1
|
Yaragorla S, Khan T, Chakroborty S. Cu(OTf) 2/HFIP catalyzed regioselective cycloisomerization of indole-C3-functionalized alkynols to carbazoles. Org Biomol Chem 2024; 22:3622-3629. [PMID: 38634737 DOI: 10.1039/d4ob00421c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
We report here a simple and atom economic cycloisomerization reaction of indole-tethered alkynols for constructing diverse carbazoles using Cu(OTf)2/HFIP as the excellent promoter system. The reaction proceeds through a one-pot, domino process of spiro cyclization and 1,2-migration followed by aromatization to deliver carbazoles.
Collapse
Affiliation(s)
| | - Tabassum Khan
- School of Chemistry, University of Hyderabad, 500046, Telangana, India.
| | | |
Collapse
|
2
|
Wootton JM, Tam JKF, Unsworth WP. Cascade ring expansion reactions for the synthesis of medium-sized rings and macrocycles. Chem Commun (Camb) 2024; 60:4999-5009. [PMID: 38655659 DOI: 10.1039/d4cc01303d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
This Feature Article discusses recent advances in the development of cascade ring expansion reactions for the synthesis of medium-sized rings and macrocycles. Cascade ring expansion reactions have much potential for use in the synthesis of biologically important medium-sized rings and macrocycles, most notably as they don't require high dilution conditions, which are commonly used in established end-to-end macrocyclisation methods. Operation by cascade ring expansion method can allow large ring products to be accessed via rearrangements that proceed exclusively by normal-sized ring cyclisation steps. Ensuring that there is adequate thermodynamic driving force for ring expansion is a key challenge when designing such methods, especially for the expansion of normal-sized rings into medium-sized rings. This Article is predominantly focused on methods developed in our own laboratory, with selected works by other groups also discussed. Thermodynamic considerations, mechanism, reaction design, route planning and future perspective for this field are all covered.
Collapse
Affiliation(s)
- Jack M Wootton
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | - Jerry K F Tam
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | - William P Unsworth
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
3
|
Zalessky I, Wootton JM, Tam JKF, Spurling DE, Glover-Humphreys WC, Donald JR, Orukotan WE, Duff LC, Knapper BJ, Whitwood AC, Tanner TFN, Miah AH, Lynam JM, Unsworth WP. A Modular Strategy for the Synthesis of Macrocycles and Medium-Sized Rings via Cyclization/Ring Expansion Cascade Reactions. J Am Chem Soc 2024; 146:5702-5711. [PMID: 38372651 PMCID: PMC10910531 DOI: 10.1021/jacs.4c00659] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/20/2024]
Abstract
Macrocycles and medium-sized rings are important in many scientific fields and technologies but are hard to make using current methods, especially on a large scale. Outlined herein is a strategy by which functionalized macrocycles and medium-sized rings can be prepared using cyclization/ring expansion (CRE) cascade reactions, without resorting to high dilution conditions. CRE cascade reactions are designed to operate exclusively via kinetically favorable 5-7-membered ring cyclization steps; this means that the problems typically associated with classical end-to-end macrocyclization reactions are avoided. A modular synthetic approach has been developed to facilitate the simple assembly of the requisite linear precursors, which can then be converted into an extremely broad range of functionalized macrocycles and medium-sized rings using one of nine CRE protocols.
Collapse
Affiliation(s)
- Illya Zalessky
- Department
of Chemistry, University of York, York, YO10 5DD U.K.
| | - Jack M. Wootton
- Department
of Chemistry, University of York, York, YO10 5DD U.K.
| | - Jerry K. F. Tam
- Department
of Chemistry, University of York, York, YO10 5DD U.K.
| | | | | | - James R. Donald
- Department
of Chemistry, University of York, York, YO10 5DD U.K.
| | - Will E. Orukotan
- Department
of Chemistry, University of York, York, YO10 5DD U.K.
| | - Lee C. Duff
- Department
of Chemistry, University of York, York, YO10 5DD U.K.
| | - Ben J. Knapper
- Department
of Chemistry, University of York, York, YO10 5DD U.K.
