)-stained SiO2-NPs from a silane derivative of pH-insensitive RhB. Subsequently, the custom-made naphthalimide pH probe, that utilizes a protonation-controlled photoinduced electron transfer process, was covalently attached to the carboxylic acid groups at the surface of both types of NPs. Fluorescence microscopy studies with the molecular and nanoscale optical probes and A549 lung cancer cells confirmed the cellular uptake of all probes and their penetration into acidic cell compartments, i.e., the lysosomes, indicated by the switching ON of the green naphthalimide fluorescence. This underlines their suitability for intracellular pH sensing, with the SiO2-based nanosensor revealing the best performance regarding uptake speed and stability.
Collapse
Affiliation(s)
- Priyanka Srivastava
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstaetter-Str. 11, 12489, Berlin, Germany
| | - Isabella Tavernaro
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstaetter-Str. 11, 12489, Berlin, Germany
| | - Lena Scholtz
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstaetter-Str. 11, 12489, Berlin, Germany.,Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Claudia Genger
- nanoPET Pharma GmbH, Robert-Koch-Platz 4, 10115, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Pia Welker
- nanoPET Pharma GmbH, Robert-Koch-Platz 4, 10115, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Frank Schreiber
- Division Biodeterioration and Reference Organisms, Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 87, 12205, Berlin, Germany
| | - Klas Meyer
- Division Process Analytical Technology, Federal Institute for Materials Research and Testing (BAM), Richard-Willstaetter-Str. 11, 12489, Berlin, Germany
| | - Ute Resch-Genger
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstaetter-Str. 11, 12489, Berlin, Germany.
| |
Collapse
|
11
|
Singh P, Kachhap S, Singh P, Singh S. Lanthanide-based hybrid nanostructures: Classification, synthesis, optical properties, and multifunctional applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Mirica AC, Stan D, Chelcea IC, Mihailescu CM, Ofiteru A, Bocancia-Mateescu LA. Latest Trends in Lateral Flow Immunoassay (LFIA) Detection Labels and Conjugation Process. Front Bioeng Biotechnol 2022; 10:922772. [PMID: 35774059 PMCID: PMC9237331 DOI: 10.3389/fbioe.2022.922772] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/19/2022] [Indexed: 01/11/2023] Open
Abstract
LFIA is one of the most successful analytical methods for various target molecules detection. As a recent example, LFIA tests have played an important role in mitigating the effects of the global pandemic with SARS-COV-2, due to their ability to rapidly detect infected individuals and stop further spreading of the virus. For this reason, researchers around the world have done tremendous efforts to improve their sensibility and specificity. The development of LFIA has many sensitive steps, but some of the most important ones are choosing the proper labeling probes, the functionalization method and the conjugation process. There are a series of labeling probes described in the specialized literature, such as gold nanoparticles (GNP), latex particles (LP), magnetic nanoparticles (MNP), quantum dots (QDs) and more recently carbon, silica and europium nanoparticles. The current review aims to present some of the most recent and promising methods for the functionalization of the labeling probes and the conjugation with biomolecules, such as antibodies and antigens. The last chapter is dedicated to a selection of conjugation protocols, applicable to various types of nanoparticles (GNPs, QDs, magnetic nanoparticles, carbon nanoparticles, silica and europium nanoparticles).
Collapse
Affiliation(s)
- Andreea-Cristina Mirica
- R&D Department, DDS Diagnostic, Bucharest, Romania
- Advanced Polymer Materials Group, University POLITEHNICA of Bucharest, Bucharest, Romania
| | - Dana Stan
- R&D Department, DDS Diagnostic, Bucharest, Romania
| | | | - Carmen Marinela Mihailescu
- Microsystems in Biomedical and Environmental Applications, National Institute for Research and Development in Microtechnologies, Bucharest, Romania
- Pharmaceutical Faculty, Titu Maiorescu University, Bucharest, Romania
| | | | | |
Collapse
|
13
|
Hlaváček A, Farka Z, Mickert MJ, Kostiv U, Brandmeier JC, Horák D, Skládal P, Foret F, Gorris HH. Bioconjugates of photon-upconversion nanoparticles for cancer biomarker detection and imaging. Nat Protoc 2022; 17:1028-1072. [PMID: 35181766 DOI: 10.1038/s41596-021-00670-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/19/2021] [Indexed: 02/07/2023]
Abstract
The detection of cancer biomarkers in histological samples and blood is of paramount importance for clinical diagnosis. Current methods are limited in terms of sensitivity, hindering early detection of disease. We have overcome the shortcomings of currently available staining and fluorescence labeling methods by taking an integrative approach to establish photon-upconversion nanoparticles (UCNP) as a powerful platform for cancer detection. These nanoparticles are readily synthesized in different sizes to yield efficient and tunable short-wavelength light emission under near-infrared excitation, which eliminates optical background interference of the specimen. Here we present a protocol for the synthesis of UCNPs by high-temperature co-precipitation or seed-mediated growth by thermal decomposition, surface modification by silica or poly(ethylene glycol) that renders the particles resistant to nonspecific binding, and the conjugation of streptavidin or antibodies for biological detection. To detect blood-based biomarkers, we present an upconversion-linked immunosorbent assay for the analog and digital detection of the cancer marker prostate-specific antigen. When applied to immunocytochemistry analysis, UCNPs enable the detection of the breast cancer marker human epidermal growth factor receptor 2 with a signal-to-background ratio 50-fold higher than conventional fluorescent labels. UCNP synthesis takes 4.5 d, the preparation of the antibody-silica-UCNP conjugate takes 3 d, the streptavidin-poly(ethylene glycol)-UCNP conjugate takes 2-3 weeks, upconversion-linked immunosorbent assay takes 2-4 d and immunocytochemistry takes 8-10 h. The procedures can be performed after standard laboratory training in nanomaterials research.
