1
|
Xue L, An R, Zhao J, Qiu M, Wang Z, Ren H, Yu D, Zhu X. Self-Healing Hydrogels: Mechanisms and Biomedical Applications. MedComm (Beijing) 2025; 6:e70181. [PMID: 40276645 PMCID: PMC12018771 DOI: 10.1002/mco2.70181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/15/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
Hydrogels have emerged as dependable candidates for tissue repair because of their exceptional biocompatibility and tunable mechanical properties. However, conventional hydrogels are vulnerable to damage owing to mechanical stress and environmental factors that compromise their structural integrity and reduce their lifespan. In contrast, self-healing hydrogels with their inherent ability to restore structure and function autonomously offer prolonged efficacy and enhanced appeal. These hydrogels can be engineered into innovative forms including stimulus-responsive, self-degradable, injectable, and drug-loaded variants, thereby enhancing their applicability in wound healing, drug delivery, and tissue engineering. This review summarizes the categories and mechanisms of self-healing hydrogels, along with their biomedical applications, including tissue repair, drug delivery, and biosensing. Tissue repair includes wound healing, bone-related repair, nerve repair, and cardiac repair. Additionally, we explored the challenges that self-healing hydrogels continue to face in tissue repair and presented a forward-looking perspective on their development. Consequently, it is anticipated that self-healing hydrogels will be progressively designed and developed for applications that extend beyond tissue repair to a broader range of biomedical applications.
Collapse
Affiliation(s)
- Lingling Xue
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Ran An
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Junqi Zhao
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Mengdi Qiu
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Zhongxia Wang
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Haozhen Ren
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Decai Yu
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Xinhua Zhu
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| |
Collapse
|
2
|
Vitkūnaitė E, Žymantaitė E, Mlynska A, Andrijec D, Limanovskaja K, Kaszynski G, Matulis D, Šakalys V, Jonušauskas L. Advancing 3D Spheroid Research through 3D Scaffolds Made by Two-Photon Polymerization. Bioengineering (Basel) 2024; 11:902. [PMID: 39329644 PMCID: PMC11429241 DOI: 10.3390/bioengineering11090902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/16/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Three-dimensional cancer cell cultures have been a valuable research model for developing new drug targets in the preclinical stage. However, there are still limitations to these in vitro models. Scaffold-based systems offer a promising approach to overcoming these challenges in cancer research. In this study, we show that two-photon polymerization (TPP)-assisted printing of scaffolds enhances 3D tumor cell culture formation without additional modifications. TPP is a perfect fit for this task, as it is an advanced 3D-printing technique combining a μm-level resolution with complete freedom in the design of the final structure. Additionally, it can use a wide array of materials, including biocompatible ones. We exploit these capabilities to fabricate scaffolds from two different biocompatible materials-PEGDA and OrmoClear. Cubic spheroid scaffolds with a more complex architecture were produced and tested. The biological evaluation showed that the human ovarian cancer cell lines SKOV3 and A2780 formed 3D cultures on printed scaffolds without a preference for the material. The gene expression evaluation showed that the A2780 cell line exhibited substantial changes in CDH1, CDH2, TWIST, COL1A1, and SMAD3 gene expression, while the SKOV3 cell line had slight changes in said gene expression. Our findings show how the scaffold architecture design impacts tumor cell culture 3D spheroid formation, especially for the A2780 cancer cell line.
Collapse
Affiliation(s)
- Eglė Vitkūnaitė
- Vital3D Technologies, Saulėtekio al. 15, LT-10224 Vilnius, Lithuania; (E.V.); (D.A.); (K.L.); (V.Š.)
| | - Eglė Žymantaitė
- Laboratory of Immunology, National Cancer Institute, P. Baublio g. 3B, LT-08406 Vilnius, Lithuania; (E.Ž.); (A.M.)
- Life Sciences Center, Vilnius University, Sauletekio 7, LT-10257 Vilnius, Lithuania
| | - Agata Mlynska
- Laboratory of Immunology, National Cancer Institute, P. Baublio g. 3B, LT-08406 Vilnius, Lithuania; (E.Ž.); (A.M.)
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Saulėtekio al. 11, LT-10223 Vilnius, Lithuania
| | - Dovilė Andrijec
- Vital3D Technologies, Saulėtekio al. 15, LT-10224 Vilnius, Lithuania; (E.V.); (D.A.); (K.L.); (V.Š.)
| | - Karolina Limanovskaja
- Vital3D Technologies, Saulėtekio al. 15, LT-10224 Vilnius, Lithuania; (E.V.); (D.A.); (K.L.); (V.Š.)
| | - Grzegorz Kaszynski
- Vital3D Technologies, Saulėtekio al. 15, LT-10224 Vilnius, Lithuania; (E.V.); (D.A.); (K.L.); (V.Š.)
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio 7, LT-10257 Vilnius, Lithuania;
| | - Vidmantas Šakalys
- Vital3D Technologies, Saulėtekio al. 15, LT-10224 Vilnius, Lithuania; (E.V.); (D.A.); (K.L.); (V.Š.)
| | - Linas Jonušauskas
- Vital3D Technologies, Saulėtekio al. 15, LT-10224 Vilnius, Lithuania; (E.V.); (D.A.); (K.L.); (V.Š.)