| | | | | | | | - Jason M. Lynam
- Department
of Chemistry, University of York, York, YO10 5DD U.K.
| | | |
Collapse
|
4
|
Bag D, Kour H, Saha N, Kamal, Holla H, Bharatam PV, Sawant SD. Iodocycloisomerization/Nucleophile Addition Cascade Transformations of 1,2-Alkynediones. J Org Chem 2023; 88:2377-2384. [PMID: 36730785 DOI: 10.1021/acs.joc.2c02790] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A general electrophilic iodocyclization/nucleophile addition cascade transformation for 1,2-alkynediones for the synthesis of various oxygen heterocycles and access to regioselective alkyne hydroxylation is reported. Furan-tethered ynediones resulted in the construction of exo-enol ethers via carbonyl-alkyne cyclization-initiated heteroarene dearomatization, whereas other (hetero)arene-, alkenyl-, and alkyl-tethered ynediones resulted in the formation of highly functionalized 3(2H)-furanones. Importantly, the developed domino protocols involve the construction of important heterocyclic scaffolds and installation of two functional groups in a single operation. Moreover, the use of water as a nucleophile resulted in regioselective alkyne hydroxylation via furanone ring opening. The developed protocols are characterized by a wide substrate scope, and their utility has been demonstrated by a number of postsynthetic transformations.
Collapse
Affiliation(s)
- Debojyoti Bag
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu 180001, Jammu and Kashmir, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Harpreet Kour
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu 180001, Jammu and Kashmir, India
| | - Nirjhar Saha
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, Sahibzada Ajit Singh Nagar (Mohali) 160062, Punjab, India
| | - Kamal
- Department of Chemistry, Indian Institute of Technology, Jammu 181221, Jammu and Kashmir, India
| | - Harish Holla
- Department of Chemistry, Central University of Karnataka, Aland Road, Kalaburagi 585367, Karnataka, India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, Sahibzada Ajit Singh Nagar (Mohali) 160062, Punjab, India
| | - Sanghapal D Sawant
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu 180001, Jammu and Kashmir, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
5
|
Raji Reddy C, Subbarao M, Kolgave DH, Ajaykumar U, Vinaya PP. Access to Diverse Seleno-spirocyclohexadienones via Ag(II)-Catalyzed Selenylative ipso-Annulation with Se and Boronic Acids. ACS OMEGA 2022; 7:38045-38052. [PMID: 36312410 PMCID: PMC9608386 DOI: 10.1021/acsomega.2c05394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/30/2022] [Indexed: 05/29/2023]
Abstract
An efficient and straightforward synthesis of diversified seleno-azaspiro-2,5-cyclohexadienones from N-(4-methoxy aryl)propiolamides using elemental selenium and boronic acids has been demonstrated. The reaction proceeds through silver-catalyzed oxidative dearomatization in the presence of potassium persulfate (K2S2O8) as the oxidant. Further, this approach was extended to N-(4-methoxy aryl)propiolates and biaryl ynones to access the corresponding selenylated oxospiro-2,5-cyclohexadienones and spiro[5,5]trienones, respectively. The present three-component method offers the diverse substitutions on selenium involving two C-Se and one C-C bond formations.
Collapse
|
6
|
Abe T, Yamashiro T, Shimizu K, Sawada D. Indole Editing Enabled by HFIP-Mediated Ring-Switch Reactions of 3-Amino-2-Hydroxyindolines. Chemistry 2022; 28:e202201113. [PMID: 35438809 DOI: 10.1002/chem.202201113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Indexed: 12/26/2022]
Abstract
This work reports the novel reactivity of hemiaminal as a precursor for indole editing at the multi-site. The HFIP-promoted indole editing of indoline hemiaminals affords 2-arylindoles through a ring-switch sequence. The key to success of this transformation is to use a cyclic hemiaminal as an α-amino aldehyde surrogate under transient tautomeric control. This transformation features mild reaction conditions and good yields with broad functional group tolerance. The utility of this transformation is presented through the one-pot protocol and the synthesis of isocryptolepine.