Collapse
Affiliation(s)
- Antonín Hlaváček
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic.
| | - Zdeněk Farka
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic. .,CEITEC MU, Masaryk University, Brno, Czech Republic.
| | | | - Uliana Kostiv
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Julian C Brandmeier
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.,Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Regensburg, Germany
| | - Daniel Horák
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.,CEITEC MU, Masaryk University, Brno, Czech Republic
| | - František Foret
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| | - Hans H Gorris
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
14
|
Fa X, Lin S, Yang J, Sheng C, Liu Y, Gong Y, Qin A, Ou J, Resch-Genger U. -808nm-Activated Ca 2+Doped Up-conversion Nanoparticles That Release NO Inducing Liver Cancer Cell (HepG2) Apoptosis. Methods Appl Fluoresc 2022; 10. [PMID: 35168212 DOI: 10.1088/2050-6120/ac5524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/15/2022] [Indexed: 11/11/2022]
Abstract
A near-infrared (NIR) light-triggered release method for nitric oxide (NO) was developed utilizing core/shell NaYF4: Tm/Yb/Ca@NaGdF4: Nd/Yb up-conversion nanoparticles (UCNPs) bearing a mesoporous silica (mSiO2) shell loaded with the NO donor S-nitroso-N-acetyl-DL-penicillamine (SNAP). To avoid overheating in biological samples, Nd3+ was chosen as a sensitizer, Yb3+ ions as the bridging sensitizer, and Tm3+ ions as UV-emissive activator while co-doping with Ca2+ was done to enhance the luminescence of the activator Tm3+. NO release from SNAP was triggered by an NIR-UV up-conversion process, initiated by 808 nm light absorbed by the Nd3+ ions. NO release was confirmed by the Griess method. Under 808 nm irradiation, the viability of the liver cancer cell line HepG2 significantly decreased with increasing UCNPs@mSiO2-SNAP concentration. For a UCNPs@mSiO2-SNAP concentration of 200 μg/ml, the cell survival probability was 47 %. These results demonstrate that UCNPs@mSiO2-SNAP can induce the release of apoptosis-inducing NO by NIR irradiation.
Collapse
Affiliation(s)
- Xinmeng Fa
- Guilin University of Technology, guilin Jiangan road 12, Guilin, Guangxi, 541004, CHINA
| | - Shaowei Lin
- Guilin University of Technology, jiangan road 12 ,Guilin, Guilin, Guangxi, 541004, CHINA
| | - Jianghua Yang
- Guilin University of Technology, Huancheng bei 2 road , Guiliin, Guilin, Guangxi, 541004, CHINA
| | - Chong Sheng
- Experimental Center of Medical Sciences, Guilin Medical University, Huangcheng bei 2 road,Guilin, China, Guilin, 541002 , CHINA
| | - Yuanli Liu
- Guilin University of Technology, Jiangan road 12, Guilin, Guangxi, 541004, CHINA
| | - Yongyang Gong
- Guilin University of Technology, Jiangan road 12, Guilin, Guangxi, 541004, CHINA
| | - Aimiao Qin
- Guilin University of Technology, guilin jiangan road 12, Guilin, Guangxi, 541004, CHINA
| | - Jun Ou
- Guilin University of Technology, Guilin jiangan road 12, Guilin, China, Guilin, 541004, CHINA
| | - Ute Resch-Genger
- Safety of Joined Components, Bundesanstalt fuer Materialforschung und -prufung, Richard-Willstatter Str 11, D-12489 Berlin, Berlin, 12489, GERMANY
| |
Collapse
|
15
|
Kurowska I, Amouroux B, Langlais M, Coutelier O, Coudret C, Destarac M, Marty JD. Versatile thiolactone-based conjugation strategies to polymer stabilizers for multifunctional upconverting nanoparticles aqueous dispersions. NANOSCALE 2022; 14:2238-2247. [PMID: 35080566 DOI: 10.1039/d1nr05548h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We describe here a new methodology for the synthesis of well-defined phosphonic acid-terminated poly(ethylene glycol) (PEG) and RAFT-derived poly(N-vinylpyrrolidone) (PVP) and poly(N-vinylcaprolactam) (PVCL) by amine-thiol-ene and amine-thiol-thiosulfonate conjugation strategies using a phosphonated thiolactone and their use to prepare stable, water-dispersible multifunctional upconverting luminescent nanohybrids.
Collapse
Affiliation(s)
- Izabela Kurowska
- Faculty of Chemistry, University of Bialystok, Ciołkowskiego 1k, 15-245 Bialystok, Poland
- IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier, Toulouse Cedex, 9 31062, France.
- Doctoral School of Exact and Natural Sciences, University of Bialystok, Ciołkowskiego 1k, 15-245 Bialystok, Poland
| | - Baptiste Amouroux
- IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier, Toulouse Cedex, 9 31062, France.
| | - Marvin Langlais
- IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier, Toulouse Cedex, 9 31062, France.
| | - Olivier Coutelier
- IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier, Toulouse Cedex, 9 31062, France.
| | - Christophe Coudret
- IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier, Toulouse Cedex, 9 31062, France.
| | - Mathias Destarac
- IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier, Toulouse Cedex, 9 31062, France.
| | - Jean-Daniel Marty
- IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier, Toulouse Cedex, 9 31062, France.