| |
Collapse
|
3
|
Wang J, Yang W, Li Y, Ma X, Xie Y, Zhou G, Liu S. Dual-Temperature/pH-Sensitive Hydrogels with Excellent Strength and Toughness Crosslinked Using Three Crosslinking Methods. Gels 2024; 10:480. [PMID: 39057503 PMCID: PMC11275505 DOI: 10.3390/gels10070480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Hydrogels are widely used as excellent drug carriers in the field of biomedicine. However, their application in medicine is limited by their poor mechanical properties and softness. To improve the mechanical properties of hydrogels, a novel triple-network amphiphilic hydrogel with three overlapping crosslinking methods using a one-pot free-radical polymerization was synthesized in this study. Temperature-sensitive and pH-sensitive monomers were incorporated into the hydrogel to confer stimulus responsiveness, making the hydrogel stimuli-responsive. The successful synthesis of the hydrogel was confirmed using techniques, such as proton nuclear magnetic resonance spectroscopy (1H NMR), Fourier-transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD). In order to compare and analyze the properties of physically crosslinked hydrogels, physically-chemically double-crosslinked hydrogels, and physically-chemically clicked triple-crosslinked hydrogels, various tests were conducted on the gels' morphology, swelling behavior, thermal stability, mechanical properties, and drug loading capacity. The results indicate that the triple-crosslinked hydrogel maintains low swelling, high mechanical strength, and good thermal stability while not significantly compromising its drug delivery capability.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shouxin Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China; (J.W.); (W.Y.); (Y.L.); (X.M.); (Y.X.); (G.Z.)
| |
Collapse
|
4
|
Santos N, Fuentes-Lemus E, Ahumada M. Use of photosensitive molecules in the crosslinking of biopolymers: applications and considerations in biomaterials development. J Mater Chem B 2024; 12:6550-6562. [PMID: 38913025 DOI: 10.1039/d4tb00299g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The development of diverse types of biomaterials has significantly contributed to bringing new biomedical strategies to treat clinical conditions. Applications of these biomaterials can range from mechanical support and protection of injured tissues to joint replacement, tissue implants, and drug delivery systems. Among the strategies commonly used to prepare biomaterials, the use of electromagnetic radiation to initiate crosslinking stands out. The predominance of photo-induced polymerization methods relies on a fast, efficient, and straightforward process that can be easily adjusted to clinical needs. This strategy consists of irradiating the components that form the material with photons in the near ultraviolet-visible wavelength range (i.e., ∼310 to 750 nm) in the presence of a photoactive molecule. Upon photon absorption, photosensitive molecules can generate excited species that initiate photopolymerization through different reaction mechanisms. However, this process could promote undesired side reactions depending on the target zone or treatment type (e.g., oxidative stress and modification of biomolecules such as proteins and lipids). This review explores the basic concepts behind the photopolymerization process of ex situ and in situ biomaterials. Particular emphasis was put on the photosensitization initiated by the most employed photosensitizers and the photoreactions that they mediate in aqueous media. Finally, the undesired oxidation reactions at the bio-interface and potential solutions are presented.
Collapse
Affiliation(s)
- Nicolas Santos
- Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona 08017, Spain
| | - Eduardo Fuentes-Lemus
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen, 2200, Denmark.
| | - Manuel Ahumada
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile.
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
| |
Collapse
|
5
|
Young OM, Xu X, Sarker S, Sochol RD. Direct laser writing-enabled 3D printing strategies for microfluidic applications. LAB ON A CHIP 2024; 24:2371-2396. [PMID: 38576361 PMCID: PMC11060139 DOI: 10.1039/d3lc00743j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 04/22/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
Over the past decade, additive manufacturing-or "three-dimensional (3D) printing"-has attracted increasing attention in the Lab on a Chip community as a pathway to achieve sophisticated system architectures that are difficult or infeasible to fabricate via conventional means. One particularly promising 3D manufacturing technology is "direct laser writing (DLW)", which leverages two-photon (or multi-photon) polymerization (2PP) phenomena to enable high geometric versatility, print speeds, and precision at length scales down to the 100 nm range. Although researchers have demonstrated the potential of using DLW for microfluidic applications ranging from organ on a chip and drug delivery to micro/nanoparticle processing and soft microrobotics, such scenarios present unique challenges for DLW. Specifically, microfluidic systems typically require macro-to-micro fluidic interfaces (e.g., inlet and outlet ports) to facilitate fluidic loading, control, and retrieval operations; however, DLW-based 3D printing relies on a micron-to-submicron-sized 2PP volume element (i.e., "voxel") that is poorly suited for manufacturing these larger-scale fluidic interfaces. In this Tutorial Review, we highlight and discuss the four most prominent strategies that researchers have developed to circumvent this trade-off and realize macro-to-micro interfaces for DLW-enabled microfluidic components and systems. In addition, we consider the possibility that-with the advent of next-generation commercial DLW printers equipped with new dynamic voxel tuning, print field, and laser power capabilities-the overall utility of DLW strategies for Lab on a Chip fields may soon expand dramatically.
Collapse
Affiliation(s)
- Olivia M Young
- Department of Mechanical Engineering, University of Maryland, College Park, 2147 Glenn L. Martin Hall, College Park, MD, 20742, USA.
| | - Xin Xu
- Department of Mechanical Engineering, University of Maryland, College Park, 2147 Glenn L. Martin Hall, College Park, MD, 20742, USA.
| | - Sunandita Sarker
- Department of Mechanical Engineering, University of Maryland, College Park, 2147 Glenn L. Martin Hall, College Park, MD, 20742, USA.
- Maryland Robotics Center, University of Maryland, College Park, MD, 20742, USA
- Institute for Systems Research, University of Maryland, College Park, MD, 20742, USA
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, MA, 01003, USA
| | - Ryan D Sochol
- Department of Mechanical Engineering, University of Maryland, College Park, 2147 Glenn L. Martin Hall, College Park, MD, 20742, USA.
