1
|
Zhang J, Zhao Y, Hu H, Lv M, Zhang H. A colorimetric nano-enzyme assay with Ni@Pt nanoparticles as signal labels for rapid and sensitive detection of exosomal Aβ42 in plasma. Mikrochim Acta 2025; 192:53. [PMID: 39753867 DOI: 10.1007/s00604-024-06862-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/24/2024] [Indexed: 01/06/2025]
Abstract
A nano-enzyme sandwich assay (SWzyme assay), a colorimetric system based on a biochip and inorganic nano-enzyme for rapid and simple determination of exosomal Aβ42 in plasma is proposed. Anti-CD63 antibody-modified biochips were prepared for plasma exosome capture and synthesized highly catalytic Ni@Pt nanozymes for detecting exosomal Aβ42. The method was able to detect exosomal Aβ42 with a limit of detection (LOD) as low as 4.2×104 particles/mL and a linear range from 104 to 108 particles/mL. By determination of exosomal Aβ42, the SWzyme assay successfully distinguished plasma from Alzheimer's desease (AD) and healthy mice. The SWzyme assay holds promise to serve as diagnostic tools for the early detection of AD and supporting the development of personalized medicine.
Collapse
Affiliation(s)
- Junli Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou, 450001, China
| | - Yanyan Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Haiying Hu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Min Lv
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Hongling Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou, 450001, China.
| |
Collapse
|
2
|
Tian Z, Luo J, Zhang C, Li Y, Hu S, Li Y. Photonic crystal-enhanced fluorescence biosensor with logic gate operation based on one-pot cascade amplification DNA circuit for enzyme-free and ultrasensitive analysis of two microRNAs. Talanta 2024; 277:126428. [PMID: 38897009 DOI: 10.1016/j.talanta.2024.126428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/18/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
The development of sensitive and efficient analytical methods for multiple biomarkers is crucial for cancer screening at early stage. MicroRNAs (miRNAs) are a kind of biomarkers with diagnostic potential for cancer. However, the ultrasensitive and logical analysis of multiple miRNAs with simple operation still faces some challenges. Herein, a photonic crystal (PC)-enhanced fluorescence biosensor with logic gate operation based on one-pot cascade amplification DNA circuit was developed for enzyme-free and ultrasensitive analysis of two cancer-related miRNAs. The fluorescence biosensor was performed by biochemical recognition amplification module (BCRAM) and physical enhancement module (PEM) to achieve logical and sensitive detection. In the BCRAM, one-pot cascade amplification circuit consisted of the upstream parallel entropy-driven circuit (EDC) and the downstream shared catalytic hairpin assembly (CHA). The input of target miRNA would trigger each corresponding EDC, and the parallel EDCs released the same R strand for triggering subsequent CHA; thus, the OR logic gate was obtained with minimization of design and operation. In the PEM, photonic crystal (PC) array was prepared easily for specifically enhancing the fluorescence output from BCRAM by the optical modulation capabilities; meanwhile, the high-throughput signal readout was achieved by microplate analyzer. Benefiting from the integrated advantages of two modules, the proposed biosensor achieved ultrasensitive detection of two miRNAs with easy logic gate operation, obtaining the LODs of 8.6 fM and 6.7 fM under isothermal and enzyme-free conditions. Hence, the biosensor has the advantages of high sensitivity, easy operation, multiplex and high-throughput analysis, showing great potential for cancer screening at early stage.
Collapse
Affiliation(s)
- Ziyi Tian
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jie Luo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chuyan Zhang
- Precision Medicine Center, Medical Equipment Innovation Research Center, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yongru Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Shunming Hu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yongxin Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
3
|
Liu S, Ma B, Qi L, Ping J, Che Y, Zhang Y, Su M, Song Y, Qi L, Jiang Y, Fang X. Ultrasensitive Detection of Cancer Biomarkers Using Photonic-Crystal-Enhanced Single-Molecule Imaging. Anal Chem 2024; 96:13719-13726. [PMID: 39120618 DOI: 10.1021/acs.analchem.4c02863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The rapid and sensitive quantification of low-abundance protein markers holds immense significance in early disease diagnosis and treatment. Single-molecule fluorescence imaging exhibits very high detection sensitivity and thus has great application potential in this area. The single-molecule signal, however, is often susceptible to interference from background noise due to its inherently weak intensity. A variety of signal amplification techniques based on cascading reactions have been developed to improve the signal-to-noise ratio of single-molecule imaging. Nevertheless, the operation of these methods is typically complicated and time-consuming, which limits the clinical application. Herein, we introduce an enzyme-free, photonic-crystal-based single-molecule (PC-SM) biochip for cost-effective, time-efficient, and ultrasensitive detection of disease markers. The PC-SM biochip can enhance the signal-to-noise ratio of single molecules by nearly 3-fold compared with unamplified samples, through coupling of the single-molecule photon energy with the optical band gap of the photonic crystal. We used the PC-SM biochip to detect the low-abundance leukemia inhibitory factor in the blood of pancreatic cancer patients and healthy people and achieved a detection limit of 2.0 pg/L and an AUC of 0.9067. The method exhibits exceptional sensitivity and specificity, showing great application potential in various clinical settings.
