1
|
Chen J, Yi D, Shen B, Zheng W. Multifunctional Liquid-Metal Composites for Electromagnetic Communication and Attenuation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2404595. [PMID: 40326960 DOI: 10.1002/adma.202404595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/15/2025] [Indexed: 05/07/2025]
Abstract
Efficient and reliable information transmission is crucial in the widespread use of electronic products and wireless communication. Additionally, it is vital to address the electromagnetic interference (EMI) and radiation that arise from the communication process. In particular, the emergence of flexible electronic products has posed new hurdles for EM functional materials with flexibility and high performance. Liquid metal (LM) is an innovative EM functional material that possesses both the conductivity of metals and the fluidity to reconfigure like a liquid. These characteristics paved the way for developing novel flexible electronic devices and products. This review provides an overview of the current status and future potential of LM-based EM functional materials. It highlights the latest progress in LM-based materials for applications such as EMI shielding, EM-wave absorption, and wireless communication (antennas). Finally, the primary obstacles of LM-based EM functional materials are discussed and revealed potential directions for their advancement. Overall, the current research on LM-based EM functional materials indicates that they have great potential to promote the development of EM functional materials, thus providing new possibilities for the advancement of flexible electronic products.
Collapse
Affiliation(s)
- Jiali Chen
- Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Da Yi
- College of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, China
| | - Bin Shen
- Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenge Zheng
- Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Chen G, Zhang T, Zhang L, Tao K, Chen Q, Wu H. Dual relaxation behaviors driven by a homogeneous and stable dual-interface charge layer based on an EGaIn absorber. MATERIALS HORIZONS 2025; 12:1629-1639. [PMID: 39660567 DOI: 10.1039/d4mh01564a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Interface engineering, by modulating defect distribution and impedance at interfaces and inducing interfacial polarization, has proven to be an effective strategy for optimizing dielectric properties. However, the inherent incompatibility between heterogeneous phases presents a significant challenge in constructing multi-heterointerfaces and understanding how their distribution influences dielectric performance. Herein, we constructed an EGaIn@Ni/NiO/Ga2O3 composite structure by employing a low-intensity ultrasound-assisted galvanic replacement reaction followed by high-temperature annealing. The controlled addition of Ni salts allowed for the fine-tuning of Ni, NiO, and In concentrations and their spatial distribution within the interfacial architecture. Annealing treatment induced a transition from amorphous to crystalline phases, triggering dual relaxation behaviors between EGaIn/Ni and NiO/Ga2O3. Additionally, significant charge accumulation was observed at the NiO/Ga2O3 interface, likely due to the substantial work function difference between Ni and NiO, coupled with the low barrier height between EGaIn and Ni, which facilitates electron migration. Consequently, the optimized samples exhibited a maximum absorption bandwidth of 7.92 GHz, which is the highest among the EGaIn-based absorbers reported in the literature. This work not only elucidates the mechanism by which multi-heterogeneous interfacial distributions regulate the dielectric properties but also provides an effective approach for modulating the electromagnetic wave performance of liquid metals.
Collapse
Affiliation(s)
- Geng Chen
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Tao Zhang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Limin Zhang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Kai Tao
- The Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Qiang Chen
- State Key Laboratory of Solidification Processing, Northwestern Polytechnic University, Xi'an 710072, China.
| | - Hongjing Wu
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
3
|
Kanetkar S, Peri SP, Mithaiwala H, Krisnadi F, Dickey MD, Green MD, Wang RY, Rykaczewski K. Impact of rheology on formation of oil-in-liquid metal emulsions. SOFT MATTER 2024; 21:33-38. [PMID: 39635718 DOI: 10.1039/d4sm01361a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
To quantify how the viscosities of silicone oil (SO) and liquid metal (LM) relate to emulsion-formation (LM-in-SO versus SO-in-LM), a process was developed to produce LM pastes with adjustable viscosity and minimal oxide and bubbles. Increased LM viscosity allows greater silicone oil intake and/or intake of higher-viscosity silicone oils.