- Maryland Robotics Center, University of Maryland, College Park, MD, 20742, USA
- Institute for Systems Research, University of Maryland, College Park, MD, 20742, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
6
|
Li T, Liu J, Bin FC, Duan Q, Wu XY, Dong XZ, Zheng ML. Multipatterned Chondrocytes' Scaffolds by FL-MOPL with a BSA-GMA Hydrogel to Regulate Chondrocytes' Morphology. ACS APPLIED BIO MATERIALS 2024; 7:2594-2603. [PMID: 38523342 DOI: 10.1021/acsabm.4c00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Repairing articular cartilage damage is challenging due to its low regenerative capacity. In vitro, cartilage regeneration is a potential strategy for the functional reconstruction of cartilage defects. A hydrogel is an advanced material for mimicking the extracellular matrix (ECM) due to its hydrophilicity and biocompatibility, which is known as an ideal scaffold for cartilage regeneration. However, chondrocyte culture in vitro tends to dedifferentiate, leading to fibrosis and reduced mechanical properties of the newly formed cartilage tissue. Therefore, it is necessary to understand the mechanism of modulating the chondrocytes' morphology. In this study, we synthesize photo-cross-linkable bovine serum albumin-glycidyl methacrylate (BSA-GMA) with 65% methacrylation. The scaffolds are found to be suitable for chondrocyte growth, which are fabricated by homemade femtosecond laser maskless optical projection lithography (FL-MOPL). The large-area chondrocyte scaffolds have holes with interior angles of triangle (T), quadrilateral (Q), pentagon (P), hexagonal (H), and round (R). The FL-MOPL polymerization mechanism, swelling, degradation, and biocompatibility of the BSA-GMA hydrogel have been investigated. Furthermore, cytoskeleton and nucleus staining reveals that the R-scaffold with larger interior angle is more effective in maintaining chondrocyte morphology and preventing dedifferentiation. The scaffold's ability to maintain the chondrocytes' morphology improves as its shape matches that of the chondrocytes. These results suggest that the BSA-GMA scaffold is a suitable candidate for preventing chondrocyte differentiation and supporting cartilage tissue repair and regeneration. The proposed method for chondrocyte in vitro culture by developing biocompatible materials and flexible fabrication techniques would broaden the potential application of chondrocyte transplants as a viable treatment for cartilage-related diseases.
Collapse
Affiliation(s)
- Teng Li
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No.29 Zhongguancun East Road, Beijing 100190, PR China
- School of Future Technologies University of Chinese Academy of Sciences, Yanqihu Campus, Beijing 101407, PR China
| | - Jie Liu
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No.29 Zhongguancun East Road, Beijing 100190, PR China
| | - Fan-Chun Bin
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No.29 Zhongguancun East Road, Beijing 100190, PR China
- School of Future Technologies University of Chinese Academy of Sciences, Yanqihu Campus, Beijing 101407, PR China
| | - Qi Duan
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No.29 Zhongguancun East Road, Beijing 100190, PR China
- School of Future Technologies University of Chinese Academy of Sciences, Yanqihu Campus, Beijing 101407, PR China
| | - Xin-Yi Wu
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No.29 Zhongguancun East Road, Beijing 100190, PR China
- School of Future Technologies University of Chinese Academy of Sciences, Yanqihu Campus, Beijing 101407, PR China
| | - Xian-Zi Dong
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No.29 Zhongguancun East Road, Beijing 100190, PR China
| | - Mei-Ling Zheng
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No.29 Zhongguancun East Road, Beijing 100190, PR China
| |
Collapse
|
7
|
Jing X, Zhao P, Wang F, Han M, Lin J. Precise Focal Spot Positioning on an Opaque Substrate Based on the Diffraction Phenomenon in Laser Microfabrication. MICROMACHINES 2023; 14:2256. [PMID: 38138424 PMCID: PMC10745451 DOI: 10.3390/mi14122256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
The precise positioning of the laser focal spot on the substrate is an important issue for laser microfabrication. In this work, a diffraction pattern-based focal spot positioning method (DFSPM) is proposed to achieve the precise positioning of the laser focal spot on opaque substrates. A series of diffraction patterns of laser focus under-positioning, exact positioning and over-positioning were obtained to investigate the cross-section light distribution of the laser focal spot. According to the monotonic tendency of FWHM to exhibit light intensity at the focal spot cross-section away from the focal plane, the FWHM threshold of polynomial fitted curves was used to determine the exact positioning of laser focus. The ascending scanning method was used to obtain the diffraction patterns at various vertical positions and the FWHM threshold of light distribution at the exact position. The polynomial fitted curves verify the FWHM monotonic tendency of light intensity distribution at the focal spot cross-section along the optical axis. Precise positioning can be achieved with a 100 nm adjustment resolution. This work was expected to provide references for laser microfabrication on opaque materials.
Collapse
Affiliation(s)
- Xian Jing
- College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
- Jilin Provincial Key Laboratory of Micro/Nano and Ultra-Precision Manufacturing, School of Mechatronic Engineering, Changchun University of Technology, Changchun 130012, China
| | - Pengju Zhao
- Jilin Provincial Key Laboratory of Micro/Nano and Ultra-Precision Manufacturing, School of Mechatronic Engineering, Changchun University of Technology, Changchun 130012, China
| | - Fuzeng Wang
- Jilin Provincial Key Laboratory of Micro/Nano and Ultra-Precision Manufacturing, School of Mechatronic Engineering, Changchun University of Technology, Changchun 130012, China
| | - Mingkun Han
- Jilin Provincial Key Laboratory of Micro/Nano and Ultra-Precision Manufacturing, School of Mechatronic Engineering, Changchun University of Technology, Changchun 130012, China
| | - Jieqiong Lin
- Jilin Provincial Key Laboratory of Micro/Nano and Ultra-Precision Manufacturing, School of Mechatronic Engineering, Changchun University of Technology, Changchun 130012, China
| |
Collapse
|
8
|
Li Y, Zhang X, Zhang X, Zhang Y, Hou D. Recent Progress of the Vat Photopolymerization Technique in Tissue Engineering: A Brief Review of Mechanisms, Methods, Materials, and Applications. Polymers (Basel) 2023; 15:3940. [PMID: 37835989 PMCID: PMC10574968 DOI: 10.3390/polym15193940] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Vat photopolymerization (VP), including stereolithography (SLA), digital light processing (DLP), and volumetric printing, employs UV or visible light to solidify cell-laden photoactive bioresin contained within a vat in a point-by-point, layer-by-layer, or volumetric manner. VP-based bioprinting has garnered substantial attention in both academia and industry due to its unprecedented control over printing resolution and accuracy, as well as its rapid printing speed. It holds tremendous potential for the fabrication of tissue- and organ-like structures in the field of regenerative medicine. This review summarizes the recent progress of VP in the fields of tissue engineering and regenerative medicine. First, it introduces the mechanism of photopolymerization, followed by an explanation of the printing technique and commonly used biomaterials. Furthermore, the application of VP-based bioprinting in tissue engineering was discussed. Finally, the challenges facing VP-based bioprinting are discussed, and the future trends in VP-based bioprinting are projected.
