1
|
Wang Z, Song Z, Huang J, Yang Z. Total Synthesis of Penicibilaenes Enabled by a Tandem Double Conia-ene Type Reaction. J Am Chem Soc 2024; 146:4363-4368. [PMID: 38329963 DOI: 10.1021/jacs.3c14614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
The total syntheses of penicibilaenes A and B are described. The key step is the tBuOK/DMSO-mediated tandem 5-exo-dig Conia-ene type reaction and 6-exo-dig Conia-ene type reaction to install the tricyclic [6.3.1.01,5] dodecane core of penicibilaenes from dibutynyl cyclohexanone in a single step, together with a sequence of copper-mediated conjugate addition and Crabtree's hydrogenation to forge the stereogenic centers at C5 and C2, respectively.
Collapse
Affiliation(s)
- Zheyuan Wang
- State Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zhilin Song
- State Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jun Huang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Zhen Yang
- State Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Science and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
2
|
Zhang Z, Qian X, Gu Y, Gui J. Controllable skeletal reorganizations in natural product synthesis. Nat Prod Rep 2024; 41:251-272. [PMID: 38291905 DOI: 10.1039/d3np00066d] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Covering: 2016 to 2023The synthetic chemistry community is always in pursuit of efficient routes to natural products. Among the many available general strategies, skeletal reorganization, which involves the formation, cleavage, and migration of C-C and C-heteroatom bonds, stands out as a particularly useful approach for the efficient assembly of molecular skeletons. In addition, it allows for late-stage modification of natural products for quick access to other family members or unnatural derivatives. This review summarizes efficient syntheses of steroid, terpenoid, and alkaloid natural products that have been achieved by means of this strategy in the past eight years. Our goal is to illustrate the strategy's potency and reveal the spectacular human ingenuity demonstrated in its use and development.
Collapse
Affiliation(s)
- Zeliang Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Xiao Qian
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Yucheng Gu
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, UK
| | - Jinghan Gui
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| |
Collapse
|
3
|
Chen S, Liu H, Li S, Chen Y, Ye W, Li H, Tan H, Li D, Liu Z, Zhang W. Hawanoids A‒E, unprecedented diterpenoids with PAF-induced platelet aggregation inhibitory activities from the deep-sea-derived fungus Paraconiothyrium hawaiiense. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Lusi RF, Perea MA, Sarpong R. C-C Bond Cleavage of α-Pinene Derivatives Prepared from Carvone as a General Strategy for Complex Molecule Synthesis. Acc Chem Res 2022; 55:746-758. [PMID: 35170951 PMCID: PMC9616203 DOI: 10.1021/acs.accounts.1c00783] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The preparation of complex molecules (e.g., biologically active secondary metabolites) remains an important pursuit in chemical synthesis. By virtue of their sophisticated architectures, complex natural products inspire total synthesis campaigns that can lead to completely new ways of building molecules. In the twentieth century, one such paradigm which emerged was the use of naturally occurring "chiral pool terpenes" as starting materials for total synthesis. These inexpensive and naturally abundant molecules provide an easily accessed source of enantioenriched material for the enantiospecific preparation of natural products. The most common applications of chiral pool terpenes are in syntheses where their structure can, entirely or largely, be superimposed directly onto a portion of the target structure. Less straightforward uses, where the structure of the starting chiral pool terpene is not immediately evident in the structure of the target, can be more challenging to implement. Nevertheless, these "nonintuitive" approaches illustrate the ultimate promise of chiral pool-based strategies: that any single chiral pool terpene could be applied to syntheses of an indefinite number of structurally diverse complex synthetic targets.By definition, such strategies require carefully orchestrated sequences of C-C bond forming and C-C cleaving reactions which result in remodeling of the terpene architecture. The combination of traditional rearrangement chemistry and transition-metal-catalyzed C-C cleavage methods, the latter of which were primarily developed in the early twenty-first century, provide a rich and powerful toolbox for implementing this remodeling approach. In this Account, we detail our efforts to use a variety of C-C cleavage tactics in the skeletal remodeling of carvone, a chiral pool terpene. This skeletal remodeling strategy enabled the reorganization of the carvone scaffold into synthetic intermediates with a variety of carboskeletons, which we, then, leveraged for the total syntheses of structurally disparate terpene natural products.We begin by describing our initial investigations into various, mechanistically distinct C-C cleavage processes involving cyclobutanols synthesized from carvone. These initial studies showcased how electrophile-mediated semipinacol rearrangements of these cyclobutanols can lead to [2.2.1]bicyclic intermediates, and how Rh- and Pd-catalyzed C-C cleavage can lead to a variety of densely functionalized cyclohexenes pertinent to natural product synthesis. We, then, present several total syntheses using these synthetic intermediates, beginning with the bridged, polycyclic sesquiterpenoid longiborneol, which was synthesized from a carvone-derived [2.2.1]bicycle following a key semipinacol rearrangement. Next, we discuss how several members of the macrocyclic phomactin family were synthesized from a cyclohexene derivative prepared through a Rh-catalyzed C-C cleavage reaction. Finally, we describe our synthesis of the marine diterpene xishacorene B, which was prepared using a key Pd-catalyzed C-C cleavage/cross-coupling that facilitated the assembly of the core [3.3.1]bicycle that is resident in the natural product structure.