Collapse
Affiliation(s)
- Takumi Abe
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama, 7008530, Japan
| | - Toshiki Yamashiro
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama, 7008530, Japan
| | - Kaho Shimizu
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama, 7008530, Japan
| | - Daisuke Sawada
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama, 7008530, Japan
| |
Collapse
|
7
|
Zhang Z, Liu Y, Wang S, Zhang C, Lin J. Efficient Synthesis of 7
H
‐Chromeno[3,2‐c]quinolin‐5‐ium Salts and Quinolin‐4‐ones through Acid‐Promoted Cascade Reaction of 3‐Formylchromones and Anilines. ChemistrySelect 2022. [DOI: 10.1002/slct.202104611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhong‐Wei Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education Yunnan Provincial Center for Research & Development of Natural Products School of Chemical Science and Technology Yunnan University Kunming 650091 P. R. China
| | - Yue‐Ying Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education Yunnan Provincial Center for Research & Development of Natural Products School of Chemical Science and Technology Yunnan University Kunming 650091 P. R. China
| | - Si‐Yu Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education Yunnan Provincial Center for Research & Development of Natural Products School of Chemical Science and Technology Yunnan University Kunming 650091 P. R. China
| | - Cong‐Hai Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education Yunnan Provincial Center for Research & Development of Natural Products School of Chemical Science and Technology Yunnan University Kunming 650091 P. R. China
| | - Jun Lin
- Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education Yunnan Provincial Center for Research & Development of Natural Products School of Chemical Science and Technology Yunnan University Kunming 650091 P. R. China
| |
Collapse
|
8
|
Epton RG, Unsworth WP, Lynam JM. Selectivity, Speciation, and Substrate Control in the Gold-Catalyzed Coupling of Indoles and Alkynes. Organometallics 2022; 41:497-507. [PMID: 35431397 PMCID: PMC9007570 DOI: 10.1021/acs.organomet.2c00035] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Indexed: 11/28/2022]
Abstract
![]()
A convenient
and mild protocol for the gold-catalyzed intermolecular
coupling of substituted indoles with carbonyl-functionalized alkynes
to give vinyl indoles is reported. This reaction affords 3-substituted
indoles in high yield, and in contrast to the analogous reactions
with simple alkynes which give bisindolemethanes,
only a single indole is added to the alkyne. The protocol is robust
and tolerates substitution at a range of positions of the indole and
the use of ester-, amide-, and ketone-substituted alkynes. The use
of 3-substituted indoles as substrates results in the introduction
of the vinyl substituent at the 2-position of the ring. A combined
experimental and computational mechanistic study has revealed that
the gold catalyst has a greater affinity to the indole than the alkyne,
despite the carbon–carbon bond formation step proceeding through
an η2(π)-alkyne complex, which helps to explain
the stark differences between the intra- and intermolecular variants
of the reaction. This study also demonstrated that the addition of
a second indole to the carbonyl-containing vinyl indole products is
both kinetically and thermodynamically less favored than in the case
of more simple alkynes, providing an explanation for the observed
selectivity. Finally, a highly unusual gold-promoted alkyne dimerization
reaction to form a substituted gold pyrylium salt has been identified
and studied in detail.
Collapse
Affiliation(s)
- Ryan G. Epton
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, U.K
| | - William P. Unsworth
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, U.K
| | - Jason M. Lynam
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, U.K
| |
Collapse
|
9
|
Inprung N, Ho HE, Rossi-Ashton JA, Epton RG, Whitwood AC, Lynam JM, Taylor RJK, James MJ, Unsworth WP. Indole-ynones as Privileged Substrates for Radical Dearomatizing Spirocyclization Cascades. Org Lett 2022; 24:668-674. [PMID: 34985297 DOI: 10.1021/acs.orglett.1c04098] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Indole-ynones have been established as general substrates for radical dearomatizing spirocyclization cascade reactions. Five distinct and varied synthetic protocols have been developed─cyanomethylation, sulfonylation, trifluoromethylation, stannylation and borylation─using a variety of radical generation modes, ranging from photoredox catalysis to traditional AIBN methods. The simple and easily prepared indole-ynones can be used to rapidly generate diverse, densely functionalized spirocycles and have the potential to become routinely used to explore radical reactivity. Experimental and computational investigations support the proposed radical cascade mechanism and suggest that other new methods are now primed for development.