| |
Collapse
|
16
|
Bastian PU, Robel N, Schmidt P, Schrumpf T, Günter C, Roddatis V, Kumke MU. Resonance Energy Transfer to Track the Motion of Lanthanide Ions—What Drives the Intermixing in Core-Shell Upconverting Nanoparticles? BIOSENSORS 2021; 11:bios11120515. [PMID: 34940272 PMCID: PMC8699284 DOI: 10.3390/bios11120515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 11/18/2022]
Abstract
The imagination of clearly separated core-shell structures is already outdated by the fact, that the nanoparticle core-shell structures remain in terms of efficiency behind their respective bulk material due to intermixing between core and shell dopant ions. In order to optimize the photoluminescence of core-shell UCNP the intermixing should be as small as possible and therefore, key parameters of this process need to be identified. In the present work the Ln(III) ion migration in the host lattices NaYF4 and NaGdF4 was monitored. These investigations have been performed by laser spectroscopy with help of lanthanide resonance energy transfer (LRET) between Eu(III) as donor and Pr(III) or Nd(III) as acceptor. The LRET is evaluated based on the Förster theory. The findings corroborate the literature and point out the migration of ions in the host lattices. Based on the introduced LRET model, the acceptor concentration in the surrounding of one donor depends clearly on the design of the applied core-shell-shell nanoparticles. In general, thinner intermediate insulating shells lead to higher acceptor concentration, stronger quenching of the Eu(III) donor and subsequently stronger sensitization of the Pr(III) or the Nd(III) acceptors. The choice of the host lattice as well as of the synthesis temperature are parameters to be considered for the intermixing process.
Collapse
Affiliation(s)
- Philipp U. Bastian
- Institute of Chemistry (Physical Chemistry), University of Potsdam, 14469 Potsdam, Germany; (P.U.B.); (N.R.); (P.S.); (T.S.)
| | - Nathalie Robel
- Institute of Chemistry (Physical Chemistry), University of Potsdam, 14469 Potsdam, Germany; (P.U.B.); (N.R.); (P.S.); (T.S.)
| | - Peter Schmidt
- Institute of Chemistry (Physical Chemistry), University of Potsdam, 14469 Potsdam, Germany; (P.U.B.); (N.R.); (P.S.); (T.S.)
| | - Tim Schrumpf
- Institute of Chemistry (Physical Chemistry), University of Potsdam, 14469 Potsdam, Germany; (P.U.B.); (N.R.); (P.S.); (T.S.)
| | - Christina Günter
- Institute of Geosciences (Mineralogy), University of Potsdam, 14469 Potsdam, Germany;
| | - Vladimir Roddatis
- Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, 14473 Potsdam, Germany;
| | - Michael U. Kumke
- Institute of Chemistry (Physical Chemistry), University of Potsdam, 14469 Potsdam, Germany; (P.U.B.); (N.R.); (P.S.); (T.S.)
- Correspondence: ; Tel.: +49-331-977-5209
| |
Collapse
|
17
|
Arai MS, de Camargo ASS. Exploring the use of upconversion nanoparticles in chemical and biological sensors: from surface modifications to point-of-care devices. NANOSCALE ADVANCES 2021; 3:5135-5165. [PMID: 36132634 PMCID: PMC9417030 DOI: 10.1039/d1na00327e] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/21/2021] [Indexed: 05/04/2023]
Abstract
Upconversion nanoparticles (UCNPs) have emerged as promising luminescent nanomaterials due to their unique features that allow the overcoming of several problems associated with conventional fluorescent probes. Although UCNPs have been used in a broad range of applications, it is probably in the field of sensing where they best evidence their potential. UCNP-based sensors have been designed with high sensitivity and selectivity, for detection and quantification of multiple analytes ranging from metal ions to biomolecules. In this review, we deeply explore the use of UCNPs in sensing systems emphasizing the most relevant and recent studies on the topic and explaining how these platforms are constructed. Before diving into UCNP-based sensing platforms it is important to understand the unique characteristics of these nanoparticles, why they are attracting so much attention, and the most significant interactions occurring between UCNPs and additional probes. These points are covered over the first two sections of the article and then we explore the types of fluorescent responses, the possible analytes, and the UCNPs' integration with various material types such as gold nanostructures, quantum dots and dyes. All the topics are supported by analysis of recently reported sensors, focusing on how they are built, the materials' interactions, the involved synthesis and functionalization mechanisms, and the conjugation strategies. Finally, we explore the use of UCNPs in paper-based sensors and how these platforms are paving the way for the development of new point-of-care devices.
Collapse
Affiliation(s)
- Marylyn S Arai
- São Carlos Institute of Physics, University of São Paulo Av. Trabalhador Sãocarlense 400 13566-590 São Carlos Brazil
| | - Andrea S S de Camargo
- São Carlos Institute of Physics, University of São Paulo Av. Trabalhador Sãocarlense 400 13566-590 São Carlos Brazil
| |
Collapse
|
18
|
Geißler D, Nirmalananthan-Budau N, Scholtz L, Tavernaro I, Resch-Genger U. Analyzing the surface of functional nanomaterials-how to quantify the total and derivatizable number of functional groups and ligands. Mikrochim Acta 2021; 188:321. [PMID: 34482449 PMCID: PMC8418596 DOI: 10.1007/s00604-021-04960-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/08/2021] [Indexed: 12/04/2022]
Abstract
Functional nanomaterials (NM) of different size, shape, chemical composition, and surface chemistry are of increasing relevance for many key technologies of the twenty-first century. This includes polymer and silica or silica-coated nanoparticles (NP) with covalently bound surface groups, semiconductor quantum dots (QD), metal and metal oxide NP, and lanthanide-based NP with coordinatively or electrostatically bound ligands, as well as surface-coated nanostructures like micellar encapsulated NP. The surface chemistry can significantly affect the physicochemical properties of NM, their charge, their processability and performance, as well as their impact on human health and the environment. Thus, analytical methods for the characterization of NM surface chemistry regarding chemical identification, quantification, and accessibility of functional groups (FG) and surface ligands bearing such FG are of increasing importance for quality control of NM synthesis up to nanosafety. Here, we provide an overview of analytical methods for FG analysis and quantification with special emphasis on bioanalytically relevant FG broadly utilized for the covalent attachment of biomolecules like proteins, peptides, and oligonucleotides and address method- and material-related challenges and limitations. Analytical techniques reviewed include electrochemical titration methods, optical assays, nuclear magnetic resonance and vibrational spectroscopy, as well as X-ray based and thermal analysis methods, covering the last 5-10 years. Criteria for method classification and evaluation include the need for a signal-generating label, provision of either the total or derivatizable number of FG, need for expensive instrumentation, and suitability for process and production control during NM synthesis and functionalization.