Collapse
Affiliation(s)
- Robert F Lusi
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Melecio A Perea
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
5
|
Leger PR, Kuroda Y, Chang S, Jurczyk J, Sarpong R. C-C Bond Cleavage Approach to Complex Terpenoids: Development of a Unified Total Synthesis of the Phomactins. J Am Chem Soc 2020; 142:15536-15547. [PMID: 32799452 PMCID: PMC7771649 DOI: 10.1021/jacs.0c07316] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The rearrangement of carbon-carbon (C-C) single bonds in readily available carbocyclic scaffolds can yield uniquely substituted carbocycles that would be challenging to construct otherwise. This is a powerful and often non-intuitive approach for complex molecule synthesis. The transition-metal-mediated cleavage of C-C bonds has the potential to broaden the scope of this type of skeletal remodeling by providing orthogonal selectivities compared to more traditional pericyclic and carbocation-based rearrangements. To highlight this emerging technology, a unified, asymmetric, total synthesis of the phomactin terpenoids was developed, enabled by the selective C-C bond cleavage of hydroxylated pinene derivatives obtained from carvone. In this full account, the challenges, solutions, and intricacies of Rh(I)-catalyzed cyclobutanol C-C cleavage in a complex molecule setting are described. In addition, details of the evolution of strategies that ultimately led to the total synthesis of phomactins A, K, P, R, and T, as well as the synthesis and structural reassignment of Sch 49027, are given.
Collapse
Affiliation(s)
- Paul R Leger
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Yusuke Kuroda
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Stanley Chang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Justin Jurczyk
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
6
|
Peng C, Arya P, Zhou Z, Snyder SA. A Concise Total Synthesis of (+)-Waihoensene Guided by Quaternary Center Analysis. Angew Chem Int Ed Engl 2020; 59:13521-13525. [PMID: 32330370 PMCID: PMC7906115 DOI: 10.1002/anie.202004177] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Indexed: 11/07/2022]
Abstract
The four contiguous all-carbon quaternary centers of waihoensene, coupled with the absence of any traditional reactive functional groups other than a single alkene, render it a particularly challenging synthetic target among angular triquinane natural products. Here, we show that its polycyclic frame can be assembled concisely by using a strategically chosen quaternary center to guide the formation of the other three through judiciously selected C-C bond formation reactions. Those events, which included a unique Conia-ene cyclization and a challenging Pauson-Khand reaction, afforded a 17-step synthesis of the molecule in enantioenriched form.