Collapse
Affiliation(s)
- Ying Li
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Xueqin Zhang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Xin Zhang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yuxuan Zhang
- FuYang Sineva Materials Technology Co., Ltd., Beijing 100176, China
| | - Dan Hou
- Chinese Academy of Meteorological Sciences, China National Petroleum Corporation, Beijing 102206, China
| |
Collapse
|
9
|
Xiao F, Zheng P, Tang J, Huang X, Kang W, Zhou G, Sun K. Cartilage-bioinspired, tough and lubricated hydrogel based on nanocomposite enhancement effect. J Mater Chem B 2023; 11:4763-4775. [PMID: 37183499 DOI: 10.1039/d3tb00364g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The maintenance of high load-bearing tissues and joint lubrication is essential for suppressing osteoarthritis. The lubrication of natural joints is mainly attributed to the hydration lubrication mechanism of articular cartilage. Phospholipids on the cartilage surface attract water molecules to form a tough hydrated layer to reduce friction. In this work, inspired by the phosphatidylcholine lipids, we synthesized lubricated nanospheres by grafting hydrophilic polymer brushes and further synthesized a nanocomposite hydrogel. The addition of the lubricated nanospheres enhanced both the mechanical and lubricated properties of the hydrogel. The nanocomposite-lubricated hydrogel exhibited a friction coefficient 81.7% lower than the blank hydrogel because of grafting the polymer brushes. Also, the nanocomposite enhancement helped the hydrogel achieve high mechanical properties with a compressive strength of 6.63 MPa (50%). The nanocomposite hydrogel developed here could be a promising candidate material in bionic articular cartilage substitute materials.
Collapse
Affiliation(s)
- Fen Xiao
- Hunan Key Laboratory of Biomedical Nanometer and Device, Hunan University of Technology, Zhuzhou 412007, P. R. China.
| | - Pengshuo Zheng
- Hunan Key Laboratory of Biomedical Nanometer and Device, Hunan University of Technology, Zhuzhou 412007, P. R. China.
| | - Jianxin Tang
- Hunan Key Laboratory of Biomedical Nanometer and Device, Hunan University of Technology, Zhuzhou 412007, P. R. China.
| | - Xin Huang
- Hunan Key Laboratory of Biomedical Nanometer and Device, Hunan University of Technology, Zhuzhou 412007, P. R. China.
| | - Wenji Kang
- Hunan Key Laboratory of Biomedical Nanometer and Device, Hunan University of Technology, Zhuzhou 412007, P. R. China.
| | - Guiyin Zhou
- Hunan Key Laboratory of Biomedical Nanometer and Device, Hunan University of Technology, Zhuzhou 412007, P. R. China.
- School of Physics and Electronics, Central South University, Changsha 410083, China
| | - Kehui Sun
- School of Physics and Electronics, Central South University, Changsha 410083, China
| |
Collapse
|
10
|
Wang Q, Wang X, Feng Y. Chitosan Hydrogel as Tissue Engineering Scaffolds for Vascular Regeneration Applications. Gels 2023; 9:gels9050373. [PMID: 37232967 DOI: 10.3390/gels9050373] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Chitosan hydrogels have a wide range of applications in tissue engineering scaffolds, mainly due to the advantages of their chemical and physical properties. This review focuses on the application of chitosan hydrogels in tissue engineering scaffolds for vascular regeneration. We have mainly introduced these following aspects: advantages and progress of chitosan hydrogels in vascular regeneration hydrogels and the modification of chitosan hydrogels to improve the application in vascular regeneration. Finally, this paper discusses the prospects of chitosan hydrogels for vascular regeneration.
Collapse
Affiliation(s)
- Qiulin Wang
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China
| | - Xiaoyu Wang
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Weijin Road 92, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology, Tianjin University, Weijin Road 92, Tianjin 300072, China
| |
Collapse
|
11
|
O'Halloran S, Pandit A, Heise A, Kellett A. Two-Photon Polymerization: Fundamentals, Materials, and Chemical Modification Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204072. [PMID: 36585380 PMCID: PMC9982557 DOI: 10.1002/advs.202204072] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Two-photon polymerization (TPP) has become a premier state-of-the-art method for microscale fabrication of bespoke polymeric devices and surfaces. With applications ranging from the production of optical, drug delivery, tissue engineering, and microfluidic devices, TPP has grown immensely in the past two decades. Significantly, the field has expanded from standard acrylate- and epoxy-based photoresists to custom formulated monomers designed to change the hydrophilicity, surface chemistry, mechanical properties, and more of the resulting structures. This review explains the essentials of TPP, from its initial conception through to standard operating principles and advanced chemical modification strategies for TPP materials. At the outset, the fundamental chemistries of radical and cationic polymerization are described, along with strategies used to tailor mechanical and functional properties. This review then describes TPP systems and introduces an array of commonly used photoresists including hard polyacrylic resins, soft hydrogel acrylic esters, epoxides, and organic/inorganic hybrid materials. Specific examples of each class-including chemically modified photoresists-are described to inform the understanding of their applications to the fields of tissue-engineering scaffolds, micromedical, optical, and drug delivery devices.
