1
|
Lage DP, Vale DL, Silva MGP, Martins VT, Gonçalves AAM, Silva KA, Moreira GJL, Olegário RD, Rizzatti FC, Freitas CS, Pimenta BL, Falcão KOM, Dias SSG, Oliveira-da-Silva JA, Câmara RSB, Pereira IAG, Chávez-Fumagalli MA, Roatt BM, Machado-de-Ávila RA, Galdino AS, Coelho EAF. A new chimeric protein composed by T-cell epitopes from peroxidoxin and pyridoxal kinase proteins is protective against visceral leishmaniasis. Cell Immunol 2025; 411-412:104949. [PMID: 40198961 DOI: 10.1016/j.cellimm.2025.104949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/10/2025]
Abstract
Visceral leishmaniasis (VL) is a neglected tropical disease caused by intracellular protozoan parasites, and which present high incidence in populations in the world. The diagnosis is difficult to be performed, and treatment is toxic and/or presents high cost. In this context, prophylactic vaccination could help as an effective control measure against the disease. In this study, a new chimeric protein (LAV) was constructed with immunogenic T-cell epitopes from two immunogenic Leishmania proteins, and it was evaluated to protects BALB/c mice against Leishmania infantum infection. For this, animals were vaccinated with rLAV associated with micelles (Mic) or monophosphoryl lipid A (MPLA) as adjuvants; while the others received saline, rLAV, Mic or MPLA as controls. Results showed that the rLAV/Mic and rLAV/MPLA combinations induced higher cell proliferation indexes in stimulated cell cultures after infection, as well as the development of a polarized Th1-type cellular and humoral response before and after infection, which was based on the production of IFN-γ, IL-12, TNF-α, nitrite, and IgG2a isotype antibodies. In addition, both CD4+ and CD8+ T-cell subtypes were important for the IFN- secretion in both groups, as compared to the others. Control groups mice produced significantly higher levels of IL-4, IL-10 and anti-parasite IgG1 antibodies, suggesting the occurrence of a Th2-type immune profile in these unprotected animals. The parasite load was found to be significantly lower in mice vaccinated with rLAV/MPLA or rLAV/Mic, as compared to the others, by using a limiting dilution assay and qPCR. In conclusion, data suggest that rLAV plus adjuvant could be considered as a vaccine candidate in future studies to protect against VL.
Collapse
Affiliation(s)
- Daniela P Lage
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30.130-100, Minas Gerais, Brazil
| | - Danniele L Vale
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30.130-100, Minas Gerais, Brazil
| | - Marcela G P Silva
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30.130-100, Minas Gerais, Brazil
| | - Vívian T Martins
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30.130-100, Minas Gerais, Brazil
| | - Ana A M Gonçalves
- Microrganism's Biotechnology Laboratory and National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Universidade Federal de São João Del-Rei, Divinópolis, 35.501-296, Minas Gerais, Brazil
| | - Kamila A Silva
- Microrganism's Biotechnology Laboratory and National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Universidade Federal de São João Del-Rei, Divinópolis, 35.501-296, Minas Gerais, Brazil
| | - Gabriel J L Moreira
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Departamento de Ciências Biológicas, Insituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Rafaela D Olegário
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma 88806-000, Santa Catarina, Brazil
| | - Flávia C Rizzatti
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma 88806-000, Santa Catarina, Brazil
| | - Camila S Freitas
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30.130-100, Minas Gerais, Brazil
| | - Breno L Pimenta
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30.130-100, Minas Gerais, Brazil
| | - Karolina O M Falcão
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, 31.270-901, Minas Gerais, Brazil
| | - Saulo S G Dias
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, 31.270-901, Minas Gerais, Brazil
| | - João A Oliveira-da-Silva
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30.130-100, Minas Gerais, Brazil
| | - Raquel S B Câmara
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30.130-100, Minas Gerais, Brazil
| | - Isabela A G Pereira
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30.130-100, Minas Gerais, Brazil
| | - Miguel A Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José S/N, Umacollo, Arequipa, Peru
| | - Bruno M Roatt
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Departamento de Ciências Biológicas, Insituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Ricardo A Machado-de-Ávila
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma 88806-000, Santa Catarina, Brazil
| | - Alexsandro S Galdino
- Microrganism's Biotechnology Laboratory and National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Universidade Federal de São João Del-Rei, Divinópolis, 35.501-296, Minas Gerais, Brazil
| | - Eduardo A F Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30.130-100, Minas Gerais, Brazil; Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, 31.270-901, Minas Gerais, Brazil.
| |
Collapse
|
2
|
Yin Q, Wang Y, Xiang Y, Xu F. Nanovaccines: Merits, and diverse roles in boosting antitumor immune responses. Hum Vaccin Immunother 2022; 18:2119020. [PMID: 36170662 DOI: 10.1080/21645515.2022.2119020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
An attractive type of cancer immunotherapy is cancer therapeutic vaccines that induce antitumor immunity effectively. Although supportive results in the recent vaccine studies, there are still numerous drawbacks, such as poor stability, weak immunogenicity and strong toxicity, to be tackled for promoting the potency and durability of antitumor efficacy. NPs (Nanoparticles)-based vaccines offer unique opportunities to breakthrough the current bottleneck. As a rule, nanovaccines are new the generations of vaccines that use NPs as carriers and/or adjuvants. Several advantages of nanovaccines are constantly explored, including optimal nanometer size, high stability, plenty of antigen loading, enhanced immunogenicity, tunable antigen presentation, more retention in lymph nodes and promote patient compliance by a lower frequency of dosing. Here, we summarized the merits and highlight the diverse role nanovaccines play in improving antitumor responses.