Collapse
Affiliation(s)
- Cheng Peng
- Department of Chemistry, University of Chicago, 5735 S. Ellis Avenue, Chicago, IL, 60637, USA
| | - Piyush Arya
- Department of Chemistry, University of Chicago, 5735 S. Ellis Avenue, Chicago, IL, 60637, USA
| | - Zhiyao Zhou
- Department of Chemistry, University of Chicago, 5735 S. Ellis Avenue, Chicago, IL, 60637, USA
| | - Scott A Snyder
- Department of Chemistry, University of Chicago, 5735 S. Ellis Avenue, Chicago, IL, 60637, USA
| |
Collapse
|
7
|
Peng C, Arya P, Zhou Z, Snyder SA. A Concise Total Synthesis of (+)‐Waihoensene Guided by Quaternary Center Analysis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Cheng Peng
- Department of Chemistry University of Chicago 5735 S. Ellis Avenue Chicago IL 60637 USA
| | - Piyush Arya
- Department of Chemistry University of Chicago 5735 S. Ellis Avenue Chicago IL 60637 USA
| | - Zhiyao Zhou
- Department of Chemistry University of Chicago 5735 S. Ellis Avenue Chicago IL 60637 USA
| | - Scott A. Snyder
- Department of Chemistry University of Chicago 5735 S. Ellis Avenue Chicago IL 60637 USA
| |
Collapse
|
8
|
|
9
|
Ikeuchi K, Murasawa K, Ohara K, Yamada H. p-Methylbenzyl Group: Oxidative Removal and Orthogonal Alcohol Deprotection. Org Lett 2019; 21:6638-6642. [PMID: 31437002 DOI: 10.1021/acs.orglett.9b02144] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We describe the practical removal of p-methylbenzyl (MBn) protections of alcohols by treatment with 2,3-dichloro-5,6-dicyano-p-benzoquinone. When a molecule bears benzyl and MBn groups, the oxidant selectively removes the latter groups. Further, the MBn groups tolerate ceric ammonium nitrate, resulting in chemoselective removal of the p-methoxybenzyl group in the presence of the MBn groups. These orthogonal alcohol deprotections would provide novel synthetic strategies of organic compounds.
Collapse
Affiliation(s)
- Kazutada Ikeuchi
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan.,Department of Chemistry, Faculty of Science, Hokkaido University, North 10, West 8, Kita-ku, Sapporo 060-0810, Japan
| | - Kentaro Murasawa
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan
| | - Kenya Ohara
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan
| | - Hidetoshi Yamada
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan
| |
Collapse
|
10
|
Bao W, Tao Y, Cheng J, Huang J, Cao J, Zhang M, Ye W, Wang B, Li Y, Zhu L, Lee CS. In(OTf) 3-Catalyzed Cascade Cyclization for Construction of Oxatricyclic Compounds. Org Lett 2018; 20:7912-7915. [PMID: 30543298 DOI: 10.1021/acs.orglett.8b03461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A highly diastereoselective cascade cyclization reaction has been developed for establishing a series of oxatricyclic compounds using Chan's diene and simple keto alkynal substrates with only 1 mol % of In(OTf)3 as the catalyst in 82-92% yields. The potential utility of this synthetic strategy has been demonstrated in model studies for the construction the core structures of 1α,8α:4α,5α-diepoxy-4,5-dihydroosmitopsin and cortistatin A.
Collapse
Affiliation(s)
- Wenli Bao
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen University Town, Xili, Shenzhen 518055 , China
| | - Yezi Tao
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen University Town, Xili, Shenzhen 518055 , China
| | - Jiangqun Cheng
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen University Town, Xili, Shenzhen 518055 , China
| | - Junrong Huang
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen University Town, Xili, Shenzhen 518055 , China
| | - Jingming Cao
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen University Town, Xili, Shenzhen 518055 , China
| | - Mengxun Zhang
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen University Town, Xili, Shenzhen 518055 , China
| | - Weijian Ye
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen University Town, Xili, Shenzhen 518055 , China
| | - Bo Wang
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen University Town, Xili, Shenzhen 518055 , China
| | - Yang Li
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen University Town, Xili, Shenzhen 518055 , China
| | - Lizhi Zhu
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen University Town, Xili, Shenzhen 518055 , China.,Institute of Translational Medicine, Shenzhen Second People's Hospital , The First Affiliated Hospital of Shenzhen University, Health Science Center , Shenzhen 518035 , China
| | - Chi-Sing Lee
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen University Town, Xili, Shenzhen 518055 , China.,Institute of Research and Continuing Edition (Shenzhen) , Hong Kong Baptist University , Industrialization Complex Building, Shenzhen Virtual University Park, Shenzhen 518000 , China.,Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong SAR
| |
Collapse
|