Collapse
Affiliation(s)
- Seán O'Halloran
- CÚRAMthe SFI Research Centre for Medical DevicesSchool of Chemical SciencesDublin City UniversityGlasnevinDublin 9Ireland
| | - Abhay Pandit
- CÚRAMthe SFI Research Centre for Medical DevicesUniversity of GalwayGalwayH91 W2TYIreland
| | - Andreas Heise
- RCSIUniversity of Medicine and Health SciencesDepartment of Chemistry123 St. Stephens GreenDublinDublin 2Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER)RCSI University of Medicine and Health Sciences and Trinity College DublinDublinDublin 2Ireland
- CÚRAMthe SFI Research Centre for Medical DevicesRCSI University of Medicine and Health SciencesDublin and National University of Ireland GalwayGalwayH91 W2TYIreland
| | - Andrew Kellett
- CÚRAMthe SFI Research Centre for Medical DevicesSchool of Chemical SciencesDublin City UniversityGlasnevinDublin 9Ireland
- SSPCthe SFI Research Centre for PharmaceuticalsDublin City UniversityGlasnevinDublinDublin 9Ireland
| |
Collapse
|
12
|
Fu H, Jing X, Lin J, Wang L, Jiang H, Yu B, Sun M. Knowledge domain and hotspots analysis concerning applications of two-photon polymerization in biomedical field: A bibliometric and visualized study. Front Bioeng Biotechnol 2022; 10:1030377. [PMID: 36246385 PMCID: PMC9561250 DOI: 10.3389/fbioe.2022.1030377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 09/14/2022] [Indexed: 11/29/2022] Open
Abstract
Objective: Two-photon polymerization (TPP) utilizes an optical nonlinear absorption process to initiate the polymerization of photopolymerizable materials. To date, it is the only technique capable of fabricating complex 3D microstructures with finely adjusted geometry on the cell and sub-cell scales. TPP shows a very promising potential in biomedical applications related to high-resolution features, including drug delivery, tissue engineering, microfluidic devices, and so forth. Therefore, it is of high significance to grasp the global scientific achievements in this field. An analysis of publications concerning the applications of TPP in the biomedical field was performed, and the knowledge domain, research hotspots, frontiers, and research directions in this topic were identified according to the research results. Methods: The publications concerning TPP applications in biomedical field were retrieved from WoSCC between 2003 and 2022, Bibliometrics and visual analysis employing CiteSpace software and R-language package Bibliometrix were performed in this study. Results: A total of 415 publications regarding the TPP applications in the biomedical field were retrieved from WoSCC, including 377 articles, and 38 review articles. The studies pertaining to the biomedical applications of TPP began back in 2003 and showed an upward trend constantly. Especially in the recent 5 years, studies of TPP in biomedical field have increased rapidly, with the number of publications from 2017 to 2021 accounting for 52.29% of the total. In terms of output, China was the leading country and Chinese Acad Sci, Tech Inst Phys and Chem was the leading institution. The United States showed the closest cooperation with other countries. ACS applied materials and interfaces was the most prolific journal (n = 13), followed by Biofabrication (n = 11) and Optics express (n = 10). The journals having the top cited papers were Biomaterials, Advanced materials, and Applied physic letters. The most productive author was Aleksandr Ovsianikov (27 articles). Meanwhile, researchers who had close cooperation with other researchers were also prolific authors. “cell behavior”, " (tissue engineering) scaffolds”, “biomaterials,” and “hydrogel” were the main co-occurrence keywords and “additional manufacturing”, “3D printing,” and “microstructures” were the recent burst keywords. The Keyword clusters, “stem cells,” and “mucosal delivery”, appeared recently. A paper reporting unprecedented high-resolution bull models fabricated by TPP was the most locally cited reference (cited 60 times). “Magnetic actuation” and “additive manufacturing” were recently co-cited reference clusters and an article concerning ultracompact compound lens systems manufactured by TPP was the latest burst reference. Conclusion: The applications of TPP in biomedical field is an interdisciplinary research topic and the development of this field requires the active collaboration of researchers and experts from all relevant disciplines. Bringing up a better utilization of TPP as an additive manufacturing technology to better serve the biomedical development has always been the research focus in this field. Research on stem cells behaviors and mucosal delivery based on microstructures fabricated using TPP were becoming new hotspots. And it can be predicted that using TPP as a sourcing technique to fabricate biomedical-related structures and devices is a new research direction. In addition, the research of functional polymers, such as magnetic-driven polymers, was the frontier topic of TPP biomedical applications.