Collapse
Affiliation(s)
- Songlin Liu
- School of Chemistry and Materials, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Bochen Ma
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - LiQing Qi
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Jiantao Ping
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P. R. China
| | - YuDong Che
- ZheJiang Cancer Hospital Hangzhou, Zhejiang 310022, P. R. China
| | - YiMin Zhang
- ZheJiang Cancer Hospital Hangzhou, Zhejiang 310022, P. R. China
| | - Meng Su
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - YanLin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - LuBin Qi
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Yifei Jiang
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Xiaohong Fang
- School of Chemistry and Materials, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, P. R. China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, P. R. China
| |
Collapse
|
4
|
Duan X, Qin W, Hao J, Yu X. Recent advances in the applications of DNA frameworks in liquid biopsy: A review. Anal Chim Acta 2024; 1308:342578. [PMID: 38740462 DOI: 10.1016/j.aca.2024.342578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 05/16/2024]
Abstract
Cancer is one of the serious threats to public life and health. Early diagnosis, real-time monitoring, and individualized treatment are the keys to improve the survival rate and prolong the survival time of cancer patients. Liquid biopsy is a potential technique for cancer early diagnosis due to its non-invasive and continuous monitoring properties. However, most current liquid biopsy techniques lack the ability to detect cancers at the early stage. Therefore, effective detection of a variety of cancers is expected through the combination of various techniques. Recently, DNA frameworks with tailorable functionality and precise addressability have attracted wide spread attention in biomedical applications, especially in detecting cancer biomarkers such as circulating tumor cells (CTCs), exosomes and circulating tumor nucleic acid (ctNA). Encouragingly, DNA frameworks perform outstanding in detecting these cancer markers, but also face some challenges and opportunities. In this review, we first briefly introduced the development of DNA frameworks and its typical structural characteristics and advantages. Then, we mainly focus on the recent progress of DNA frameworks in detecting commonly used cancer markers in liquid-biopsy. We summarize the advantages and applications of DNA frameworks for detecting CTCs, exosomes and ctNA. Furthermore, we provide an outlook on the possible opportunities and challenges for exploiting the structural advantages of DNA frameworks in the field of cancer diagnosis. Finally, we envision the marriage of DNA frameworks with other emerging materials and technologies to develop the next generation of disease diagnostic biosensors.
Collapse
Affiliation(s)
- Xueyuan Duan
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Science, China Jiliang University, Hangzhou, 310018, China
| | - Weiwei Qin
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Science, China Jiliang University, Hangzhou, 310018, China.
| | - Jicong Hao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Science, China Jiliang University, Hangzhou, 310018, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Science, China Jiliang University, Hangzhou, 310018, China.
| |
Collapse
|
5
|
Tian Z, Zhang C, Wu M, Luo J, Zhou H, Duan Y, Li Y. Flexible-Arranged Biomimetic Array Integrated with Parallel Entropy-Driven Circuits for Ultrasensitive, Multiple, and Reliable Detection of Cancer-Related MicroRNAs. ACS Sens 2024; 9:1290-1300. [PMID: 38478991 DOI: 10.1021/acssensors.3c02183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
With the emergence of microRNA (miRNA) as a promising biomarker in cancer diagnosis, it is significant to develop multiple analyses of miRNAs. However, it still faces difficulties in ensuring the sensitivity and accuracy during multiplex detection owing to the low abundance and experimental deviation of miRNAs. In this work, a flexible-arranged biomimetic array integrated with parallel entropy-driven circuits (EDCs) was developed for ultrasensitive, multiplex, reliable, and high-throughput detection of miRNAs. The biomimetic array was fabricated by arrangement of various photonic crystals (PCs) for adjustable photonic band gaps (PBGs) and specific fluorescence enhancement. Meanwhile, two cancer-related miRNAs and one reference miRNA were introduced as multiple analytes as a proof-of-concept. The parallel EDCs with negligible crosstalk were designed based on the modular property. Because of the one-to-one match between the emitted fluorescence of parallel EDCs and the PBGs of the flexible-arranged biomimetic array, the generated fluorescence signal triggered by target miRNAs can be enhanced on the corresponding domain of the array. Furthermore, the amplified signal of the array was detected with high-throughput scanning, which could reveal specific information on cancer-related miRNAs as well as reference miRNA, enhancing the abundance and reliability of the analysis. The proposed array has the merits of a modular design, flexible deployment, simple operation (nonenzymatic and isothermal), improved accuracy, high sensitivity, and multiplex analysis, showing potential in disease diagnosis.
Collapse
Affiliation(s)
- Ziyi Tian
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Chuyan Zhang
- Precision Medicine Center, Medical Equipment Innovation Research Center, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Mengfan Wu
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Jie Luo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Huiling Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Yongxin Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| |
Collapse
|
6
|
Ramírez-Maldonado E, López Gordo S, Major Branco RP, Pavel MC, Estalella L, Llàcer-Millán E, Guerrero MA, López-Gordo E, Memba R, Jorba R. Clinical Application of Liquid Biopsy in Pancreatic Cancer: A Narrative Review. Int J Mol Sci 2024; 25:1640. [PMID: 38338919 PMCID: PMC10855073 DOI: 10.3390/ijms25031640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Pancreatic ductal adenocarcinoma contributes significantly to global cancer-related deaths, featuring only a 10% survival rate over five years. The quest for novel tumor markers is critical to facilitate early diagnosis and tailor treatment strategies for this disease, which is key to improving patient outcomes. In pancreatic ductal adenocarcinoma, these markers have been demonstrated to play a crucial role in early identification, continuous monitoring, and prediction of its prognosis and have led to better patient outcomes. Nowadays, biopsy specimens serve to ascertain diagnosis and determine tumor type. However, liquid biopsies present distinct advantages over conventional biopsy techniques. They offer a noninvasive, easily administered procedure, delivering insights into the tumor's status and facilitating real-time monitoring. Liquid biopsies encompass a variety of elements, such as circulating tumor cells, circulating tumor DNA, extracellular vesicles, microRNAs, circulating RNA, tumor platelets, and tumor endothelial cells. This review aims to provide an overview of the clinical applications of liquid biopsy as a technique in the management of pancreatic cancer.