Collapse
Affiliation(s)
- Daniel Geißler
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division Biophotonics (BAM-1.2), Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Nithiya Nirmalananthan-Budau
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division Biophotonics (BAM-1.2), Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Lena Scholtz
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division Biophotonics (BAM-1.2), Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Isabella Tavernaro
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division Biophotonics (BAM-1.2), Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Ute Resch-Genger
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division Biophotonics (BAM-1.2), Richard-Willstätter-Str. 11, 12489, Berlin, Germany.
| |
Collapse
|
19
|
Mahata MK, De R, Lee KT. Near-Infrared-Triggered Upconverting Nanoparticles for Biomedicine Applications. Biomedicines 2021; 9:756. [PMID: 34210059 PMCID: PMC8301434 DOI: 10.3390/biomedicines9070756] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 01/10/2023] Open
Abstract
Due to the unique properties of lanthanide-doped upconverting nanoparticles (UCNP) under near-infrared (NIR) light, the last decade has shown a sharp progress in their biomedicine applications. Advances in the techniques for polymer, dye, and bio-molecule conjugation on the surface of the nanoparticles has further expanded their dynamic opportunities for optogenetics, oncotherapy and bioimaging. In this account, considering the primary benefits such as the absence of photobleaching, photoblinking, and autofluorescence of UCNPs not only facilitate the construction of accurate, sensitive and multifunctional nanoprobes, but also improve therapeutic and diagnostic results. We introduce, with the basic knowledge of upconversion, unique properties of UCNPs and the mechanisms involved in photon upconversion and discuss how UCNPs can be implemented in biological practices. In this focused review, we categorize the applications of UCNP-based various strategies into the following domains: neuromodulation, immunotherapy, drug delivery, photodynamic and photothermal therapy, bioimaging and biosensing. Herein, we also discuss the current emerging bioapplications with cutting edge nano-/biointerfacing of UCNPs. Finally, this review provides concluding remarks on future opportunities and challenges on clinical translation of UCNPs-based nanotechnology research.
Collapse
Affiliation(s)
- Manoj Kumar Mahata
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea;
| | - Ranjit De
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea;
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Kang Taek Lee
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea;
| |
Collapse
|
20
|
Ferrera-González J, Francés-Soriano L, Estébanez N, Navarro-Raga E, González-Béjar M, Pérez-Prieto J. NIR laser scanning microscopy for photophysical characterization of upconversion nanoparticles and nanohybrids. NANOSCALE 2021; 13:10067-10080. [PMID: 34042932 DOI: 10.1039/d1nr00389e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photophysical characterization of upconversion nanoparticles (UCNPs) and nanohybrids (UCNHs) is more challenging than that of down-conversion nanomaterials. Moreover, it is still difficult to gain knowledge about the homogeneity of the sample and colocalization of emissive chromophores and nanoparticles in nanohybrids. Near infrared laser scanning microscopy (NIR-LSM) is a well-known and useful imaging technique, which enables excitation in the NIR region and has been extensively applied to optical fluorescence imaging of organic fluorophores and nanomaterials, such as quantum dots, which exhibit a short-lived emission. NIR-LSM has recently been used to determine the empirical emission lifetime of UCNPs, thus extending its application range to nanomaterials with a long lifetime emission. Here, we review our previous findings and include new measurements and samples to fully address the potential of this technique. NIR-LSM has proved to be extraordinarily useful not only for photophysical characterization of UCNHs consisting of UCNPs capped with a fluorophore to easily visualize the occurrence of the resonance energy transfer process between the UCNH constituents and their homogeneity, but also to assess the colocalization of the fluorophore and the UCNP in the UCNH; all this information can be acquired on the micro-/nano-meter scale by just taking one image.
Collapse
Affiliation(s)
- Juan Ferrera-González
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Orgánica, University of Valencia, C/Catedrático José Beltrán, 2, Paterna, Valencia 46980, Spain.
| | - Laura Francés-Soriano
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Orgánica, University of Valencia, C/Catedrático José Beltrán, 2, Paterna, Valencia 46980, Spain. and nanoFRET.com, Laboratoire COBRA (Chimie Organique, Bioorganique, Réactivité et Analyse), Université de Rouen Normandie, CNRS, INSA, 76821 Mont-Saint-Aignan Cedex, France
| | - Nestor Estébanez
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Orgánica, University of Valencia, C/Catedrático José Beltrán, 2, Paterna, Valencia 46980, Spain.
| | - Enrique Navarro-Raga
- Servicio Central de Soporte a la Investigación Experimental (SCSIE). University of Valencia, Burjassot, Valencia 46100, Spain
| | - María González-Béjar
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Orgánica, University of Valencia, C/Catedrático José Beltrán, 2, Paterna, Valencia 46980, Spain.
| | - Julia Pérez-Prieto
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Orgánica, University of Valencia, C/Catedrático José Beltrán, 2, Paterna, Valencia 46980, Spain.
