1
|
Sun Q, Mu X, Gao Q, Wang J, Hu M, Liu H. Influences of physical stimulations on the migration and differentiation of Schwann cells involved in peripheral nerve repair. Cell Adh Migr 2025; 19:2450311. [PMID: 39817348 PMCID: PMC11740713 DOI: 10.1080/19336918.2025.2450311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/23/2024] [Accepted: 01/02/2025] [Indexed: 01/18/2025] Open
Abstract
Peripheral nerve injury repair has always been a research concern of scientists. At the tissue level, axonal regeneration has become a research spotlight in peripheral nerve repair. Through transplantation of autologous nerve grafts or other emerging biomaterials functional recovery after facial nerve injury is not ideal in clinical scenarios. Great strides have been made to improve facial nerve repair at the micro-cellular level. Physical stimulation techniques can trigger Schwann cells (SCs) to migrate and differentiate into cells required for peripheral nerve repair. Classified by the sources of physical stimulations, SCs repair peripheral nerves through galvanotaxis, magnetotaxis and durotaxis. This article summarized the activation, directional migration and differentiation of SCs induced by physical stimulations, thus providing new ideas for the research of peripheral nerve repair.
Collapse
Affiliation(s)
- Qingyan Sun
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Chinese People’s Liberation Army (PLA) Medical School, Beijing, China
| | - Xiaodan Mu
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Chinese People’s Liberation Army (PLA) Medical School, Beijing, China
- Department of Stomatology of Air Force Hospital in the Southern Theater, Guangzhou, Guangdong Province, China
| | - Qi Gao
- Department of Stomatology of Air Force Hospital in the Southern Theater, Guangzhou, Guangdong Province, China
| | - Juncheng Wang
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Min Hu
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Huawei Liu
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
2
|
Tseng HS, Chen YL, Zhang PY, Hsiao YS. Additive Blending Effects on PEDOT:PSS Composite Films for Wearable Organic Electrochemical Transistors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13384-13398. [PMID: 38454789 PMCID: PMC10958448 DOI: 10.1021/acsami.3c14961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
Organic electrochemical transistors (OECTs) employing conductive polymers (CPs) have gained remarkable prominence and have undergone extensive advancements in wearable and implantable bioelectronic applications in recent years. Among the diverse arrays of CPs, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a common choice for the active-layer channel in p-type OECTs, showing a remarkably high transconductance for the high amplification of signals in biosensing applications. This investigation focuses on the novel engineering of PEDOT:PSS composite materials by seamlessly integrating several additives, namely, dimethyl sulfoxide (DMSO), (3-glycidyloxypropyl)trimethoxysilane (GOPS), and a nonionic fluorosurfactant (NIFS), to fine-tune their electrical conductivity, self-healing capability, and stretchability. To elucidate the intricate influences of the DMSO, GOPS, and NIFS additives on the formation of PEDOT:PSS composite films, theoretical calculations were performed, encompassing the solubility parameters and surface energies of the constituent components of the NIFS, PEDOT, PSS, and PSS-GOPS polymers. Furthermore, we conducted a comprehensive array of material analyses, which reveal the intricacies of the phase separation phenomenon and its interaction with the materials' characteristics. Our research identified the optimal composition for the PEDOT:PSS composite films, characterized by outstanding self-healing and stretchable capabilities. This composition has proven to be highly effective for constructing an active-layer channel in the form of OECT-based biosensors fabricated onto polydimethylsiloxane substrates for detecting dopamine. Overall, these findings represent significant progress in the application of PEDOT:PSS composite films in wearable bioelectronics and pave the way for the development of state-of-the-art biosensing technologies.
Collapse
Affiliation(s)
- Hsueh-Sheng Tseng
- Department of Materials Science
and Engineering, National Taiwan University
of Science and Technology, Taipei 10607, Taiwan
| | - Ying-Lin Chen
- Department of Materials Science
and Engineering, National Taiwan University
of Science and Technology, Taipei 10607, Taiwan
| | - Pin-Yu Zhang
- Department of Materials Science
and Engineering, National Taiwan University
of Science and Technology, Taipei 10607, Taiwan
| | - Yu-Sheng Hsiao
- Department of Materials Science
and Engineering, National Taiwan University
of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
3
|
Yi H, Patel R, Patel KD, Bouchard LS, Jha A, Perriman AW, Patel M. Conducting polymer-based scaffolds for neuronal tissue engineering. J Mater Chem B 2023; 11:11006-11023. [PMID: 37953707 DOI: 10.1039/d3tb01838e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Neuronal tissue engineering has immense potential for treating neurological disorders and facilitating nerve regeneration. Conducting polymers (CPs) have emerged as a promising class of materials owing to their unique electrical conductivity and biocompatibility. CPs, such as poly(3,4-ethylenedioxythiophene) (PEDOT), poly(3-hexylthiophene) (P3HT), polypyrrole (PPy), and polyaniline (PANi), have been extensively explored for their ability to provide electrical cues to neural cells. These polymers are widely used in various forms, including porous scaffolds, hydrogels, and nanofibers, and offer an ideal platform for promoting cell adhesion, differentiation, and axonal outgrowth. CP-based scaffolds can also serve as drug delivery systems, enabling localized and controlled release of neurotrophic factors and therapeutic agents to enhance neural regeneration and repair. CP-based scaffolds have demonstrated improved neural regeneration, both in vitro and in vivo, for treating spinal cord and peripheral nerve injuries. In this review, we discuss synthesis and scaffold processing methods for CPs and their applications in neuronal tissue regeneration. We focused on a detailed literature review of the central and peripheral nervous systems.