Collapse
Affiliation(s)
- Elena Ramírez-Maldonado
- HBP Unit, General Surgery Department, Joan XXIII University Hospital, 43005 Tarragona, Spain; (M.-C.P.); (L.E.); (M.A.G.); (R.M.); (R.J.)
- Medicine and Surgery Department, Rovira i Virgili University, 43204 Reus, Spain
| | - Sandra López Gordo
- General Surgery Department, Maresme Health Consortium, 08304 Mataro, Spain;
| | | | - Mihai-Calin Pavel
- HBP Unit, General Surgery Department, Joan XXIII University Hospital, 43005 Tarragona, Spain; (M.-C.P.); (L.E.); (M.A.G.); (R.M.); (R.J.)
- Medicine and Surgery Department, Rovira i Virgili University, 43204 Reus, Spain
| | - Laia Estalella
- HBP Unit, General Surgery Department, Joan XXIII University Hospital, 43005 Tarragona, Spain; (M.-C.P.); (L.E.); (M.A.G.); (R.M.); (R.J.)
- Medicine and Surgery Department, Rovira i Virgili University, 43204 Reus, Spain
| | - Erik Llàcer-Millán
- HBP Unit, General Surgery Department, Joan XXIII University Hospital, 43005 Tarragona, Spain; (M.-C.P.); (L.E.); (M.A.G.); (R.M.); (R.J.)
- Medicine and Surgery Department, Rovira i Virgili University, 43204 Reus, Spain
| | - María Alejandra Guerrero
- HBP Unit, General Surgery Department, Joan XXIII University Hospital, 43005 Tarragona, Spain; (M.-C.P.); (L.E.); (M.A.G.); (R.M.); (R.J.)
- Medicine and Surgery Department, Rovira i Virgili University, 43204 Reus, Spain
| | | | - Robert Memba
- HBP Unit, General Surgery Department, Joan XXIII University Hospital, 43005 Tarragona, Spain; (M.-C.P.); (L.E.); (M.A.G.); (R.M.); (R.J.)
- Medicine and Surgery Department, Rovira i Virgili University, 43204 Reus, Spain
| | - Rosa Jorba
- HBP Unit, General Surgery Department, Joan XXIII University Hospital, 43005 Tarragona, Spain; (M.-C.P.); (L.E.); (M.A.G.); (R.M.); (R.J.)
- Medicine and Surgery Department, Rovira i Virgili University, 43204 Reus, Spain
| |
Collapse
|
7
|
Yang X, Zhang Z, Wu Y, Wang H, Yun Y, Sun Y, Xie H, Bogdanov B, Senyushkin P, Chi J, Lian Z, Wu D, Su M, Song Y. Printed Divisional Optical Biochip for Multiplex Visualizable Exosome Analysis at Point-of-Care. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304935. [PMID: 37589665 DOI: 10.1002/adma.202304935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/10/2023] [Indexed: 08/18/2023]
Abstract
Rapid detection of various exosomes is of great significance in early diagnosis and postoperative monitoring of cancers. Here, a divisional optical biochip is reported for multiplex exosome analysis via combining the self-assembly of nanochains and precise surface patterning. Arising from resonance-induced near-field enhancement, the nanochains show distinct color changes after capturing target exosomes for direct visual detection. Then, a series of divisional nanochain-based biochips conjugated with several specific antibodies are fabricated through designed hydrophilic and hydrophobic patterns. Because of the significant wettability difference, one sample droplet is precisely self-splitting into several microdroplets enabling simultaneous identification of multiple target exosomes in 30 min with a sensitivity of 6 × 107 particles mL-1 , which is about two orders lower than enzyme-linked immunosorbent assay. Apart from the trace amount detection, excellent semiquantitative capability is demonstrated to distinguish clinical exosomes from glioblastoma patients and healthy people. This method is simple, versatile, and highly efficient that can be extended as a diagnostic tool for many diseases, promoting the development of liquid biopsy.