Collapse
Affiliation(s)
- Shreyas Kanetkar
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287, USA.
| | - Sai P Peri
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287, USA.
| | - Husain Mithaiwala
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287, USA.
| | - Febby Krisnadi
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Matthew D Green
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287, USA.
| | - Robert Y Wang
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287, USA.
| | - Konrad Rykaczewski
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
4
|
Zeng C, Shen X, Shen K, Bao L, Liao G, Shen J. Boosted the thermal conductivity of liquid metal via bridging diamond particles with graphite. J Colloid Interface Sci 2024; 680:643-656. [PMID: 39531882 DOI: 10.1016/j.jcis.2024.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
The liquid metal (LM) composite is regarded as having potential and wide-ranging applications in electronic thermal management. Enhancing the thermal conductivity of LM is a crucial matter. Herein, a novel LM composite of eutectic gallium-indium (EGaIn)/diamond/graphite was developed. A highest thermal conductivity of 133 ± 3 W m-1 K-1 was achieved, 411 % higher than that of the matrix. The bonding mechanism reveals that the interfacial adsorption energy (ΔE) of graphite and EGaIn can be effectively decreased by the functional groups of graphite (by -108 % for -OH and -125 % for -CO) and the oxide of EGaIn (by -64 %). Furthermore, the ΔE of diamond and EGaIn can be significantly reduced through the oxidation of EGaIn (by -83 %) and the H-terminal of diamond (by -187 %). The thermal conductance mechanism suggests that a 3 vol% graphite content in the EGaIn/40 vol% diamond/graphite composite can form an excellent thermal conductance bridge among diamond particles. However, the thermal conductivity of the composite significantly decreased when too much graphite was added due to the tendency of the graphite to coat the diamond particles. There was no significant change in the melting point of EGaIn after being mixed with diamond and graphite. The EGaIn/diamond/graphite composite also demonstrated excellent thermal management performance in LED lamps and CPU heat dissipation as a thermal interface material, particularly in high-power electronic devices. This work presents the potential to enhance the thermal conductivity of LM-based composite by bridging spheroidal particles with a flaky material.
Collapse
Affiliation(s)
- Chengzong Zeng
- School of Electronics and IoT, Chongqing Polytechnic University of Electronic Technology, Chongqing 401331, PR China.
| | - Xia Shen
- School of Electronics and IoT, Chongqing Polytechnic University of Electronic Technology, Chongqing 401331, PR China
| | - Kun Shen
- School of Electronics and IoT, Chongqing Polytechnic University of Electronic Technology, Chongqing 401331, PR China
| | - Linzhao Bao
- School of Electronics and IoT, Chongqing Polytechnic University of Electronic Technology, Chongqing 401331, PR China
| | - Guangyin Liao
- School of Electronics and IoT, Chongqing Polytechnic University of Electronic Technology, Chongqing 401331, PR China
| | - Jun Shen
- State Key Laboratory of Mechanical Transmission, College of Material Science and Engineering, Chongqing University, Chongqing 400044, PR China
| |
Collapse
|
5
|
Liu X, Xu H, Li J, Liu Y, Fan H. Review of Liquid Metal Fiber Based Biosensors and Bioelectronics. BIOSENSORS 2024; 14:490. [PMID: 39451703 PMCID: PMC11506175 DOI: 10.3390/bios14100490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024]
Abstract
Liquid metal, as a novel material, has become ideal for the fabrication of flexible conductive fibers and has shown great potential in the field of biomedical sensing. This paper presents a comprehensive review of the unique properties of liquid metals such as gallium-based alloys, including their excellent electrical conductivity, mobility, and biocompatibility. These properties make liquid metals ideal for the fabrication of flexible and malleable biosensors. The article explores common preparation methods for liquid metal conductive fibers, such as internal liquid metal filling, surface printing with liquid metal, and liquid metal coating techniques, and their applications in health monitoring, neural interfaces, and wearable devices. By summarizing and analyzing the current research, this paper aims to reveal the current status and challenges of liquid metal conductive fibers in the field of biosensors and to look forward to their development in the future, which will provide valuable references and insights for researchers in the field of biomedical engineering.