| |
Collapse
|
21
|
Vozlič M, Černič T, Gyergyek S, Majaron B, Ponikvar-Svet M, Kostiv U, Horák D, Lisjak D. Formation of phosphonate coatings for improved chemical stability of upconverting nanoparticles under physiological conditions. Dalton Trans 2021; 50:6588-6597. [PMID: 33899872 DOI: 10.1039/d1dt00304f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Upconverting nanoparticles (UCNPs) are being extensively investigated for applications in bioimaging because of their ability to emit ultraviolet, visible, and near-infrared light. NaYF4 is one of the most suitable host matrices for producing high-intensity upconversion fluorescence; however, UCNPs based on NaYF4 are not chemically stable in aqueous media. To prevent dissolution, their surfaces should be modified. We studied the formation of protective phosphonate coatings made of ethylenediamine(tetramethylenephosphonic acid), alendronic acid, and poly(ethylene glycol)-neridronate on cubic NaYF4 nanoparticles and hexagonal Yb3+,Er3+-doped upconverting NaYF4 nanoparticles (β-UCNPs). The effects of synthesis temperature and ultrasonic agitation on the quality of the coatings were studied. The formation of the coatings was investigated by transmission electron microscopy, zeta-potential measurements, and infrared spectroscopy. The quality of the phosphonate coatings was examined with respect to preventing the dissolution of the NPs in phosphate-buffered saline (PBS). The dissolution tests were carried out under physiological conditions (37 °C and pH 7.4) for 3 days and were followed by measurements of the dissolved fluoride with an ion-selective electrode. We found that the protection of the phosphonate coatings can be significantly increased by synthesizing them at 80 °C. At the same time, the coatings obtained at this temperature suppressed the surface quenching of the upconversion fluorescence in β-UCNPs.
Collapse
Affiliation(s)
- Maša Vozlič
- JoŽef Stefan Institute, Department for Materials Synthesis, Jamova 39, 1000 Ljubljana, Slovenia and Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia.
| | - Tina Černič
- JoŽef Stefan Institute, Department for Materials Synthesis, Jamova 39, 1000 Ljubljana, Slovenia and JoŽef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia
| | - Sašo Gyergyek
- JoŽef Stefan Institute, Department for Materials Synthesis, Jamova 39, 1000 Ljubljana, Slovenia
| | - Boris Majaron
- JoŽef Stefan Institute, Department of Complex Matter, Jamova 39, 1000 Ljubljana, Slovenia and Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
| | - Maja Ponikvar-Svet
- JoŽef Stefan Institute, Department of Inorganic Chemistry and Technology, Jamova 39, 1000 Ljubljana, Slovenia
| | - Uliana Kostiv
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Daniel Horák
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Darja Lisjak
- JoŽef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
22
|
Peltomaa R, Benito-Peña E, Gorris HH, Moreno-Bondi MC. Biosensing based on upconversion nanoparticles for food quality and safety applications. Analyst 2021; 146:13-32. [PMID: 33205784 DOI: 10.1039/d0an01883j] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Food safety and quality regulations inevitably call for sensitive and accurate analytical methods to detect harmful contaminants in food and to ensure safe food for the consumer. Both novel and well-established biorecognition elements, together with different transduction schemes, enable the simple and rapid analysis of various food contaminants. Upconversion nanoparticles (UCNPs) are inorganic nanocrystals that convert near-infrared light into shorter wavelength emission. This unique photophysical feature, along with narrow emission bandwidths and large anti-Stokes shift, render UCNPs excellent optical labels for biosensing because they can be detected without optical background interferences from the sample matrix. In this review, we show how this exciting technique has evolved into biosensing platforms for food quality and safety monitoring and highlight recent applications in the field.
Collapse
Affiliation(s)
- Riikka Peltomaa
- Department of Biochemistry/Biotechnology, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | | | | | | |
Collapse
|
23
|
Saleh MI, Rühle B, Wang S, Radnik J, You Y, Resch-Genger U. Assessing the protective effects of different surface coatings on NaYF 4:Yb 3+, Er 3+ upconverting nanoparticles in buffer and DMEM. Sci Rep 2020; 10:19318. [PMID: 33168848 PMCID: PMC7652843 DOI: 10.1038/s41598-020-76116-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022] Open
Abstract
We studied the dissolution behavior of β NaYF4:Yb(20%), Er(2%) UCNP of two different sizes in biologically relevant media i.e., water (neutral pH), phosphate buffered saline (PBS), and Dulbecco’s modified Eagle medium (DMEM) at different temperatures and particle concentrations. Special emphasis was dedicated to assess the influence of different surface functionalizations, particularly the potential of mesoporous and microporous silica shells of different thicknesses for UCNP stabilization and protection. Dissolution was quantified electrochemically using a fluoride ion selective electrode (ISE) and by inductively coupled plasma optical emission spectrometry (ICP OES). In addition, dissolution was monitored fluorometrically. These experiments revealed that a thick microporous silica shell drastically decreased dissolution. Our results also underline the critical influence of the chemical composition of the aqueous environment on UCNP dissolution. In DMEM, we observed the formation of a layer of adsorbed molecules on the UCNP surface that protected the UCNP from dissolution and enhanced their fluorescence. Examination of this layer by X-ray photoelectron spectroscopy (XPS) and mass spectrometry (MS) suggested that mainly phenylalanine, lysine, and glucose are adsorbed from DMEM. These findings should be considered in the future for cellular toxicity studies with UCNP and other nanoparticles and the design of new biocompatible surface coatings.