Collapse
Affiliation(s)
- Xu Yang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Zeying Zhang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Yuanbin Wu
- Department of Emergency, the Seventh Medical Center, Chinese PLA General Hospital, Beijing, 100700, P. R. China
| | - Huadong Wang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Yang Yun
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Yali Sun
- School of Physics and Engineering, ITMO University, Saint Petersburg, 197101, Russia
| | - Hongfei Xie
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Bogdan Bogdanov
- School of Physics and Engineering, ITMO University, Saint Petersburg, 197101, Russia
| | - Pavel Senyushkin
- School of Physics and Engineering, ITMO University, Saint Petersburg, 197101, Russia
| | - Jimei Chi
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Zewei Lian
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Dongdong Wu
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, P. R. China
| | - Meng Su
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| |
Collapse
|
8
|
Zhang C, Wu M, Hu S, Shi S, Duan Y, Hu W, Li Y. Label-Free, High-Throughput, Sensitive, and Logical Analysis Using Biomimetic Array Based on Stable Luminescent Copper Nanoclusters and Entropy-Driven Nanomachine. Anal Chem 2023; 95:11978-11987. [PMID: 37494597 DOI: 10.1021/acs.analchem.3c01650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The development of an array for high-throughput and logical analysis of biomarkers is significant for disease diagnosis. DNA-templated copper nanoclusters (CuNCs) have a strong potential to serve as a label-free photoluminescence source in array platforms, but their luminescent stability and sensitivity need to be improved. Herein, we report a facile, sensitive, and robust biomimetic array assay by integrating with stable luminescent CuNCs and entropy-driven nanomachine (EDN). In this strategy, the luminescent stability of CuNCs was improved by adding fructose in CuNCs synthesis to offer a reliable label-free signal. Meanwhile, the DNA template for CuNCs synthesis was introduced into EDN with excellent signal amplification ability, in which the reaction triggered by target miRNA would cause the blunt/protruding conformation change of 3'-terminus accompanied by the production or loss of luminescence. In addition, a biomimetic array fabricated by photonic crystals (PCs) physically enhanced the emitted luminescent signal of CuNCs and achieved high-throughput signal readout by a microplate reader. The proposed assay can isothermally detect as low as 4.5 pM of miR-21. Moreover, the logical EDN was constructed to achieve logical analysis of multiple miRNAs by "AND" or "OR" logic gate operation. Therefore, the proposed assay has the advantages of label-free property, high sensitivity, flexible design, and high-throughput analysis, which provides ideas for developing a new generation of facile and smart platforms in the fields of biological analysis and clinical application.
Collapse
Affiliation(s)
- Chuyan Zhang
- State Key Laboratory of Respiratory Health and Multimorbidity, Precision Medicine Center, Medical Equipment Innovation Research Center, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Mengfan Wu
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu, Sichuan 610065, P.R. China
| | - Shunming Hu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shaorui Shi
- State Key Laboratory of Respiratory Health and Multimorbidity, Department of Laboratory Medicine, Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu, Sichuan 610065, P.R. China
| | - Wenchuang Hu
- State Key Laboratory of Respiratory Health and Multimorbidity, Precision Medicine Center, Medical Equipment Innovation Research Center, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yongxin Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
9
|
Yan S, Zheng H, Zhao J, Gao M, Zhang X. Quantification of GPC1(+) Exosomes Based on MALDI-TOF MS In Situ Signal Amplification for Pancreatic Cancer Discrimination and Evaluation. Anal Chem 2023. [PMID: 37368911 DOI: 10.1021/acs.analchem.3c00193] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Pancreatic cancer (PC) has a high mortality, with a fairly low five-year survival rate, because of its delayed diagnosis. Recently, liquid biopsy, especially based on exosomes, has attracted vast attention, thanks to its low invasiveness. Herein, we constructed a protocol for pancreatic cancer related Glypican 1 (GPC1) exosome quantification, based on in situ mass spectrometry signal amplification, by utilizing mass tag molecules on gold nanoparticles (AuNPs). Exosomes were extracted and purified by size-exclusion chromatography (SEC), captured by TiO2 modified magnetic nanoparticles, and then targeted specifically by anti-GPC1 antibody modified on AuNPs. With matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), the signal of PC biomarker, GPC1, was converted to a mass tag signal and amplified. With addition of a certain amount of internal standard molecules modified on AuNPs, the relative intensity ratio of mass tag to internal standard was proportional to the concentration of GPC1(+) exosomes derived from pancreatic cancer cell lines, PANC-1, with good linearity (R2 = 0.9945) in a wide dynamic range from 7.1 × 10 to 7.1 × 106 particles/μL. This method was further applied to plasma samples from healthy control (HC) and pancreatic cancer patients with different tumor load, and exhibited a great potential in discriminating diagnosed PC patients from HC, and has the monitoring potential in PC progression.
Collapse
Affiliation(s)
- Shaohan Yan
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Haoyang Zheng
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Jiandong Zhao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Mingxia Gao
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Xiangmin Zhang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
10
|
Zhang J, Guan M, Ma C, Liu Y, Lv M, Zhang Z, Gao H, Zhang K. Highly Effective Detection of Exosomal miRNAs in Plasma Using Liposome-Mediated Transfection CRISPR/Cas13a. ACS Sens 2023; 8:565-575. [PMID: 36722721 DOI: 10.1021/acssensors.2c01683] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Exosomal miRNAs play a critical role in cancer biology and could be potential biomarkers for cancer diagnosis. However, due to the low abundance of miRNAs in the exosomes, recognizing and detecting disease-associated exosomal miRNAs in an easy-to-operate way remain a challenge. Herein, we used a liposome-mediated membrane fusion strategy (MFS) to transfect CRISPR/Cas13a into exosomes, termed MFS-CRISPR, directly measuring exosomal miRNAs in plasma. Using the MFS-CRISPR platform for detection of the exosomal miR-21, we achieve a linear range spanning four orders of magnitude (104-108 particles/mL) and the method is able to detect the exosomal miR-21 in as low as 1.2 × 103 particles/mL. The liposome-mediated MFS could confine fluorescent signals in fused vesicles, which can be used for exosome heterogeneity analysis. Moreover, MFS-CRISPR assay was evaluated by measuring clinical samples, and the difference of miR-21 expression of breast cancer patients and healthy donors was significant. Because of high sensitivity and simplicity, the proposed method could have promising clinical potential for cancer diagnosis and treatment monitoring.