Collapse
Affiliation(s)
| | | | | | - Yanqing Liu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (X.L.); (J.L.)
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (X.L.); (J.L.)
| |
Collapse
|
6
|
Ho J, Kim W, Kim D, Chung SK, Lim S. Foldable Metamaterial Absorber with Liquid Metal Printing on Paper. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53261-53272. [PMID: 39315532 DOI: 10.1021/acsami.4c12021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Metamaterials, characterized by their unique artificial periodic structures, exhibit extraordinary abilities in controlling electromagnetic waves not found in natural materials. Metamaterial absorbers, for example, have been developed by patterning solid conductive materials on dielectric surfaces. However, the foldability limitations of solid conductors make them unsuitable as foldable metamaterial absorbers since they lose those desirable properties when folded. To address this challenge, various methods using liquid metals have emerged, but they either require often necessitate structural frames or are primarily suited for hard surfaces, limiting their foldability potential. This study proposes an innovative solution involving the deposition of liquid metal onto paper surfaces to overcome foldability constraints. We design a metamaterial absorber with a circular pattern using three sheets of printing paper bonded with a film, leveraging these adhesive properties of oxidized gallium-based liquid metal to waterproof agent coated printing paper while preventing adhesion to laser-printed toner surfaces. The experimental results show that this absorber achieves an absorption rate of more than 90% in the frequency range of 10.36-10.76 GHz while being insensitive to polarization and incidence angle. Surprisingly, our proposed absorber retains its excellent performance even after being folded and unfolded up to 50 times. This foldable metamaterial absorber made of liquid metal is a promising solution for electromagnetic wave management applications requiring flexibility and adaptability.
Collapse
Affiliation(s)
- Jinwoo Ho
- Department of Intelligent Semiconductor Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Woochan Kim
- Department of Mechanical Engineering, Myongji University, Yongin 17058, Republic of Korea
| | - Daeyoung Kim
- Department of Electrical Engineering, Korea Army Academy, Yeong-Cheon 38900, Republic of Korea
| | - Sang Kug Chung
- Department of Mechanical Engineering, Myongji University, Yongin 17058, Republic of Korea
| | - Sungjoon Lim
- Department of Intelligent Semiconductor Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
7
|
Li N, Yuan X, Li Y, Zhang G, Yang Q, Zhou Y, Guo M, Liu J. Bioinspired Liquid Metal Based Soft Humanoid Robots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404330. [PMID: 38723269 DOI: 10.1002/adma.202404330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/07/2024] [Indexed: 08/29/2024]
Abstract
The pursuit of constructing humanoid robots to replicate the anatomical structures and capabilities of human beings has been a long-standing significant undertaking and especially garnered tremendous attention in recent years. However, despite the progress made over recent decades, humanoid robots have predominantly been confined to those rigid metallic structures, which however starkly contrast with the inherent flexibility observed in biological systems. To better innovate this area, the present work systematically explores the value and potential of liquid metals and their derivatives in facilitating a crucial transition towards soft humanoid robots. Through a comprehensive interpretation of bionics, an overview of liquid metals' multifaceted roles as essential components in constructing advanced humanoid robots-functioning as soft actuators, sensors, power sources, logical devices, circuit systems, and even transformable skeletal structures-is presented. It is conceived that the integration of these components with flexible structures, facilitated by the unique properties of liquid metals, can create unexpected versatile functionalities and behaviors to better fulfill human needs. Finally, a revolution in humanoid robots is envisioned, transitioning from metallic frameworks to hybrid soft-rigid structures resembling that of biological tissues. This study is expected to provide fundamental guidance for the coming research, thereby advancing the area.