Collapse
Affiliation(s)
- Hongxun Fu
- Key Laboratory of Micro/Nano and Ultra-precision Manufacturing, School of Mechatronic Engineering, Changchun University of Technology, Changchun, Jilin, China
| | - Xian Jing
- Key Laboratory of Micro/Nano and Ultra-precision Manufacturing, School of Mechatronic Engineering, Changchun University of Technology, Changchun, Jilin, China
| | - Jieqiong Lin
- Key Laboratory of Micro/Nano and Ultra-precision Manufacturing, School of Mechatronic Engineering, Changchun University of Technology, Changchun, Jilin, China
| | - Liye Wang
- College of Pharmacy, University of Houston, Houston, TX, United States
| | - Hancheng Jiang
- Key Laboratory of Micro/Nano and Ultra-precision Manufacturing, School of Mechatronic Engineering, Changchun University of Technology, Changchun, Jilin, China
| | - Baojun Yu
- Key Laboratory of Micro/Nano and Ultra-precision Manufacturing, School of Mechatronic Engineering, Changchun University of Technology, Changchun, Jilin, China
- *Correspondence: Baojun Yu, ; Meiyan Sun,
| | - Meiyan Sun
- College of Laboratory Medicine, Jilin Medical University, Changchun, Jilin, China
- *Correspondence: Baojun Yu, ; Meiyan Sun,
| |
Collapse
|
13
|
Yang X, Niu YF, Wei MX, Zhang JN, Liu KL, Du X, Gu ZZ. Generating Microstructures with Highly Variable Mechanical Performance using Two-Photon Lithography and Thiol-ene Photopolymerization. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2802-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Jing X, Fu H, Yu B, Sun M, Wang L. Two-photon polymerization for 3D biomedical scaffolds: Overview and updates. Front Bioeng Biotechnol 2022; 10:994355. [PMID: 36072288 PMCID: PMC9441635 DOI: 10.3389/fbioe.2022.994355] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 07/29/2022] [Indexed: 01/23/2023] Open
Abstract
The needs for high-resolution, well-defined and complex 3D microstructures in diverse fields call for the rapid development of novel 3D microfabrication techniques. Among those, two-photon polymerization (TPP) attracted extensive attention owing to its unique and useful characteristics. As an approach to implementing additive manufacturing, TPP has truly 3D writing ability to fabricate artificially designed constructs with arbitrary geometry. The spatial resolution of the manufactured structures via TPP can exceed the diffraction limit. The 3D structures fabricated by TPP could properly mimic the microenvironment of natural extracellular matrix, providing powerful tools for the study of cell behavior. TPP can meet the requirements of manufacturing technique for 3D scaffolds (engineering cell culture matrices) used in cytobiology, tissue engineering and regenerative medicine. In this review, we demonstrated the development in 3D microfabrication techniques and we presented an overview of the applications of TPP as an advanced manufacturing technique in complex 3D biomedical scaffolds fabrication. Given this multidisciplinary field, we discussed the perspectives of physics, materials science, chemistry, biomedicine and mechanical engineering. Additionally, we dived into the principles of tow-photon absorption (TPA) and TPP, requirements of 3D biomedical scaffolders, developed-to-date materials and chemical approaches used by TPP and manufacturing strategies based on mechanical engineering. In the end, we draw out the limitations of TPP on 3D manufacturing for now along with some prospects of its future outlook towards the fabrication of 3D biomedical scaffolds.
Collapse
Affiliation(s)
- Xian Jing
- Key Laboratory of Micro/Nano and Ultra-precision Manufacturing, School of Mechatronic Engineering, Changchun University of Technology, Changchun, Jilin, China
| | - Hongxun Fu
- Key Laboratory of Micro/Nano and Ultra-precision Manufacturing, School of Mechatronic Engineering, Changchun University of Technology, Changchun, Jilin, China
| | - Baojun Yu
- Key Laboratory of Micro/Nano and Ultra-precision Manufacturing, School of Mechatronic Engineering, Changchun University of Technology, Changchun, Jilin, China
| | - Meiyan Sun
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Liye Wang
- College of Pharmacy, University of Houston, Houston, TX, United States
| |
Collapse
|
15
|
Arslan A, Vanmol K, Dobos A, Natale A, Van Hoorick J, Roose P, Van den Bergen H, Chalyan T, Ovsianikov A, Baudis S, Rogiers V, Vanhaecke T, Rodrigues RM, Thienpont H, Van Erps J, Van Vlierberghe S, Dubruel P. Increasing the Microfabrication Performance of Synthetic Hydrogel Precursors through Molecular Design. Biomacromolecules 2021; 22:4919-4932. [PMID: 34723502 DOI: 10.1021/acs.biomac.1c00704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Implementation of hydrogel precursors in two-photon polymerization (2PP) technology provides promising opportunities in the tissue engineering field thanks to their soft characteristics and similarity to extracellular matrix. Most of the hydrogels, however, are prone to post-fabrication deformations, leading to a mismatch between the computer-aided design and the printed structure. In the present work, we have developed novel synthetic hydrogel precursors to overcome the limitations associated with 2PP processing of conventional hydrogel precursors such as post-processing deformations and a narrow processing window. The precursors are based on a poly(ethylene glycol) backbone containing urethane linkers and are, on average, functionalized with six acrylate terminal groups (three on each terminal group). As a benchmark material, we exploited a precursor with an identical backbone and urethane linkers, albeit functionalized with two acrylate groups, that were reported as state-of-the-art. An in-depth characterization of the hexafunctional precursors revealed a reduced swelling ratio (<0.7) and higher stiffness (>36 MPa Young's modulus) compared to their difunctional analogs. The superior physical properties of the newly developed hydrogels lead to 2PP-based fabrication of stable microstructures with excellent shape fidelity at laser scanning speeds up to at least 90 mm s-1, in contrast with the distorted structures of conventional difunctional precursors. The hydrogel films and microscaffolds revealed a good cell interactivity after functionalization of their surface with a gelatin methacrylamide-based coating. The proposed synthesis strategy provides a one-pot and scalable synthesis of hydrogel building blocks that can overcome the current limitations associated with 2PP fabrication of hydrogel microstructures.