Collapse
Affiliation(s)
- Junli Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.,Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China
| | - Mengting Guan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Chihong Ma
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yingying Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Min Lv
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.,Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China
| | - Hua Gao
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.,Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450052, China
| |
Collapse
|
11
|
Wu T, Liu X, Chen H, Liu Y, Cao Y. An in situ exosomal miRNA sensing biochip based on multi-branched localized catalytic hairpin assembly and photonic crystals. Biosens Bioelectron 2023; 222:115013. [PMID: 36529054 DOI: 10.1016/j.bios.2022.115013] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/19/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Exosomal microRNAs (miRNAs) are emerging as attractive non-invasive and reliable biomarkers for disease diagnosis. In situ exosomal miRNA detection can avoid laborious and time-consuming exosome lysis, RNA extraction and effectively improve the accuracy. However, in situ exosomal miRNA detection is hampered by the low abundance of the targets and low permeability of the probes. Herein, an in situ exosomal miRNA sensing biochip based on multi-branched localized catalytic hairpin assembly (MLCHA) and photonic crystals (PCs) was proposed. The MLCHA probes could penetrate into the exosomes nondestructively due to its rigidity and generate amplified fluorescence signal upon recognizing the target miRNA. And then, the fluorescence signal was further enhanced by PCs to improve the sensitivity. The developed biosensor can not only detect exosomal miRNA in a concentration-dependent manner but also distinguish samples from cancer state and healthy state, which is potential for non-invasive clinical diagnostics.
Collapse
Affiliation(s)
- Tingting Wu
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Xushun Liu
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Hanjun Chen
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Ying Liu
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Yu Cao
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China.
| |
Collapse
|
12
|
Taylor ML, Giacalone AG, Amrhein KD, Wilson RE, Wang Y, Huang X. Nanomaterials for Molecular Detection and Analysis of Extracellular Vesicles. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:524. [PMID: 36770486 PMCID: PMC9920192 DOI: 10.3390/nano13030524] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Extracellular vesicles (EVs) have emerged as a novel resource of biomarkers for cancer and certain other diseases. Probing EVs in body fluids has become of major interest in the past decade in the development of a new-generation liquid biopsy for cancer diagnosis and monitoring. However, sensitive and specific molecular detection and analysis are challenging, due to the small size of EVs, low amount of antigens on individual EVs, and the complex biofluid matrix. Nanomaterials have been widely used in the technological development of protein and nucleic acid-based EV detection and analysis, owing to the unique structure and functional properties of materials at the nanometer scale. In this review, we summarize various nanomaterial-based analytical technologies for molecular EV detection and analysis. We discuss these technologies based on the major types of nanomaterials, including plasmonic, fluorescent, magnetic, organic, carbon-based, and certain other nanostructures. For each type of nanomaterial, functional properties are briefly described, followed by the applications of the nanomaterials for EV biomarker detection, profiling, and analysis in terms of detection mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaohua Huang
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|
13
|
Hu X, Tan W, Cheng S, Xian Y, Zhang C. Nucleic acid and nanomaterial-assisted signal-amplified strategies in fluorescent analysis of circulating tumor cells and small extracellular vesicles. Anal Bioanal Chem 2023:10.1007/s00216-022-04509-2. [PMID: 36599923 DOI: 10.1007/s00216-022-04509-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023]
Abstract
As two main types of liquid biopsy markers, both circulating tumor cells (CTCs) and small extracellular vesicles (sEVs) play important roles in the diagnosis and prognosis of cancers. CTCs are malignant cells that detach from the original tumor tissue and enter the circulation of body fluids. sEVs are nanoscale vesicles secreted by normal cells or pathological cells. However, CTCs and sEVs in body fluids are scarce, leading to great difficulties in the accurate analysis of related diseases. For the sensitive detection of CTCs and sEVs in body fluids, various types of nucleic acid and nanomaterial-assisted signal amplification strategies have been developed. In this review, we summarize the recent advances in fluorescent detection of CTCs and sEVs in liquid biopsy based on nucleic acid and nanomaterial-assisted signal amplification strategies. We also discuss their advantages, challenges, and future prospects.
