1
|
Jain K, Singh M, Yadav K, Saharan P, Gupta A, Dhakate SR. Direct conversion of lignin-rich black liquor to activated carbon for supercapacitor electrodes. Int J Biol Macromol 2024; 270:132150. [PMID: 38729470 DOI: 10.1016/j.ijbiomac.2024.132150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/23/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
The escalating industrialization trend underscores the imperative for sustainable waste management practices. The present investigation explores a sustainable methodology for managing the waste generated from the kraft process by directly converting it into activated carbon (BLAC) through a cost-effective hydrothermal-assisted activation method. The research involved a comparative analysis of BLAC with acid-washed black liquor lignin-derived activated carbon (ABLAC) and commercial lignin-derived activated carbon (SALAC). The analysis revealed that BLAC possesses a well-developed micro and mesoporous structure, yielding a significantly higher surface area of 2277.2 m2/g as compared to ABLAC (1260 m2/g) and SALAC (1558.4 m2/g). The presence of inherent alkali in the black liquor is the main factor influencing the surface area of the BLAC. Furthermore, it demonstrated impressive electrochemical performance, showing a specific capacitance value of 871.4 F/g at 1 A/g current density, positioning it as a formidable electrode material for supercapacitor applications. The proposed direct conversion strategy will eliminate the need for high-temperature pre‑carbonization and additional lignin extraction, reducing chemical usage and presenting a greener approach.
Collapse
Affiliation(s)
- Karishma Jain
- Advanced Carbon Products and Metrology Department, CSIR-National Physical Laboratory (CSIR-NPL), New Delhi 110012, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Mandeep Singh
- Advanced Carbon Products and Metrology Department, CSIR-National Physical Laboratory (CSIR-NPL), New Delhi 110012, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, India.
| | - Kushagra Yadav
- Advanced Carbon Products and Metrology Department, CSIR-National Physical Laboratory (CSIR-NPL), New Delhi 110012, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Pinky Saharan
- Advanced Carbon Products and Metrology Department, CSIR-National Physical Laboratory (CSIR-NPL), New Delhi 110012, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Ashish Gupta
- Department of Physics, National Institute of Technology, Kurukshetra, Haryana, India
| | - S R Dhakate
- Advanced Carbon Products and Metrology Department, CSIR-National Physical Laboratory (CSIR-NPL), New Delhi 110012, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Wu L, Qi S, Zhang T, Jin Y, Xiao H. One-step carbonization/activation synthesis of chitosan-based porous sheet-like carbon and studies of adsorptive removal for Rhodamine B. Carbohydr Polym 2024; 330:121832. [PMID: 38368087 DOI: 10.1016/j.carbpol.2024.121832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/28/2023] [Accepted: 01/13/2024] [Indexed: 02/19/2024]
Abstract
In this work, new N, O-codoped chitosan-derived carbon adsorbents (CKC-x, x refer to the calcination temperature) were synthesized over a simple process of chitosan-KOH aerogel production and simultaneous carbonization/activation of the aerogel. CKC-700 was characterized by sheet-like morphology (even containing a portion of carbon nano-sheet of 3 nm thickness), high porosity and specific surface area (1702.1 m2/g), and pyridinic/pyrrolic/graphitic N groups. The simultaneous carbonization/activation of chitosan-KOH aerogel prepared by top-down coagulation of chitosan aqueous solution by KOH aqueous solution rendered these beneficial characteristics. CKC-700 exhibited a superior adsorption capacity for Rhodamine B (RhB) to other chitosan-derived carbon adsorbents, and the maximum adsorption capacity for RhB of 594 mg/g was achieved at 55 °C. CKC-700 also possessed reasonable reusability for the removal of RhB, and the removal efficiency was still above 95 % in the fifth cycle. The effects of adsorption temperature and time, adsorbent dose, organic dye concentration, and solution pH on the adsorption capacity of CKC-700 were studied. Moreover, the adsorption isotherm, kinetics, thermodynamics, and the adsorption mechanism of RhB on CKC-700 were discussed. In addition, CKC-700 also showed favorable adsorption performance for methylene blue (441 mg/g), methyl orange (457 mg/g), and congo red (500 mg/g) at around 25 °C.