Collapse
Affiliation(s)
- Nantachai Inprung
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, U.K
| | - Hon Eong Ho
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, U.K
| | | | - Ryan G Epton
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, U.K
| | - Adrian C Whitwood
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, U.K
| | - Jason M Lynam
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, U.K
| | - Richard J K Taylor
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, U.K
| | - Michael J James
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, U.K
| | - William P Unsworth
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, U.K
| |
Collapse
|
10
|
Yang Y, Zhu Y, Yin L, Cheng L, Wang C, Li Y. Brønsted-Acid-Promoted Selective C2-N1 Ring-Expansion Reaction of Indoles toward Cyclopenta[ b]quinolines. Org Lett 2022; 24:966-970. [PMID: 35044190 DOI: 10.1021/acs.orglett.1c04332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A novel Brønsted-acid-promoted selective C2-N1 ring-expansion reaction of indoles has been developed that provides a rapid and efficient protocol for the preparation of fused quinolines. A variety of corresponding quinolines were obtained in high yields. Controlled experiments revealed that C2-spiroindolenines might be intermediates of this C2-N1 ring-expansion reaction. The notable advantages of this process include excellent yields, good functional group tolerance, and operational simplicity.
Collapse
Affiliation(s)
- Yajie Yang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yilin Zhu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Liqiang Yin
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Lu Cheng
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Chengyu Wang
- School of Chemistry and Chemical Engineering, Linyi University, Shuangling Road, Linyi, Shandong 276000, China
| | - Yanzhong Li
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.,Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
11
|
Martínez‐Lara F, Suárez A, Velasco N, Suárez‐Pantiga S, Sanz R. Gold‐Catalyzed Reactions of 2‐Alkynyl‐1‐indolyl‐1,2‐diols with Thiols: Stereoselective Synthesis of (
Z
)‐α‐Indol‐3‐yl α‐(2‐Thioalkenyl) Ketones. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202100930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Fernando Martínez‐Lara
- Área de Química Orgánica, Departamento de Química, Facultad de Ciencias Universidad de Burgos Pza. Misael Bañuelos s/n 09001- Burgos Spain
| | - Anisley Suárez
- Área de Química Orgánica, Departamento de Química, Facultad de Ciencias Universidad de Burgos Pza. Misael Bañuelos s/n 09001- Burgos Spain
| | - Noelia Velasco
- Área de Química Orgánica, Departamento de Química, Facultad de Ciencias Universidad de Burgos Pza. Misael Bañuelos s/n 09001- Burgos Spain
| | - Samuel Suárez‐Pantiga
- Área de Química Orgánica, Departamento de Química, Facultad de Ciencias Universidad de Burgos Pza. Misael Bañuelos s/n 09001- Burgos Spain
| | - Roberto Sanz
- Área de Química Orgánica, Departamento de Química, Facultad de Ciencias Universidad de Burgos Pza. Misael Bañuelos s/n 09001- Burgos Spain
| |
Collapse
|
12
|
Palate KY, Yang Z, Whitwood AC, Unsworth WP. Synthesis of medium-ring lactams and macrocyclic peptide mimetics via conjugate addition/ring expansion cascade reactions. RSC Chem Biol 2022; 3:334-340. [PMID: 35359493 PMCID: PMC8905531 DOI: 10.1039/d1cb00245g] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/08/2022] [Indexed: 11/30/2022] Open
Abstract
A novel conjugate addition/ring expansion (CARE) cascade reaction sequence is reported that enables medium-sized ring and macrocyclic bis-lactams to be prepared from primary amines and cyclic imides. The reactions are simple to perform, generally high yielding, and very broad in scope, especially with respect to the primary amine component. CARE reactions can also be performed iteratively, enabling β-peptoid-based macrocyclic peptide mimetics to be ‘grown’ via well controlled, sequential 4-atom ring expansion reactions, with the incorporation of varied functionalised amines during each iteration. A conjugate addition/ring expansion (CARE) cascade reaction sequence is reported that enables medium-sized ring and macrocyclic bis-lactams to be prepared from primary amines and cyclic imides.![]()
Collapse
Affiliation(s)
- Kleopas Y Palate
- Department of Chemistry, University of York, Heslington York YO10 5DD UK
| | - Zhongzhen Yang
- Department of Chemistry, University of York, Heslington York YO10 5DD UK
| | - Adrian C Whitwood
- Department of Chemistry, University of York, Heslington York YO10 5DD UK
| | - William P Unsworth
- Department of Chemistry, University of York, Heslington York YO10 5DD UK
| |
Collapse
|
13
|
Ru GX, Zhang M, Zhang TT, Jiang XL, Gao GQ, Zhu XH, Wang S, Fan CL, Li X, Shen WB. Copper catalyzed dearomatization by Michael-type addition of indolyl ynones: divergent synthesis of functionalized spiroindoles and cyclopenta[ c]quinolin-3-ones. Org Chem Front 2022. [DOI: 10.1039/d2qo00275b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Described herein is a copper-catalyzed multifunctionalization of indolyl ynones, allowing the synthesis of dihalogen-substituted spiroindoles. This Cu catalysis is also applicable to the synthesis of cyclopenta[c]quinolin-3-ones via decarbonylation.