Collapse
Affiliation(s)
- Nan Li
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaohong Yuan
- School of Economics and Business Administration, Chongqing University, Chongqing, 400044, China
| | - Yuqing Li
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangcheng Zhang
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qianhong Yang
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingxin Zhou
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minghui Guo
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jing Liu
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
8
|
Kanetkar S, Shah NUH, Krisnadi F, Uppal A, Gandhi RM, Dickey MD, Wang RY, Rykaczewski K. Particle-assisted formation of oil-in-liquid metal emulsions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:425104. [PMID: 39025116 DOI: 10.1088/1361-648x/ad6521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/18/2024] [Indexed: 07/20/2024]
Abstract
Gallium-based liquid metals (LMs) have surface tension an order of magnitude higher than water and break up into micro-droplets when mixed with other liquids. In contrast, silicone oil readily mixes into LM foams to create oil-in-LM emulsions with oil inclusions. Previously, the LM was foamed through rapid mixing in air for an extended duration (over 2 h). This process first results in the internalization of oxide flakes that form at the air-liquid interface. Once a critical fraction of these randomly shaped solid flakes is reached, air bubbles internalize into the LM to create foams that can internalize secondary liquids. Here, we introduce an alternative oil-in-LM emulsion fabrication method that relies on the prior addition of SiO2micro-particles into the LM before mixing it with the silicone oil. This particle-assisted emulsion formation process provides a higher control over the composition of the LM-particle mixture before oil addition, which we employ to systematically study the impact of particle characteristics and content on the emulsions' composition and properties. We demonstrate that the solid particle size (0.8μm to 5μm) and volume fraction (1%-10%) have a negligible impact on the internalization of the oil inclusions. The inclusions are mostly spherical with diameters of 20-100μm diameter and are internalized by forming new, rather than filling old, geometrical features. We also study the impact of the particle characteristics on the two key properties related to the functional application of the LM emulsions in the thermal management of microelectronics. In particular, we measure the impact of particles and silicone oil on the emulsion's thermal conductivity and its ability to prevent deleterious gallium-induced corrosion and embrittlement of contacting metal substrates.
Collapse
Affiliation(s)
- Shreyas Kanetkar
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, United States of America
| | - Najam Ul H Shah
- Department of Mechanical Engineering, University of Engineering and Technology, Taxila 47050, Pakistan
| | - Febby Krisnadi
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States of America
| | - Aastha Uppal
- Intel Corporation, 5000 W. Chandler Blvd., Chandler, AZ 85226, United States of America
| | - Rohit M Gandhi
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, United States of America
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States of America
| | - Robert Y Wang
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, United States of America
| | - Konrad Rykaczewski
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, United States of America
| |
Collapse
|
9
|
Ren N, Ai Y, Yue N, Cui M, Huang R, Qi W, Su R. Shear-Induced Fabrication of Cellulose Nanofibril/Liquid Metal Nanocomposite Films for Flexible Electromagnetic Interference Shielding and Thermal Management. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17904-17917. [PMID: 38511485 DOI: 10.1021/acsami.4c01220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
To address electromagnetic interference (EMI) pollution in modern society, the development of ultrathin, high-performance, and highly stable EMI shielding materials is highly desired. Liquid metal (LM) based conductive materials have received enormous amounts of attention. However, the processing approach of LM/polymer composites represents great challenges due to the high surface tension and cohesive energy of LMs. In this study, we develop a universal one-step fabrication strategy to directly process composites containing LMs and cellulose nanofibrils (CNFs) and successfully fabricate the ultrathin, flexible, and stable EMI shielding films with an average specific EMI shielding efficiency (EMI SE) value of 429 dB/mm and small thickness of only 70 μm in the wide frequency range of 8.2-18 GHz. In addition, the resulting films also exhibit excellent mechanical performance and flexibility, which endow the film with the ability to withstand repeated folding, bending, and folding into complex shapes without producing cracks or fractures. Besides, the resulting films display excellent thermal conductivity with a λ of 4.90 W/(m K) and an α of 3.17 mm2/s. Thus, the presented approach shows great potential in fabricating advanced materials for EMI shielding applications.