Collapse
Affiliation(s)
- Maysoon I Saleh
- Federal Institute for Materials Research and Testing, Division 1.2 Biophotonics, Richard-Willstätter-Str. 11, 12489, Berlin, Germany.,Institut Für Chemie Und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Bastian Rühle
- Federal Institute for Materials Research and Testing, Division 1.2 Biophotonics, Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Shu Wang
- Federal Institute for Materials Research and Testing, Division 1.2 Biophotonics, Richard-Willstätter-Str. 11, 12489, Berlin, Germany.,Institut Für Chemie Und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Jörg Radnik
- Federal Institute for Materials Research and Testing, Division 6.1, Unter den Eichen 44-46, 12203, Berlin, Germany
| | - Yi You
- Federal Institute for Materials Research and Testing, Division 6.3, structural analysis, Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Ute Resch-Genger
- Federal Institute for Materials Research and Testing, Division 1.2 Biophotonics, Richard-Willstätter-Str. 11, 12489, Berlin, Germany.
| |
Collapse
|
24
|
Turn-on detection of glutathione S-transferase based on luminescence resonance energy transfer between near-infrared to near-infrared core-shell upconversion nanoparticles and organic dye. Anal Bioanal Chem 2020; 412:5843-5851. [PMID: 32691084 DOI: 10.1007/s00216-020-02808-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 06/24/2020] [Accepted: 07/06/2020] [Indexed: 10/23/2022]
Abstract
Glutathione S-transferase (GST) is a detoxification enzyme of the liver and kidney. Based on the toxicological effect of GST, it is of great significance to develop a rapid and sensitive detection method for GST. In this work, a new luminescence resonance energy transfer (LRET) system has been designed to detect glutathione S-transferase in the near-infrared (NIR) region by utilizing NaGdF4:Yb3+,Tm3+@NaYF4 upconversion nanoparticles (UCNPs) as the donor and NIR dye-806@Glutathione (IR806@GSH) as the acceptor. NaGdF4:Yb3+,Tm3+@NaYF4 UCNPs were synthesized by a coprecipitation method and surface modification of NOBF4. The donor (positively charged) interacted with the acceptor (negatively charged) via electrostatic interactions to bring them into close proximity; then, LRET occurred and the luminescence was quenched. In the presence of GST, GST can specifically interact with the GSH of IR806@GSH molecule, making IR806@GSH far away from the donor surface, inhibiting the LRET, and restoring the luminescence of the UCNPs. There was a good linear relationship between the luminescence recovery intensity of UCNPs and GST concentration, ranging from 0.11 to 14.19 nM, and the detection of limit was 0.06 nM. The method has been used in the detection of GST in human serum samples and is expected to have potential applications in the biological field. Graphical abstract A luminescence resonance energy transfer system was developed for determination of glutathione S-transferase in the near-infrared region by utilizing NaGdF4:Yb3+,Tm3+@NaYF4 upconversion nanoparticles as the donor and NIR dye-806@Glutathione as the acceptor.
Collapse
|
25
|
Andresen E, Würth C, Prinz C, Michaelis M, Resch-Genger U. Time-resolved luminescence spectroscopy for monitoring the stability and dissolution behaviour of upconverting nanocrystals with different surface coatings. NANOSCALE 2020; 12:12589-12601. [PMID: 32500913 DOI: 10.1039/d0nr02931a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We demonstrate the potential of time-resolved luminescence spectroscopy for the straightforward assessment and in situ monitoring of the stability of upconversion nanocrystals (UCNPs). Therefore, we prepared hexagonal NaYF4:Yb3+,Er3+ UCNPs with various coatings with a focus on phosphonate ligands of different valency, using different ligand exchange procedures, and studied their dissolution behaviour in phosphate-buffered saline (PBS) dispersions at 20 °C and 37 °C with various analytical methods. The amount of the released UCNPs constituting fluoride ions was quantified by potentiometry using a fluoride ion-sensitive electrode and particle disintegration was confirmed by transmission electron microscopy studies of the differently aged UCNPs. In parallel, the luminescence features of the UCNPs were measured with special emphasis on the lifetime of the sensitizer emission to demonstrate its suitability as screening parameter for UCNP stability and changes in particle composition. The excellent correlation between the changes in luminescence lifetime and fluoride concentration highlights the potential of our luminescence lifetime method for UCNP stability screening and thereby indirect monitoring of the release of potentially hazardous fluoride ions during uptake and dissolution in biological systems. Additionally, the developed in situ optical method was used to distinguish the dissolution dynamics of differently sized and differently coated UCNPs.
Collapse
Affiliation(s)
- Elina Andresen
- BAM Federal Institute of Materials Research and Testing, Division Biophotonics, Richard-Willstätter-Str. 11, D-12489 Berlin, Germany. and Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, D-12489 Berlin, Germany
| | - Christian Würth
- BAM Federal Institute of Materials Research and Testing, Division Biophotonics, Richard-Willstätter-Str. 11, D-12489 Berlin, Germany.
| | - Carsten Prinz
- BAM Federal Institute of Materials Research and Testing, Division Structure Analysis, Richard-Willstätter-Str. 11, D-12489 Berlin, Germany
| | - Matthias Michaelis
- BAM Federal Institute of Materials Research and Testing, Division Biophotonics, Richard-Willstätter-Str. 11, D-12489 Berlin, Germany.
| | - Ute Resch-Genger
- BAM Federal Institute of Materials Research and Testing, Division Biophotonics, Richard-Willstätter-Str. 11, D-12489 Berlin, Germany.