Collapse
Affiliation(s)
- Xinyu Hu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Wenqiao Tan
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Shasha Cheng
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Yuezhong Xian
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Cuiling Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
14
|
Pan H, Dong Y, Gong L, Zhai J, Song C, Ge Z, Su Y, Zhu D, Chao J, Su S, Wang L, Wan Y, Fan C. Sensing gastric cancer exosomes with MoS 2-based SERS aptasensor. Biosens Bioelectron 2022; 215:114553. [PMID: 35868121 DOI: 10.1016/j.bios.2022.114553] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 02/08/2023]
Abstract
Exosomes have been widely used in early cancer diagnosis as promising cancer biomarkers due to their abundant tumor-specific molecular information. In this study, we developed a sensitive and straightforward surface-enhanced Raman scattering (SERS) aptasensor to detect exosomes based on gold nanostars-decorated molybdenum disulfide (MoS2) nanocomposites (MoS2-AuNSs). ROX-labeled aptamers (ROX-Apt) were assembled on MoS2-AuNSs surface as recognition probes that specifically bind with transmembrane protein CD63 (a representative surface marker on exosomes). Thus obvious ROX Raman signals were obtained through the synergistic Raman enhancement effect of AuNSs and MoS2 nanosheet. In presence of exosomes, ROX-Apt is preferentially tethered onto exosomes and released from the surface of nanocomposites, resulting in a decrease of the SERS signal. Expectedly, the as-fabricated SERS aptasensor was capable of detecting exosomes in a wide range from 55 to 5.5 × 105 particles μL-1 with a detection limit of 17 particles μL-1. Moreover, the aptasensor exhibited accepted stability and potential clinical applicability.
Collapse
Affiliation(s)
- Hemeng Pan
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Yan Dong
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Lingbo Gong
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Jiayun Zhai
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Chunyuan Song
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Zhilei Ge
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yan Su
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Dun Zhu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Jie Chao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Shao Su
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China.
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Ying Wan
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
15
|
Zhang J, Zhu Y, Guan M, Liu Y, Lv M, Zhang C, Zhang H, Zhang Z. Isolation of circulating exosomes and identification of exosomal PD-L1 for predicting immunotherapy response. NANOSCALE 2022; 14:8995-9003. [PMID: 35700522 DOI: 10.1039/d2nr00829g] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Exosomes, a subgroup of extracellular vesicles secreted by multiple cells, have great potential as cancer biomarkers in clinical applications. However, enrichment and detection of exosomes from complex media remain a huge challenge due to their small size. Herein, we used iodixanol density gradient centrifugation for the isolation and purification of exosomes and label-free detection of exosomal PD-L1 using a biochip based on surface plasmon resonance (SPR-ExoPD-L1). The obtained exosomes are lipid-bilayer vesicles and the classical exosome markers CD9, CD63 and CD81 are highly enriched. Besides, PD-L1 is specifically expressed on exosomes instead of non-vesicular components or large extracellular vesicles. Compared with enzyme-linked immunosorbent assays, the SPR-ExoPD-L1 assay could better distinguish exosomes derived from melanoma cells with different levels of PD-L1. Accurate measurement of exosomal PD-L1 could provide critical clinical information for cancer diagnosis and personalized immunotherapy of cancer.
Collapse
Affiliation(s)
- Junli Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
| | - Yifan Zhu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Mengting Guan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yingying Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Min Lv
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Chongwei Zhang
- Henan Institute of Veterinary Drug and Feed Control, Zhengzhou, 450008, China
| | - Hongling Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
| |
Collapse
|
16
|
Zhang Y, Fan J, Zhao J, Xu Z. A biochip based on shell-isolated Au@MnO2 nanoparticle array-enhanced fluorescence effect for simple and sensitive exosome assay. Biosens Bioelectron 2022; 216:114373. [DOI: 10.1016/j.bios.2022.114373] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/02/2022] [Accepted: 05/11/2022] [Indexed: 11/24/2022]
|
17
|
Yan TB, Huang JQ, Huang SY, Ahir BK, Li LM, Mo ZN, Zhong JH. Advances in the Detection of Pancreatic Cancer Through Liquid Biopsy. Front Oncol 2021; 11:801173. [PMID: 34993149 PMCID: PMC8726483 DOI: 10.3389/fonc.2021.801173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/06/2021] [Indexed: 01/27/2023] Open
Abstract
Pancreatic cancer refers to the development of malignant tumors in the pancreas: it is associated with high mortality rates and mostly goes undetected in its early stages for lack of symptoms. Currently, surgical treatment is the only effective way to improve the survival of pancreatic cancer patients. Therefore, it is crucial to diagnose the disease as early as possible in order to improve the survival rate of patients with pancreatic cancer. Liquid biopsy is a unique in vitro diagnostic technique offering the advantage of earlier detection of tumors. Although liquid biopsies have shown promise for screening for certain cancers, whether they are effective for early diagnosis of pancreatic cancer is unclear. Therefore, we reviewed relevant literature indexed in PubMed and collated updates and information on advances in the field of liquid biopsy with respect to the early diagnosis of pancreatic cancer.