Collapse
Affiliation(s)
- Ning Ren
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Yusen Ai
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Ning Yue
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Mei Cui
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Renliang Huang
- Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin 300072, P. R. China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin 300072, P. R. China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, P. R. China
| |
Collapse
|
10
|
Zhu J, Li J, Tong Y, Hu T, Chen Z, Xiao Y, Zhang S, Yang H, Gao M, Pan T, Cheng H, Lin Y. Recent progress in multifunctional, reconfigurable, integrated liquid metal-based stretchable sensors and standalone systems. PROGRESS IN MATERIALS SCIENCE 2024; 142:101228. [PMID: 38745676 PMCID: PMC11090487 DOI: 10.1016/j.pmatsci.2023.101228] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Possessing a unique combination of properties that are traditionally contradictory in other natural or synthetical materials, Ga-based liquid metals (LMs) exhibit low mechanical stiffness and flowability like a liquid, with good electrical and thermal conductivity like metal, as well as good biocompatibility and room-temperature phase transformation. These remarkable properties have paved the way for the development of novel reconfigurable or stretchable electronics and devices. Despite these outstanding properties, the easy oxidation, high surface tension, and low rheological viscosity of LMs have presented formidable challenges in high-resolution patterning. To address this challenge, various surface modifications or additives have been employed to tailor the oxidation state, viscosity, and patterning capability of LMs. One effective approach for LM patterning is breaking down LMs into microparticles known as liquid metal particles (LMPs). This facilitates LM patterning using conventional techniques such as stencil, screening, or inkjet printing. Judiciously formulated photo-curable LMP inks or the introduction of an adhesive seed layer combined with a modified lift-off process further provide the micrometer-level LM patterns. Incorporating porous and adhesive substrates in LM-based electronics allows direct interfacing with the skin for robust and long-term monitoring of physiological signals. Combined with self-healing polymers in the form of substrates or composites, LM-based electronics can provide mechanical-robust devices to heal after damage for working in harsh environments. This review provides the latest advances in LM-based composites, fabrication methods, and their novel and unique applications in stretchable or reconfigurable sensors and resulting integrated systems. It is believed that the advancements in LM-based material preparation and high-resolution techniques have opened up opportunities for customized designs of LM-based stretchable sensors, as well as multifunctional, reconfigurable, highly integrated, and even standalone systems.
Collapse
Affiliation(s)
- Jia Zhu
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Jiaying Li
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yao Tong
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215011, PR China
| | - Taiqi Hu
- School of Electrical Engineering and Automation, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Ziqi Chen
- School of Physical Sciences, University of Science and Technology of China, Hefei 230026, PR China
| | - Yang Xiao
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Senhao Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215011, PR China
| | - Hongbo Yang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215011, PR China
| | - Min Gao
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Taisong Pan
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Yuan Lin
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
- Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronics Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
11
|
Zhang X, Liu J, Deng Z. Bismuth-based liquid metals: advances, applications, and prospects. MATERIALS HORIZONS 2024; 11:1369-1394. [PMID: 38224183 DOI: 10.1039/d3mh01722b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Bismuth-based liquid metals (LMs) are a large group of alloys with melting points slightly above room temperature. They are associated with fewer encapsulation constraints than room temperature LMs such as mercury, sodium-potassium alloys, and gallium-based alloys and are more likely to remain stable in the natural environment. In addition, their low melting point properties enable them to soften and melt via easy control. Bismuth-based alloys can also be modified with metal-based, carbon-based, and ceramic-based micro/nano particles as well as polymeric materials to create a series of novel composites owing to their outstanding functions. Based on these considerations, this review provides a comprehensive overview of bismuth-based LMs. The categories of bismuth and bismuth-based LMs are first briefly introduced to better systematize the physical and chemical properties of bismuth-based LMs. Based on these properties, bismuth-based LMs have been prepared using various methods, and this review briefly categorizes these preparation methods based on their finished forms (lumps, powders, and films). In addition, this review details the research progress of bismuth-based LMs in the fields of printed electronics, 3D printing, thermal management, biomedicine, chemical engineering, and deformable robotics. Finally, the challenges and future opportunities of bismuth-based LMs in the development process are discussed and visualized from different perspectives.