Collapse
Affiliation(s)
- Aysu Arslan
- Polymer Chemistry & Biomaterials Research Group, Centre of Macromolecular Chemistry (CMaC), Ghent University, Krijgslaan 281 S4-Bis, 9000 Ghent, Belgium
| | - Koen Vanmol
- Brussels Photonics (B-PHOT), Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, 1050 Brussels, Belgium
| | - Agnes Dobos
- Polymer Chemistry & Biomaterials Research Group, Centre of Macromolecular Chemistry (CMaC), Ghent University, Krijgslaan 281 S4-Bis, 9000 Ghent, Belgium
| | - Alessandra Natale
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Laarbeeklaan 103, Jette, 1090 Brussels, Belgium
| | - Jasper Van Hoorick
- Polymer Chemistry & Biomaterials Research Group, Centre of Macromolecular Chemistry (CMaC), Ghent University, Krijgslaan 281 S4-Bis, 9000 Ghent, Belgium
| | - Patrice Roose
- Allnex Belgium SA/NV, Anderlechtstraat 33, Drogenbos, 1620 Brussels, Belgium
| | | | - Tatevik Chalyan
- Brussels Photonics (B-PHOT), Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, 1050 Brussels, Belgium
| | - Aleksandr Ovsianikov
- 3D Printing and Biofabrication Group, Institute of Materials Science and Technology, TU Wien, 1060 Vienna, Austria
| | - Stefan Baudis
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/E163-MC, Vienna 1060, Austria
| | - Vera Rogiers
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Laarbeeklaan 103, Jette, 1090 Brussels, Belgium
| | - Tamara Vanhaecke
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Laarbeeklaan 103, Jette, 1090 Brussels, Belgium
| | - Robim M Rodrigues
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Laarbeeklaan 103, Jette, 1090 Brussels, Belgium
| | - Hugo Thienpont
- Brussels Photonics (B-PHOT), Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, 1050 Brussels, Belgium
| | - Jürgen Van Erps
- Brussels Photonics (B-PHOT), Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, 1050 Brussels, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry & Biomaterials Research Group, Centre of Macromolecular Chemistry (CMaC), Ghent University, Krijgslaan 281 S4-Bis, 9000 Ghent, Belgium.,Brussels Photonics (B-PHOT), Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, 1050 Brussels, Belgium
| | - Peter Dubruel
- Polymer Chemistry & Biomaterials Research Group, Centre of Macromolecular Chemistry (CMaC), Ghent University, Krijgslaan 281 S4-Bis, 9000 Ghent, Belgium
| |
Collapse
|
16
|
Tan Y, Zhang L, Rajoka MSR, Mai Z, Bahadur A, Mehwish HM, Umair M, Zhao L, Wu Y, Song X. Jawbones Scaffold Constructed by TGF-β1 and BMP-2 Loaded Chitosan Microsphere Combining with Alg/HA/ICol for Osteogenic-Induced Differentiation. Polymers (Basel) 2021; 13:3079. [PMID: 34577981 PMCID: PMC8466595 DOI: 10.3390/polym13183079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/15/2022] Open
Abstract
Bone scaffolds based on multi-components are the leading trend to address the multifaceted prerequisites to repair various bone defects. Chitosan is the most useable biopolymer, having excellent biological applications. Therefore, in the present study, the chitosan microsphere was prepared by the ion-gel method; transforming growth factor β (TGF-β1) and bone morphogenetic protein 2 (BMP-2) were loaded onto it and then combined with alginate/hyaluronic acid/collagen (Alg/HA/ICol) to construct a jawbones scaffold. The Alg/HA/ICol scaffolds were characterized by FTIR and SEM, and the water content, porosity, tensile properties, biocompatibility, and osteogenic-induced differentiation ability of the Alg/HA/ICol jawbones scaffolds were studied. The results indicate that a three-dimensional porous jawbone scaffold was successfully constructed having 100-250 μm of pore size and >90% of porosity without cytotoxicity against adipose-derived stem cells (ADSCs). Its ALP quantification, osteocalcin expression, and Von Kossamineralized nodule staining was higher than the control group. The jawbones scaffold constructed by TGF-β1 and BMP-2 loaded chitosan microsphere combining with Alg/HA/ICol has potential biomedical application in the future.
Collapse
Affiliation(s)
- Yongxin Tan
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; (Y.T.); (M.S.R.R.); (Z.M.); (M.U.)
| | - Liqun Zhang
- Department of Stomatology, Shenzhen Union Medical Hospital of Huazhong University of Science and Technology (Sixth Affiliated Hospital of Shenzhen University), Shenzhen 518060, China;
| | - Muhammad Shahid Riaz Rajoka
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; (Y.T.); (M.S.R.R.); (Z.M.); (M.U.)
- School of Pharmaceutical Science, Health Science Center, Shenzhen University, Shenzhen 518060, China;
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Zhanhua Mai
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; (Y.T.); (M.S.R.R.); (Z.M.); (M.U.)
| | - Ali Bahadur
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 16229, Korea;
| | - Hafiza Mahreen Mehwish
- School of Pharmaceutical Science, Health Science Center, Shenzhen University, Shenzhen 518060, China;
| | - Muhammad Umair
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; (Y.T.); (M.S.R.R.); (Z.M.); (M.U.)
| | - Liqing Zhao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; (Y.T.); (M.S.R.R.); (Z.M.); (M.U.)
| | - Yiguang Wu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; (Y.T.); (M.S.R.R.); (Z.M.); (M.U.)
| | - Xun Song
- School of Pharmaceutical Science, Health Science Center, Shenzhen University, Shenzhen 518060, China;
| |
Collapse
|
17
|
Zhang WC, Zheng ML, Liu J, Jin F, Dong XZ, Guo M, Li T. Modulation of Cell Behavior by 3D Biocompatible Hydrogel Microscaffolds with Precise Configuration. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2325. [PMID: 34578641 PMCID: PMC8469000 DOI: 10.3390/nano11092325] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/25/2021] [Accepted: 09/03/2021] [Indexed: 11/17/2022]
Abstract
Three-dimensional (3D) micronano structures have attracted much attention in tissue engineering since they can better simulate the microenvironment in vivo. Two-photon polymerization (TPP) technique provides a powerful tool for printing arbitrary 3D structures with high precision. Here, the desired 3D biocompatible hydrogel microscaffolds (3D microscaffold) with structure design referring to fibroblasts L929 have been fabricated by TPP technology, particularly considering the relative size of cell seed (cell suspension), spread cell, strut and strut spacing of scaffold. Modulation of the cell behavior has been studied by adjusting the porosity from 69.7% to 89.3%. The cell culture experiment results reveal that the obvious modulation of F-actin can be achieved by using the 3D microscaffold. Moreover, cells on 3D microscaffolds exhibit more lamellipodia than those on 2D substrates, and thus resulting in a more complicated 3D shape of single cell and increased cell surface. 3D distribution can be also achieved by employing the designed 3D microscaffold, which would effectively improve the efficiency of information exchange and material transfer. The proposed protocol enables us to better understand the cell behavior in vivo, which would provide high prospects for the further application in tissue engineering.