Collapse
Affiliation(s)
- Tian-Bao Yan
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Center for Genomics and Personalized Medicine, Guangxi Key Laboratory for Genomics and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomics and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Jia-Qi Huang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Center for Genomics and Personalized Medicine, Guangxi Key Laboratory for Genomics and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomics and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Shi-Yun Huang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Center for Genomics and Personalized Medicine, Guangxi Key Laboratory for Genomics and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomics and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Bhavesh K. Ahir
- Section of Hematology and Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Long-Man Li
- Center for Genomics and Personalized Medicine, Guangxi Key Laboratory for Genomics and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomics and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Zeng-Nan Mo
- Center for Genomics and Personalized Medicine, Guangxi Key Laboratory for Genomics and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomics and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Jian-Hong Zhong
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
18
|
Lin D, Shen L, Luo M, Zhang K, Li J, Yang Q, Zhu F, Zhou D, Zheng S, Chen Y, Zhou J. Circulating tumor cells: biology and clinical significance. Signal Transduct Target Ther 2021; 6:404. [PMID: 34803167 PMCID: PMC8606574 DOI: 10.1038/s41392-021-00817-8] [Citation(s) in RCA: 474] [Impact Index Per Article: 118.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/06/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023] Open
Abstract
Circulating tumor cells (CTCs) are tumor cells that have sloughed off the primary tumor and extravasate into and circulate in the blood. Understanding of the metastatic cascade of CTCs has tremendous potential for the identification of targets against cancer metastasis. Detecting these very rare CTCs among the massive blood cells is challenging. However, emerging technologies for CTCs detection have profoundly contributed to deepening investigation into the biology of CTCs and have facilitated their clinical application. Current technologies for the detection of CTCs are summarized herein, together with their advantages and disadvantages. The detection of CTCs is usually dependent on molecular markers, with the epithelial cell adhesion molecule being the most widely used, although molecular markers vary between different types of cancer. Properties associated with epithelial-to-mesenchymal transition and stemness have been identified in CTCs, indicating their increased metastatic capacity. Only a small proportion of CTCs can survive and eventually initiate metastases, suggesting that an interaction and modulation between CTCs and the hostile blood microenvironment is essential for CTC metastasis. Single-cell sequencing of CTCs has been extensively investigated, and has enabled researchers to reveal the genome and transcriptome of CTCs. Herein, we also review the clinical applications of CTCs, especially for monitoring response to cancer treatment and in evaluating prognosis. Hence, CTCs have and will continue to contribute to providing significant insights into metastatic processes and will open new avenues for useful clinical applications.
Collapse
Affiliation(s)
- Danfeng Lin
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lesang Shen
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meng Luo
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kun Zhang
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinfan Li
- Department of Pathology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Yang
- Department of Pathology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fangfang Zhu
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Zhou
- Department of Surgery, Traditional Chinese Medical Hospital of Zhuji, Shaoxing, China
| | - Shu Zheng
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiding Chen
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Jiaojiao Zhou
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
19
|
Ma X, Hao Y, Liu L. Progress in Nanomaterials-Based Optical and Electrochemical Methods for the Assays of Exosomes. Int J Nanomedicine 2021; 16:7575-7608. [PMID: 34803380 PMCID: PMC8599324 DOI: 10.2147/ijn.s333969] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/28/2021] [Indexed: 12/11/2022] Open
Abstract
Exosomes with diameters of 30-150 nm are small membrane-bound vesicles secreted by a variety of cells. They play an important role in many biological processes, such as tumor-related immune response and intercellular signal transduction. Exosomes have been considered as emerging and noninvasive biomarkers for cancer diagnosis. Recently, a large number of optical and electrochemical biosensors have been proposed for sensitive detection of exosomes. To meet the increasing demands for ultrasensitive detection, nanomaterials have been integrated with various techniques as powerful components. Because of their intrinsic merits of biological compatibility, excellent physicochemical features and unique catalytic ability, nanomaterials have significantly improved the analytical performances of exosome biosensors. In this review, we summarized the recent progress in nanomaterials-based biosensors for the detection of cancer-derived exosomes, including fluorescence, colorimetry, surface plasmon resonance spectroscopy, surface enhanced Raman scattering spectroscopy, electrochemistry, electrochemiluminescence and so on.
Collapse
Affiliation(s)
- Xiaohua Ma
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Shangqiu Normal University, Shangqiu, Henan, 476000, People’s Republic of China
| | - Yuanqiang Hao
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Shangqiu Normal University, Shangqiu, Henan, 476000, People’s Republic of China
| | - Lin Liu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Shangqiu Normal University, Shangqiu, Henan, 476000, People’s Republic of China
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People’s Republic of China
| |
Collapse
|
20
|
Min L, Wang B, Bao H, Li X, Zhao L, Meng J, Wang S. Advanced Nanotechnologies for Extracellular Vesicle-Based Liquid Biopsy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102789. [PMID: 34463056 PMCID: PMC8529441 DOI: 10.1002/advs.202102789] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Indexed: 05/09/2023]
Abstract
Extracellular vesicles (EVs) are emerging as a new source of biomarkers in liquid biopsy because of their wide presence in most body fluids and their ability to load cargoes from disease-related cells. Owing to the crucial role of EVs in disease diagnosis and treatment, significant efforts have been made to isolate, detect, and analyze EVs with high efficiency. A recent overview of advanced EV detection nanotechnologies is discussed here. First, several key challenges in EV-based liquid biopsies are introduced. Then, the related pivotal advances in nanotechnologies for EV isolation based on physical features, chemical affinity, and the combination of nanostructures and chemical affinity are summarized. Next, a summary of high-sensitivity sensors for EV detection and advanced approaches for single EV detection are provided. Later, EV analysis is introduced in practical clinical scenarios, and the application of machine learning in this field is highlighted. Finally, future opportunities for the development of next-generation nanotechnologies for EV detection are presented.