Collapse
Affiliation(s)
- Hagje Yi
- Bio-Convergence (BC), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, Songdogwahak-ro, Yeonsu-gu, Incheon 21983, South Korea
| | - Rajkumar Patel
- Energy & Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, 85 Songdogwahak-ro, Yeonsugu, Incheon, 21938, South Korea
| | - Kapil D Patel
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
- Research School of Chemistry (RSC), Australian National University, Canberra, ACT 2601, Australia
- John Curtin School of Medical Research (JCSMR), Australian National University, Canberra, ACT 2601, Australia
| | | | - Amitabh Jha
- Department of Chemistry, Acadia University, Wolfville, NS, Canada
| | - Adam Willis Perriman
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
- Research School of Chemistry (RSC), Australian National University, Canberra, ACT 2601, Australia
- John Curtin School of Medical Research (JCSMR), Australian National University, Canberra, ACT 2601, Australia
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, South Korea.
| |
Collapse
|
4
|
Zhao G, Zhou H, Jin G, Jin B, Geng S, Luo Z, Ge Z, Xu F. Rational Design of Electrically Conductive Biomaterials toward Excitable Tissues Regeneration. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Panda AK, Sitaramgupta VSN, Pandya HJ, Basu B. Electrical waveform dependent osteogenesis on PVDF/BaTiO 3 composite using a customized and programmable cell stimulator. Biotechnol Bioeng 2022; 119:1578-1597. [PMID: 35244212 DOI: 10.1002/bit.28076] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/07/2022]
Abstract
Directing cellular functionalities using biomaterial-based bioelectronic stimulation remains a significant constraint in translating research outcomes to address specific clinical challenges. Electrical stimulation is now being clinically used as a therapeutic treatment option to promote bone tissue regeneration and to improve neuromuscular functionalities. However, the nature of the electrical waveforms during the stimulation and underlying biophysical rationale are still not scientifically well explored. Furthermore, bone-mimicking implant-based bioelectrical regulation of osteoinductivity has not been translated to clinics. The present study demonstrates the role of the waveform in electrical signal to direct differentiation of stem cells on an electroactive polymeric substrate, using monophasic DC, square wave, and biphasic wave. In this regard, an in-house electrical stimulation device has been fabricated for the uninterrupted delivery of programmed electrical signals to stem cells in culture. To provide a functional platform for stem cells to differentiate, barium titanate (BaTiO3 , BT) reinforced PVDF has been developed with mechanical properties similar to bone. The electrical stimulation of human mesenchymal stem cells (hMSCs) on PVDF/BT composite inhibited proliferation rate at day 7, indicating early commitment for differentiation. The phenotypical characteristics of DC stimulated hMSCs provided signatures of differentiation towards osteogenic lineage, which was subsequently confirmed using ALP assay, collagen deposition, matrix mineralization, and genetic expression. Our findings suggest that DC stimulation induced early osteogenesis in hMSCs with a higher level of intracellular reactive oxygen species (ROS), whereas the stimulation with square wave directed late osteogenesis with a lower ROS regeneration. In summary, the present study critically analyzes the role of electrical stimulation and its waveforms in regulating osteogenesis, without external biochemical differentiation inducers, on a bone-mimicking functional substrate. Such a strategy can potentially be adopted to develop orthopedic implant-based bioelectronic medicine for bone regeneration. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Asish Kumar Panda
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, India
| | - V S N Sitaramgupta
- Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India
| | - Hardik J Pandya
- Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India
- Centre for Product Design and Manufacturing, Indian Institute of Science, Bangalore, India
| | - Bikramjit Basu
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
6
|
Wang CC, Wei SC, Luo SC. Recent Advances and Biomedical Applications of Peptide-Integrated Conducting Polymers. ACS APPLIED BIO MATERIALS 2022; 5:1916-1933. [PMID: 35119258 DOI: 10.1021/acsabm.1c01194] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Conducting polymers (CPs) are of great interests to researchers around the world in biomedical applications owing to their unique electrical and mechanical properties. Besides, they are easy to fabricate and have long-term stability. These features make CPs a powerful building block of modern biomaterials. Peptide functionalization has been a versatile tool for the development of CP-based biomaterials. With the aid of peptide modifications, the biocompatibility, target selectivity, and cellular interactions of CPs can be greatly improved. Reflecting these aspects, an increasing number of studies on peptide-integrated conducting polymers have been reported recently. In this review, various kinds of peptide immobilization strategies on CPs are introduced. Moreover, the aims of peptide modification are discussed in three aspects: enhancing the specific selectivity, avoiding nonspecific adhesion, and mimicking the environment of extracellular matrix. We highlighted recent studies in the applications of peptide-integrated CPs in electrochemical sensors, antifouling surfaces, and conductive biointerfaces. These studies have shown great potentials from the integration of peptide and CPs as a versatile platform for advanced biological and clinical applications in the near future.