Collapse
Affiliation(s)
- Ling Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shuang Qi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Tingwei Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| |
Collapse
|
3
|
Zhu S, Xu J, Wang B, Xie J, Ying G, Li J, Cheng Z, Li J, Chen K. Highly efficient and rapid purification of organic dye wastewater using lignin-derived hierarchical porous carbon. J Colloid Interface Sci 2022; 625:158-168. [PMID: 35716611 DOI: 10.1016/j.jcis.2022.06.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/31/2022] [Accepted: 06/04/2022] [Indexed: 11/25/2022]
Abstract
Coating manufacturing, textile processing, and plastic industry have led to dramatical release levels of hazardous organic dye pollutants threatening public health and the environment. To solve this problem, porous carbon materials are being developed following with the United Nations initiative on water purification. However, conventional porous carbon materials face many challenges, such as limited removal rates, low adsorption capacity, and high chemicals consumption, hampering their large-scale utilization in dye wastewater treatment. Herein, we demonstrate a high-performance lignin-derived hierarchical porous carbon (LHPC) material directly prepared from renewable lignin through a low-cost activation procedure. The large specific surface area (1824 m2/g) enables the rapid and effective adsorption of organic dyes. Therefore, the LHPC exhibits an ultrahigh adsorption ability (1980.63 mg/g) and removal rate (99.03% in 10 min) for Azure B, superior to that of other adsorbents. Additionally, the LHPC adsorbent, organic dyes, eluting agent, and water all can be recycled and reused in a designed close-looped system. Its high removal ability and rate, strong retrievability, low-cost and scalable production combined with high dyes adsorption universality, positions our LHPC as a promising commercial adsorbent candidate for the purification of harmful organic dye wastewater, especially for heavily polluted area with an insistent demand for clear water.
Collapse
Affiliation(s)
- Shiyun Zhu
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Material Science Research Center, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| | - Jun Xu
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Material Science Research Center, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China; Qingyuan Huayuan Institute of Science and Technology Collaborative Innovation Co., Ltd, Qingyuan 511500, China.
| | - Bin Wang
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Material Science Research Center, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China.
| | - Junxian Xie
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Material Science Research Center, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| | - Guangdong Ying
- Shandong Sun Paper Industry Joint Stock Co., Ltd, Jining 272100, China
| | - Jinpeng Li
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Material Science Research Center, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China.
| | - Zheng Cheng
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Material Science Research Center, South China University of Technology, Guangzhou 510640, China
| | - Jun Li
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Material Science Research Center, South China University of Technology, Guangzhou 510640, China
| | - Kefu Chen
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Material Science Research Center, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
4
|
Baloch M, Labidi J. Lignin biopolymer: the material of choice for advanced lithium-based batteries. RSC Adv 2021; 11:23644-23653. [PMID: 35479805 PMCID: PMC9036608 DOI: 10.1039/d1ra02611a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/18/2021] [Indexed: 11/21/2022] Open
Abstract
Lignin, an aromatic polymer, offers interesting electroactive redox properties and abundant active functional groups. Due to its quinone functionality, it fulfils the requirement of erratic electrical energy storage by only providing adequate charge density. Research on the use of lignin as a renewable material in energy storage applications has been published in the form of reviews and scientific articles. Lignin has been used as a binder, polymer electrolyte and an electrode material, i.e. organic composite electrodes/hybrid lignin-polymer combination in different battery systems depending on the principal charge of quinone and hydroquinone. Furthermore, lignin-derived carbons have gained much popularity. The aim of this review is to depict the meticulous follow-ups of the vital challenges and progress linked to lignin usage in different lithium-based conventional and next-generation batteries as a valuable, ecological and low-cost material. The key factor of this new finding is to open a new path towards sustainable and renewable future lithium-based batteries for practical/industrial applications.
Collapse
Affiliation(s)
- Marya Baloch
- Department of Chemical and Environmental Engineering, School of Engineering Donostia-San Sebastian Gipuzkoa Spain
| | - Jalel Labidi
- Department of Chemical and Environmental Engineering, School of Engineering Donostia-San Sebastian Gipuzkoa Spain
| |
Collapse
|
5
|
Accelerating the Oxygen Reduction Reaction and Oxygen Evolution Reaction Activities of N and P Co-Doped Porous Activated Carbon for Li-O2 Batteries. Catalysts 2020. [DOI: 10.3390/catal10111316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Rechargeable lithium–oxygen (Li-O2) batteries represent state-of-the-art electrochemical energy storage devices that provide high energy densities. However, their commercialization is challenging owing to their low charging/discharging efficiencies, short battery lives, high overpotentials, and high cathode manufacturing costs. In this study, we prepared a metal-free, N,P co-doped, porous activated carbon (N,P-PAC) electrode via KOH activation and P doping for application as a Li-O2 battery cathode. When used in a rechargeable Li-O2 battery, the N,P-PAC cathode showed a high specific discharge capacity (3724 mA h g−1 at 100 mA g−1), an excellent cycling stability (25 cycles with a limit capacity of 1000 mA h g−1), and a low charge/discharge voltage gap (1.22 V at 1000 mA h g−1). The N,P-PAC electrode showed a low overpotential (EOER-ORR) of 1.54 V. The excellent electrochemical performance of the N,P-PAC electrode can mainly be attributed to its large active area and oxygen-containing functional groups generated via KOH activation and P-doping processes. Therefore, the N,P-PAC prepared in this study was found to be a promising eco-friendly and sustainable metal-free cathode material for Li-O2 batteries.
Collapse
|