| |
Collapse
|
26
|
Joshi T, Mamat C, Stephan H. Contemporary Synthesis of Ultrasmall (sub-10 nm) Upconverting Nanomaterials. ChemistryOpen 2020; 9:703-712. [PMID: 32547900 PMCID: PMC7290284 DOI: 10.1002/open.202000073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/25/2020] [Indexed: 12/27/2022] Open
Abstract
Due to their unique photophysical properties, upconverting nanoparticles (UCNPs), i. e. particles capable of converting near-infrared (NIR) photons into tunable emissions in the range of ultraviolet (UV) to NIR, have great potential for use in various biomedical fields such as bioimaging, photodynamic therapy and bioanalytical applications. As far as biomedical applications are concerned, these materials have a number of advantageous properties such as brilliant luminescence and exceptional photostability. Very small "stealth" particles (sub-10 nm), which can circulate in the body largely undetected by the immune system, are particularly important for in vivo use. The fabrication of such particles, which simultaneously have a defined (ultrasmall) size and the required optical properties, is a great challenge and an area that is in its infancy. This minireview provides a concise overview of recent developments on appropriate synthetic methodologies to produce such UCNPs. Particular attention was given to the influence of both surfactants and dopants used to precisely adjust size, crystalline phase and optical properties of UCNPs.
Collapse
Affiliation(s)
- Tanmaya Joshi
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz-Zentrum Dresden-RossendorfBautzner Landstraße 400D 01328DresdenGermany
| | - Constantin Mamat
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz-Zentrum Dresden-RossendorfBautzner Landstraße 400D 01328DresdenGermany
| | - Holger Stephan
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz-Zentrum Dresden-RossendorfBautzner Landstraße 400D 01328DresdenGermany
| |
Collapse
|
27
|
Tan M, Monks MJ, Huang D, Meng Y, Chen X, Zhou Y, Lim SF, Würth C, Resch-Genger U, Chen G. Efficient sub-15 nm cubic-phase core/shell upconversion nanoparticles as reporters for ensemble and single particle studies. NANOSCALE 2020; 12:10592-10599. [PMID: 32373869 DOI: 10.1039/d0nr02172e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Single particle imaging of upconversion nanoparticles (UCNPs) has typically been realized using hexagonal (β) phase lanthanide-doped sodium yttrium fluoride (NaYF4) materials, the upconversion luminescence (UCL) of which saturates at power densities (P) of several hundred W cm-2 under 980 nm near-infrared (NIR) excitation. Cubic (α) phase UCNPs have been mostly neglected because of their commonly observed lower UCL efficiency at comparable P in ensemble level studies. Here, we describe a set of sub-15 nm ytterbium-enriched α-NaYbF4:Er3+@CaF2 core/shell UCNPs doped with varying Er3+ concentrations (5-25%), studied over a wide P range of ∼8-105 W cm-2, which emit intense UCL even at a low P of 10 W cm-2 and also saturate at relatively low P. The highest upconversion quantum yield (ΦUC) and the highest particle brightness were obtained for an Er3+ dopant concentration of 12%, reaching the highest ΦUC of 0.77% at a saturation power density (Psat) of 110 W cm-2. These 12%Er3+-doped core/shell UCNPs were also the brightest UCNPs among this series under microscopic conditions at high P of ∼102-105 W cm-2 as demonstrated by imaging studies at the single particle level. Our results underline the potential applicability of the described sub-15 nm cubic-phase core/shell UCNPs for ensemble- and single particle-level bioimaging.
Collapse
Affiliation(s)
- Meiling Tan
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering & Key Laboratory of Micro-systems and Micro-structures, Ministry of Education, Harbin Institute of Technology, 150001 Harbin, People's Republic of China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Plunkett S, El Khatib M, Şencan İ, Porter JE, Kumar ATN, Collins JE, SakadŽić S, Vinogradov SA. In vivo deep-tissue microscopy with UCNP/Janus-dendrimers as imaging probes: resolution at depth and feasibility of ratiometric sensing. NANOSCALE 2020; 12:2657-2672. [PMID: 31939953 PMCID: PMC7101076 DOI: 10.1039/c9nr07778b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Lanthanide-based upconverting nanoparticles (UCNPs) are known for their remarkable ability to convert near-infrared energy into higher energy light, offering an attractive platform for construction of biological imaging probes. Here we focus on in vivo high-resolution microscopy - an application for which the opportunity to carry out excitation at low photon fluxes in non-linear regime makes UCNPs stand out among all multiphoton probes. To create biocompatible nanoparticles we employed Janus-type dendrimers as surface ligands, featuring multiple carboxylates on one 'face' of the molecule, polyethylene glycol (PEG) residues on another and Eriochrome Cyanine R dye as the core. The UCNP/Janus-dendrimers showed outstanding performance as vascular markers, allowing for depth-resolved mapping of individual capillaries in the mouse brain down to a remarkable depth of ∼1000 μm under continuous wave (CW) excitation with powers not exceeding 20 mW. Using a posteriori deconvolution, high-resolution images could be obtained even at high scanning speeds in spite of the blurring caused by the long luminescence lifetimes of the lanthanide ions. Secondly, the new UCNP/dendrimers allowed us to evaluate the feasibility of quantitative analyte imaging in vivo using a popular ratiometric UCNP-to-ligand excitation energy transfer (EET) scheme. Our results show that the ratio of UCNP emission bands, which for quantitative sensing should respond selectively to the analyte of interest, is also strongly affected by optical heterogeneities of the medium. On the other hand, the luminescence decay times of UCNPs, which are independent of the medium properties, are modulated via EET only insignificantly. As such, quantitative analyte sensing in biological tissues with UCNP-based probes still remains a challenge.