Collapse
Affiliation(s)
- Chi-Cha Wang
- Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Shu-Chen Wei
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, No.1 Jen Ai Road, Section 1, Taipei 10051, Taiwan
| | - Shyh-Chyang Luo
- Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan.,Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes (NHRI), Miaoli County, 35053 Taiwan
| |
Collapse
|
7
|
Fabrication of vertically aligned PEDOT nanotube arrays on microelectrodes to interface neurons. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Chen FJ, Hsiao YS, Liao IH, Liu CT, Wu PI, Lin CY, Cheng NC, Yu J. Rational design of a highly porous electronic scaffold with concurrent enhancement in cell behaviors and differentiation under electrical stimulation. J Mater Chem B 2021; 9:7674-7685. [PMID: 34586139 DOI: 10.1039/d1tb01260f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Conductive polymers (CPs) have received increasing attention as promising materials for studying electrophysiological signals in cell and tissue engineering. The combination of CPs with electrical stimulation (ES) could possibly enhance neurogenesis, osteogenesis, and myogenesis. To date, research has been prioritized on capitalizing CPs as two-dimensional (2D) structures for guiding the differentiation. In contrast, relatively little is conducted on the implementation of 3D conductive scaffolds. In this research, we report the synergic assembly of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and multi-walled carbon nanotubes (MWCNTs) as a biocompatible, electrically conductive, mechanically robust and structurally porous 3D scaffold. To showcase the bioelectronic utilization, a proof-of-concept demonstration of electrically stimulated cell culture under ES is conducted. The ES effects coupled with the 3D scaffold are promising on pheochromocytoma 12 (PC12), a neuronal cell line, and the ES effect on osteogenesis of human adipose-derived stem cells (hASC) was further studied. PC12 cultured on this PEDOT:PSS/MWCNT 3D scaffolds was induced to differentiate toward a more mature neuronal phenotype with the ES treatment. Furthermore, hASC osteogenesis could be highly promoted in this conductive scaffold with ES. Calcium deposition concentration and osteo-differentiated gene markers were significantly higher with ES. The facile assembly of 3D conductive scaffolds sheds light on both platforms for investigating the 3D microenvironment for electrophysiological simulation of cells and tissues under the ES treatment of in vivo tissue engineering.
Collapse
Affiliation(s)
- Fang-Jung Chen
- Department of Chemical Engineering, National Taiwan University, Da'an Dist., Taipei City 10617, Taiwan.
| | - Yu-Sheng Hsiao
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Da'an Dist., Taipei City 10607, Taiwan.
| | - I-Hsiang Liao
- Department of Chemical Engineering, National Taiwan University, Da'an Dist., Taipei City 10617, Taiwan.
| | - Chun-Ting Liu
- Department of Chemical Engineering, National Taiwan University, Da'an Dist., Taipei City 10617, Taiwan.
| | - Po-I Wu
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Da'an Dist., Taipei City 10607, Taiwan.
| | - Che-Yu Lin
- Institute of Applied Mechanics, National Taiwan University, Da'an Dist., Taipei City 10617, Taiwan
| | - Nai-Chen Cheng
- Department of Surgery, National Taiwan University Hospital, Zhongzheng Dist., Taipei City 10048, Taiwan
| | - Jiashing Yu
- Department of Chemical Engineering, National Taiwan University, Da'an Dist., Taipei City 10617, Taiwan.
| |
Collapse
|