Collapse
Affiliation(s)
- Qiliang Yin
- Department of Cadre Ward, The First Hospital of Jilin University, Changchun, China
| | - Ying Wang
- Academy of Health Management, Changchun University of Chinese Medicine, Changchun, China
| | - Yipeng Xiang
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Feng Xu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Gupta AK, Das S, Kamran M, Ejazi SA, Ali N. The Pathogenicity and Virulence of Leishmania - interplay of virulence factors with host defenses. Virulence 2022; 13:903-935. [PMID: 35531875 PMCID: PMC9154802 DOI: 10.1080/21505594.2022.2074130] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Leishmaniasis is a group of disease caused by the intracellular protozoan parasite of the genus Leishmania. Infection by different species of Leishmania results in various host immune responses, which usually lead to parasite clearance and may also contribute to pathogenesis and, hence, increasing the complexity of the disease. Interestingly, the parasite tends to reside within the unfriendly environment of the macrophages and has evolved various survival strategies to evade or modulate host immune defense. This can be attributed to the array of virulence factors of the vicious parasite, which target important host functioning and machineries. This review encompasses a holistic overview of leishmanial virulence factors, their role in assisting parasite-mediated evasion of host defense weaponries, and modulating epigenetic landscapes of host immune regulatory genes. Furthermore, the review also discusses the diagnostic potential of various leishmanial virulence factors and the advent of immunomodulators as futuristic antileishmanial drug therapy.
Collapse
Affiliation(s)
- Anand Kumar Gupta
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Sonali Das
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Mohd Kamran
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Sarfaraz Ahmad Ejazi
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Nahid Ali
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| |
Collapse
|
6
|
Yang E, Yu H, Choi S, Park KM, Jung HS, Chang PS. Controlled rate slow freezing with lyoprotective agent to retain the integrity of lipid nanovesicles during lyophilization. Sci Rep 2021; 11:24354. [PMID: 34934167 PMCID: PMC8692592 DOI: 10.1038/s41598-021-03841-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/08/2021] [Indexed: 12/02/2022] Open
Abstract
We designed a novel lyophilization method using controlled rate slow freezing (CSF) with lyoprotective agent (LPA) to achieve intact lipid nanovesicles after lyophilization. During the freezing step, LPA prevented water supercooling, and the freezing rate was controlled by CSF. Regulating the freezing rate by various liquid media was a crucial determinant of membrane disruption, and isopropanol (freezing rate of 0.933 °C/min) was the optimal medium for the CSF system. Lyophilized lipid nanovesicle using both CSF and LPA retained 92.9% of the core material and had uniform size distributions (Z-average diameter = 133.4 nm, polydispersity index = 0.144), similar to intact vesicles (120.7 nm and 0.159, respectively), after rehydration. Only lyophilized lipid nanovesicle using both CSF and LPA showed no changes in membrane fluidity and polarity. This lyophilization method can be applied to improve storage stability of lipid nanocarriers encapsulating drugs while retaining their original activity.
Collapse
Affiliation(s)
- Eunhye Yang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyunjong Yu
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul, 08826, Republic of Korea
| | - SungHak Choi
- Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyung-Min Park
- Department of Food Science and Biotechnology, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Ho-Sup Jung
- Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Pahn-Shick Chang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea.
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul, 08826, Republic of Korea.
- Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
8
|
Abstract
INTRODUCTION Vaccination is so far the most effective way of eradicating infections. Rapidly emerging drug resistance against infectious diseases and chemotherapy-related toxicities in cancer warrant immediate vaccine development to save mankind. Subunit vaccines alone, however, fail to elicit sufficiently strong and long-lasting protective immunity against deadly pathogens. Nanoparticle (NP)-based delivery vehicles like microemulsions, liposomes, virosomes, nanogels, micelles and dendrimers offer promising strategies to overcome limitations of traditional vaccine adjuvants. Nanovaccines can improve targeted delivery, antigen presentation, stimulation of body's innate immunity, strong T cell response combined with safety to combat infectious diseases and cancers. Further, nanovaccines can be highly beneficial to generate effective immutherapeutic formulations against cancer. AREAS COVERED This review summarizes the emerging nanoparticle strategies highlighting their success and challenges in preclinical and clinical trials in infectious diseases and cancer. It provides a concise overview of current nanoparticle-based vaccines, their adjuvant potential and their cellular delivery mechanisms. EXPERT OPINION The nanovaccines (50-250 nm in size) are most efficient in terms of tissue targeting, prolonged circulation and preferential uptake by the professional APCs chiefly due to their small size. More rational designing, improved antigen loading, extensive functionalization and targeted delivery are some of the future goals of ideal nanovaccines.
Collapse
Affiliation(s)
- Amrita Das
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Nahid Ali
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|