Collapse
Affiliation(s)
- Wei-Cai Zhang
- Laboratory of Organic Nano Photonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing 100190, China; (W.-C.Z.); (J.L.); (F.J.); (X.-Z.D.); (M.G.); (T.L.)
- School of Future Technologies, Yanqihu Campus, University of Chinese Academy of Sciences, Beijing 101407, China
| | - Mei-Ling Zheng
- Laboratory of Organic Nano Photonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing 100190, China; (W.-C.Z.); (J.L.); (F.J.); (X.-Z.D.); (M.G.); (T.L.)
- School of Future Technologies, Yanqihu Campus, University of Chinese Academy of Sciences, Beijing 101407, China
| | - Jie Liu
- Laboratory of Organic Nano Photonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing 100190, China; (W.-C.Z.); (J.L.); (F.J.); (X.-Z.D.); (M.G.); (T.L.)
| | - Feng Jin
- Laboratory of Organic Nano Photonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing 100190, China; (W.-C.Z.); (J.L.); (F.J.); (X.-Z.D.); (M.G.); (T.L.)
| | - Xian-Zi Dong
- Laboratory of Organic Nano Photonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing 100190, China; (W.-C.Z.); (J.L.); (F.J.); (X.-Z.D.); (M.G.); (T.L.)
| | - Min Guo
- Laboratory of Organic Nano Photonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing 100190, China; (W.-C.Z.); (J.L.); (F.J.); (X.-Z.D.); (M.G.); (T.L.)
- School of Future Technologies, Yanqihu Campus, University of Chinese Academy of Sciences, Beijing 101407, China
| | - Teng Li
- Laboratory of Organic Nano Photonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing 100190, China; (W.-C.Z.); (J.L.); (F.J.); (X.-Z.D.); (M.G.); (T.L.)
- School of Future Technologies, Yanqihu Campus, University of Chinese Academy of Sciences, Beijing 101407, China
| |
Collapse
|
18
|
Cheng R, Cao Y, Yan Y, Shen Z, Zhao Y, Zhang Y, Sang S, Han Y. Fabrication and characterization of chitosan-based composite scaffolds for neural tissue engineering. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1915783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Rong Cheng
- College of Information and Computer, MicroNano System Research Center, Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, PR China
| | - Yanyan Cao
- College of Information and Computer, MicroNano System Research Center, Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, PR China
- College of Information Science and Engineering, Hebei North University, Zhangjiakou, PR China
| | - Yayun Yan
- College of Information and Computer, MicroNano System Research Center, Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, PR China
| | - Zhizhong Shen
- College of Information and Computer, MicroNano System Research Center, Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, PR China
| | - Yajing Zhao
- College of Information and Computer, MicroNano System Research Center, Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, PR China
| | - Yixia Zhang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Shengbo Sang
- College of Information and Computer, MicroNano System Research Center, Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, PR China
| | - Yanqing Han
- Department of Neurology, Shanxi Provincial Cardiovascular Hospital, Taiyuan, PR China
| |
Collapse
|
19
|
Mizuno HL, Tan E, Anraku Y, Sakai T, Sakuma I, Akagi Y. Relationship between Bulk Physicochemical Properties and Surface Wettability of Hydrogels with Homogeneous Network Structure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5554-5562. [PMID: 32365299 DOI: 10.1021/acs.langmuir.0c00694] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Controlling hydrogel surface wettability is of great importance in the viewpoint of engineering biomaterials that are in contact with cells and tissues. However, studies reporting how the hydrogel bulk properties would affect the surface is scarce, and thus it has been difficult to fabricate hydrogels with the desired properties. Also, there has been no effective method to elucidate this, due to the inhomogeneity introduced in the network structure of conventional hydrogels. Here we report our approach in elucidating the relationship between hydrogel physicochemical parameters and surface wettability by using Tetra-PEG gels, which are known to have homogeneous network structure. Specifically, the polymer volume fraction (φ) and the molecular weight (MW) between the cross-links were controlled. The number of anions, cations, and ionic pairs introduced within the hydrogel, were also individually controlled. The surface wettability of the resulting hydrogels was then evaluated. Results showed that surface wettability is largely dependent on the concentration of charged groups that are introduced in the hydrogel bulk, especially those that are not paired and ionically stabilized. Our findings strongly support the fact that with conventional hydrogels, the correlation between surface wettability and its physicochemical properties had not been evaluated appropriately, and thus our insights will contribute significantly to accumulating further knowledge on controlling hydrogel surface wettability.
Collapse
Affiliation(s)
- Hayato L Mizuno
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, Japan, 113-8656
| | - Eiki Tan
- Department of Precision Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, Japan, 113-8656
| | - Yasutaka Anraku
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, Japan, 113-8656
| | - Takamasa Sakai
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, Japan, 113-8656
| | - Ichiro Sakuma
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, Japan, 113-8656
- Medical Device Development and Regulation Research Center, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yuki Akagi
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, Japan, 113-8656
| |
Collapse
|