Collapse
Affiliation(s)
- Guang-Xin Ru
- College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Meng Zhang
- College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Ting-Ting Zhang
- College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiao-Lei Jiang
- College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Guang-Qin Gao
- College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiu-Hong Zhu
- College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Shun Wang
- College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Cai-Ling Fan
- College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiao Li
- College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Wen-Bo Shen
- College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
14
|
Zhang B, Li X, Ai Z, Zhao B, Yu Z, Du Y. Chemoselective Synthesis of Sulfenylated Spiroindolenines from Indolyl-ynones via Organosulfenyl Chloride-Mediated Dearomatizing Spirocyclization. Org Lett 2021; 24:390-394. [PMID: 34964636 DOI: 10.1021/acs.orglett.1c04063] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A metal-free sulfenylation/spirocyclization of indolyl-ynones realized by organosulfenyl chloride, generated in situ from the reaction of disulfides and PhICl2, is presented. This cascade one-pot process enables a chemoselective synthesis of diverse sulfenylated spiroindolenines depending on the substituent pattern at the two-position of indolyl-ynones.
Collapse
Affiliation(s)
- Beibei Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, P. R. China
| | - Xiaoxian Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, P. R. China
| | - Zhenkang Ai
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, P. R. China
| | - Bingyue Zhao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, P. R. China
| | - Zhenyang Yu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, P. R. China
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, P. R. China
| |
Collapse
|
15
|
Qiu J, Sako M, Tanaka T, Matsuzaki T, Takehara T, Suzuki T, Ohno S, Murai K, Arisawa M. Iridium-Catalyzed Isomerization/Cycloisomerization/Aromatization of N-Allyl- N-sulfonyl- o-(λ 1-silylethynyl)aniline Derivatives to Give Substituted Indole Derivatives. Org Lett 2021; 23:4284-4288. [PMID: 34032456 DOI: 10.1021/acs.orglett.1c01231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have developed a one-iridium-catalyst system that transforms N-allyl-N-sulfonyl-2-(silylalkynyl)aniline derivatives, which are 1,7-enynes in which both multiple bonds have a heteroatom, to the corresponding substituted indole derivatives via isomerization/cycloisomerization/aromatization. This strategy provides an atom-economical and straightforward synthetic approach to a series of valuable indoles having vinyl and silylmethyl groups at the 2- and 3-positions.
Collapse
Affiliation(s)
- Jiawei Qiu
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka 565-0871, Japan
| | - Makoto Sako
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka 565-0871, Japan
| | - Tomoyuki Tanaka
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka 565-0871, Japan
| | - Tsuyoshi Matsuzaki
- Comprehensive Analysis Center, The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Tsunayoshi Takehara
- Comprehensive Analysis Center, The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Takeyuki Suzuki
- Comprehensive Analysis Center, The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Shohei Ohno
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka 565-0871, Japan
| | - Kenichi Murai
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka 565-0871, Japan
| | - Mitsuhiro Arisawa
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka 565-0871, Japan
| |
Collapse
|