Collapse
Affiliation(s)
- Xilong Zhang
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Liu
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongshan Deng
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Chen Y, Huang Z, Hu F, Peng J, Huang T, Liu X, Luo C, Xu L, Yue K. Microstructured Polyfluoroacrylate Elastomeric Dielectric Layer for Highly Stretchable Wide-Range Capacitive Pressure Sensors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58700-58710. [PMID: 38065675 DOI: 10.1021/acsami.3c14064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Capacitive pressure sensors capable of replicating human tactile senses have garnered tremendous attention. Introducing microstructures into the dielectric layer is an effective approach to improve the sensitivity of the sensors. However, most reported processes to fabricate microstructured dielectric layers are complicated and time-consuming and usually have adverse effects on the mechanical properties. Herein, we report a mechanically strong and highly stretchable dielectric layer fabricated from a microstructured fluorinated elastomer with a high dielectric constant (5.8 at 1000 Hz) via a simple and low-cost thermal decomposition process. Capacitive pressure sensors based on this microstructured fluorinated elastomer dielectric layer and soft ionotronic electrodes illustrate an impressing stretchability (>300%), a high pressure sensitivity (17 MPa-1), a wide detection range (70 Pa-800 kPa), and a fast response time (below 300 ms). Moreover, the multipixel capacitive pressure sensors sensing array maintains the unique spatial tactile sensing performance even under significant tensile deformation. It is believed that our microstructured fluorinated elastomer dielectric layer might find wide applications in stretchable ionotronic devices.
Collapse
Affiliation(s)
- Yutong Chen
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter South China University of Technology, Guangzhou 510640, China
| | - Zhenkai Huang
- School of Materials Science and Hydrogen Energy Foshan University, Foshan 528000, China
| | - Faqi Hu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter South China University of Technology, Guangzhou 510640, China
| | - Jianping Peng
- School of Environmental and Chemical Engineering Foshan University, Foshan 528000, China
| | - Tianrui Huang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter South China University of Technology, Guangzhou 510640, China
| | - Xiang Liu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter South China University of Technology, Guangzhou 510640, China
| | - Chuan Luo
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter South China University of Technology, Guangzhou 510640, China
| | - Liguo Xu
- College of Light Chemical Industry and Materials Engineering Shunde Polytechnic, Foshan 528333, China
| | - Kan Yue
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices South China University of Technology, Guangzhou 510640, China
- Jiangsu Province Cultivation Base for State Key Laboratory of Photovoltaic Science and Technology, Changzhou University, Changzhou 213164, Jiangsu, China
| |
Collapse
|
13
|
Wang D, Ye J, Bai Y, Yang F, Zhang J, Rao W, Liu J. Liquid Metal Combinatorics toward Materials Discovery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303533. [PMID: 37417920 DOI: 10.1002/adma.202303533] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Liquid metals and their derivatives provide several opportunities for fundamental and practical exploration worldwide. However, the increasing number of studies and shortage of desirable materials to fulfill different needs also pose serious challenges. Herein, to address this issue, a generalized theoretical frame that is termed as "Liquid Metal Combinatorics" (LMC) is systematically presented, and summarizes promising candidate technical routes toward new generation material discovery. The major categories of LMC are defined, and eight representative methods for manufacturing advanced materials are outlined. It is illustrated that abundant targeted materials can be efficiently designed and fabricated via LMC through deep physical combinations, chemical reactions, or both among the main bodies of liquid metals, surface chemicals, precipitated ions, and other materials. This represents a large class of powerful, reliable, and modular methods for innovating general materials. The achieved combinatorial materials not only maintained the typical characteristics of liquid metals but also displayed distinct tenability. Furthermore, the fabrication strategies, wide extensibility, and pivotal applications of LMC are classified. Finally, by interpreting the developmental trends in the area, a perspective on the LMC is provided, which warrants its promising future for society.