Collapse
Affiliation(s)
- Li Min
- Department of GastroenterologyBeijing Friendship HospitalCapital Medical UniversityNational Clinical Research Center for Digestive DiseasesBeijing Digestive Disease CenterBeijing Key Laboratory for Precancerous Lesion of Digestive DiseaseBeijing100050P. R. China
| | - Binshuai Wang
- Department of UrologyPeking University Third HospitalBeijing100191P. R. China
| | - Han Bao
- Key Laboratory of Bio‐inspired Materials and Interfacial ScienceCAS Center for Excellence in NanoscienceTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Xinran Li
- Department of UrologyPeking University Third HospitalBeijing100191P. R. China
| | - Libo Zhao
- Echo Biotech Co., Ltd.Beijing102206P. R. China
| | - Jingxin Meng
- Key Laboratory of Bio‐inspired Materials and Interfacial ScienceCAS Center for Excellence in NanoscienceTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Shutao Wang
- Key Laboratory of Bio‐inspired Materials and Interfacial ScienceCAS Center for Excellence in NanoscienceTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
21
|
Wang J, Xie H, Ding C. Designed Co-DNA-Locker and Ratiometric SERS Sensing for Accurate Detection of Exosomes Based on Gold Nanorod Arrays. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32837-32844. [PMID: 34236165 DOI: 10.1021/acsami.1c09388] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Exosomes, which can transfer and deliver information about the original cell, are considered to be ideal candidates for early cancer diagnosis and evaluation of therapeutic efficacy due to their high abundance and stability. However, the highly expressed proteins on the surface of exosomes are usually associated with a variety of cancers; it is difficult to distinguish them by a single marker. Herein, a controlled self-assembly of gold nanorod (AuNR) arrays was prepared to construct a surface-enhanced Raman spectroscopy (SERS) sensor for the specific detection of exosomes secreted by SK-Br-3 cells based on a designed colocalization-dependent system (Co-DNA-Locker) and ratiometric strategy. After the exosomes are captured in the sensing array by the EpCAM aptamer modified on the surface of AuNRs, the DNA logic process occurs because the other two proteins, CD63 and HER2, are expressed simultaneously on the surface of exosomes secreted by SK-Br-3 cells, and the SERS signal intensity of the Rhodamine 6G (R6G) tagged on the terminal of DNA TE increased with an increase in the concentration of the exosomes, while the SERS signal intensity of Cy5 linked on the terminal of the EpCAM aptamer, which acts as an internal standard, remains stable. The AuNRs are uniformly arranged in a hexagonal shape, and the dense "hot spots" produce "hot surfaces," which greatly improve the sensitivity and uniformity of detection. In the presence of target exosomes, the DNA colocalization three-signal input switch and the ratiometric strategy realize the specific and accurate detection of exosomes. This sensing strategy achieves a wide detection range (1.0 × 104-5.0 × 106 particles/mL) and a lower detection limit (5.3 × 103 particles/mL), without using any signal amplification mechanism, demonstrating promising applications in health care monitoring and clinical diagnostics.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Hongyang Xie
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Caifeng Ding
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| |
Collapse
|
22
|
He X, Ma Y, Xie H, Rao G, Yang Z, Zhang J, Feng Z. Biomimetic Nanostructure Platform for Cancer Diagnosis Based on Tumor Biomarkers. Front Bioeng Biotechnol 2021; 9:687664. [PMID: 34336803 PMCID: PMC8320534 DOI: 10.3389/fbioe.2021.687664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
Biomarker discovery and its clinical use have attracted considerable attention since early cancer diagnosis can significantly decrease mortality. Cancer biomarkers include a wide range of biomolecules, such as nucleic acids, proteins, metabolites, sugars, and cytogenetic substances present in human biofluids. Except for free-circulating biomarkers, tumor-extracellular vesicles (tEVs) and circulating tumor cells (CTCs) can serve as biomarkers for the diagnosis and prognosis of various cancers. Considering the potential of tumor biomarkers in clinical settings, several bioinspired detection systems based on nanotechnologies are in the spotlight for detection. However, tremendous challenges remain in detection because of massive contamination, unstable signal-to-noise ratios due to heterogeneity, nonspecific bindings, or a lack of efficient amplification. To date, many approaches are under development to improve the sensitivity and specificity of tumor biomarker isolation and detection. Particularly, the exploration of natural materials in biological frames has encouraged researchers to develop new bioinspired and biomimetic nanostructures, which can mimic the natural processes to facilitate biomarker capture and detection in clinical settings. These platforms have substantial influence in biomedical applications, owing to their capture ability, significant contrast increase, high sensitivity, and specificity. In this review, we first describe the potential of tumor biomarkers in a liquid biopsy and then provide an overview of the progress of biomimetic nanostructure platforms to isolate and detect tumor biomarkers, including in vitro and in vivo studies. Capture efficiency, scale, amplification, sensitivity, and specificity are the criteria that will be further discussed for evaluating the capability of platforms. Bioinspired and biomimetic systems appear to have a bright future to settle obstacles encountered in tumor biomarker detection, thus enhancing effective cancer diagnosis.
Collapse
Affiliation(s)
- Xiping He
- Department of Rehabilitation Medicine, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, China
| | - Yifan Ma
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States
| | - Haotian Xie
- Department of Mathematics, The Ohio State University, Columbus, OH, United States
| | - Gaofeng Rao
- Department of Rehabilitation Medicine, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, China
| | - Zhaogang Yang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jingjing Zhang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States
| | - Zhong Feng
- Department of Neurology, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, China
| |
Collapse
|