Collapse
Affiliation(s)
- Shane Plunkett
- Department of Biochemistry and Biophysics, Perelman School of Medicine, and Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Mirna El Khatib
- Department of Biochemistry and Biophysics, Perelman School of Medicine, and Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - İkbal Şencan
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Jason E Porter
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Anand T N Kumar
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | | | - Sava SakadŽić
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Sergei A Vinogradov
- Department of Biochemistry and Biophysics, Perelman School of Medicine, and Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
29
|
Kembuan C, Saleh M, Rühle B, Resch-Genger U, Graf C. Coating of upconversion nanoparticles with silica nanoshells of 5-250 nm thickness. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:2410-2421. [PMID: 31921519 PMCID: PMC6941407 DOI: 10.3762/bjnano.10.231] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 11/19/2019] [Indexed: 05/23/2023]
Abstract
A concept for the growth of silica shells with a thickness of 5-250 nm onto oleate-coated NaYF4:Yb3+/Er3+ upconversion nanoparticles (UCNP) is presented. The concept enables the precise adjustment of shell thicknesses for the preparation of thick-shelled nanoparticles for applications in plasmonics and sensing. First, an initial 5-11 nm thick shell is grown onto the UCNPs in a reverse microemulsion. This is followed by a stepwise growth of these particles without a purification step, where in each step equal volumes of tetraethyl orthosilicate and ammonia water are added, while the volumes of cyclohexane and the surfactant Igepal® CO-520 are increased so that the ammonia water and surfactant concentrations remain constant. Hence, the number of micelles stays constant, and their size is increased to accommodate the growing core-shell particles. Consequently, the formation of core-free silica particles is suppressed. When the negative zeta potential of the particles, which continuously decreased during the stepwise growth, falls below -40 mV, the particles can be dispersed in an ammoniacal ethanol solution and grown further by the continuous addition of tetraethyl orthosilicate to a diameter larger than 500 nm. Due to the high colloidal stability, a coalescence of the particles can be suppressed, and single-core particles are obtained. This strategy can be easily transferred to other nanomaterials for the design of plasmonic nanoconstructs and sensor systems.
Collapse
Affiliation(s)
- Cynthia Kembuan
- Institut für Chemie und Biochemie, Physikalische und Theoretische Chemie, Freie Universität Berlin, Takustraße 3, D-14195 Berlin, Germany
| | - Maysoon Saleh
- Institut für Chemie und Biochemie, Physikalische und Theoretische Chemie, Freie Universität Berlin, Takustraße 3, D-14195 Berlin, Germany
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Str. 11, D-12489 Berlin, Germany
| | - Bastian Rühle
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Str. 11, D-12489 Berlin, Germany
| | - Ute Resch-Genger
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Str. 11, D-12489 Berlin, Germany
| | - Christina Graf
- Hochschule Darmstadt - University of Applied Sciences, Fachbereich Chemie- und Biotechnologie, Stephanstr. 7, D-64295 Darmstadt, Germany
| |
Collapse
|
30
|
Inner filter effect in fluorescence spectroscopy: As a problem and as a solution. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2019. [DOI: 10.1016/j.jphotochemrev.2019.100318] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
31
|
Wang W, Zhao M, Wang L, Chen H. Core-shell upconversion nanoparticles of type NaGdF 4:Yb,Er@NaGdF 4:Nd,Yb and sensitized with a NIR dye are a viable probe for luminescence determination of the fraction of water in organic solvents. Mikrochim Acta 2019; 186:630. [PMID: 31422470 DOI: 10.1007/s00604-019-3744-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 08/10/2019] [Indexed: 12/22/2022]
Abstract
Lanthanide-doped core-shell upconversion nanoparticles (UCNPs) of type NaGdF4:Yb,Er@NaGdF4:Yb,Nd were prepared by the co-precipitation method. The luminescence intensity was further enhanced by adding the sensitizer dye IR-808. If water is added to organic solvents [such as N,N-dimethylformamide (DMF), dimethyl sulfoxide, methanol, acetone, acetonitrile, and ethanol] containing the probe, its luminescence intensity peaking at 545 nm is reduced. The decrease is linearly related to the percentage of water in the respective organic solvent. Water fractions ranging from 0.05% to 10% (volume %) can be sensitively detected, and the detection limit is 0.018% of water in DMF. The detection scheme is mainly attributed to the fact that the transfer of energy from the near-infrared light (NIR) dye to the UCNPs is strongly reduced in the presence of traces of water. Graphical abstract The near infrared dye (IR-808) transfer efficiency to NaGdF4:Yb, Er@NaGdF4:Yb, Nd upconversion nanoparticles in water is far less than that in organic phase. Several methods for determination of trace water in organic solvents were developed by using this effect.
Collapse
Affiliation(s)
- Wen Wang
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, People's Republic of China
| | - Mingying Zhao
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, People's Republic of China
| | - Lun Wang
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, People's Republic of China.
| | - Hongqi Chen
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, People's Republic of China.
| |
Collapse
|
32
|
Radunz S, Andresen E, Würth C, Koerdt A, Tschiche HR, Resch-Genger U. Simple Self-Referenced Luminescent pH Sensors Based on Upconversion Nanocrystals and pH-Sensitive Fluorescent BODIPY Dyes. Anal Chem 2019; 91:7756-7764. [DOI: 10.1021/acs.analchem.9b01174] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sebastian Radunz
- Division Biophotonics, BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter-Str. 11, 12489 Berlin, Germany
| | - Elina Andresen
- Division Biophotonics, BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter-Str. 11, 12489 Berlin, Germany
| | - Christian Würth
- Division Biophotonics, BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter-Str. 11, 12489 Berlin, Germany
| | - Andrea Koerdt
- Division Biophotonics, BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter-Str. 11, 12489 Berlin, Germany
| | - Harald Rune Tschiche
- Division Biophotonics, BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter-Str. 11, 12489 Berlin, Germany
- Department 7, BfR German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Ute Resch-Genger
- Division Biophotonics, BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter-Str. 11, 12489 Berlin, Germany
| |
Collapse
|