Collapse
Affiliation(s)
- Dawei Wang
- Liquid Metal and Cryogenic Biomedical Research Center, Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Jiao Ye
- Liquid Metal and Cryogenic Biomedical Research Center, Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunlong Bai
- Liquid Metal and Cryogenic Biomedical Research Center, Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fan Yang
- Liquid Metal and Cryogenic Biomedical Research Center, Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Zhang
- Liquid Metal and Cryogenic Biomedical Research Center, Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Rao
- Liquid Metal and Cryogenic Biomedical Research Center, Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Liu
- Liquid Metal and Cryogenic Biomedical Research Center, Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
14
|
Liang S, Yang J, Li F, Xie S, Song N, Hu L. Recent progress in liquid metal printing and its applications. RSC Adv 2023; 13:26650-26662. [PMID: 37681047 PMCID: PMC10481125 DOI: 10.1039/d3ra04356h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023] Open
Abstract
This paper focuses on the latest research printing technology and broad application for flexible liquid metal (LM) materials. Through the newest template printing method, centrifugal force assisted method, pen lithography technology, and laser method, the precision of liquid metal printing on the devices was improved to 10 nm. The development of novel liquid metal inks, such as PVA-LM ink and ethanol/PDMS/LM double emulsion ink, have further enhanced the recovery, rapid printing, high conductivity, and strain resistance. At the same time, liquid metals also show promise in the application of biochemical sensors, photocatalysts, composite materials, driving machines, and electrode materials. Liquid metals have been applied to biomedical, pressure/gas, and electrochemical sensors. The sensitivity, biostability, and electrochemical performance of these LM sensors were improved rapidly. They could continue to be used in healthy respiratory, heartbeat monitoring, and dopamine detection. Meanwhile, the applications of liquid metal droplets in catalytic-assisted MoS2 deposition, catalytic growth of two-dimensional (2D) lamellar, catalytic free radical polymerization, catalytic hydrogen absorption/dehydrogenation, photo/electrocatalysis, and other fields were also summarized. Through improving liquid metal composites, magnetic, thermal, electrical, and tensile enhancement alloys, and shape memory alloys with excellent properties could also be prepared. Finally, the applications of liquid metal in micro-motors, intelligent robot feet, nanorobots, self-actuation, and electrode materials were also summarized. This paper comprehensively summarizes the practical application of liquid metals in different fields, which helps understand LMs development trends, and lays a foundation for subsequent research.
Collapse
Affiliation(s)
- Shuting Liang
- College of Chemical and Environmental Engineering, Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, Chongqing University of Arts and Sciences Chongqing 402160 PR China
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province Hangzhou 310018 China
| | - Jie Yang
- College of Chemical and Environmental Engineering, Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, Chongqing University of Arts and Sciences Chongqing 402160 PR China
| | - Fengjiao Li
- Shenzhen Automotive Research Institute, Beijing Institute of Technology Shenzhen 518118 PR China
| | - Shunbi Xie
- College of Chemical and Environmental Engineering, Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, Chongqing University of Arts and Sciences Chongqing 402160 PR China
| | - Na Song
- Department of Oncology, Chongqing Municipal Chinese Medicine Hospital Chongqing 400021 China
| | - Liang Hu
- Key Laboratory of Biomechanics and Mechanobiology, School of Biological Science and Medical Engineering, Beihang University Beijing 100083 PR China
| |
Collapse
|
15
|
Zhao R, Kang S, Wu C, Cheng Z, Xie Z, Liu Y, Zhang D. Designable Electrical/Thermal Coordinated Dual-Regulation Based on Liquid Metal Shape Memory Polymer Foam for Smart Switch. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205428. [PMID: 36658714 PMCID: PMC10015848 DOI: 10.1002/advs.202205428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Electronic components with tunable resistance, especially with synergistic regulation of thermal conductivity, play important roles in the fields of electronics, smart switch, soft robots, and so on. However, it is still a challenge to get the material with various resistance and thermal conductivity stably without lasting external force. Herein, a liquid metal shape memory polymer foam (LM-SMF) is developed by loading electrically and thermally conductive liquid metal (LM) on deformable foam skeleton. Based on thermal response shape memory effect, the foam skeleton can be reversibly pressed, the process of which enables LM to transfer between connected and disconnected states. As a result, obtained LM-SMF shows that the resistance stably changes from 0.8 Ω (conductor) to 200 MΩ (insulator), and the thermal conductivity difference is up to 4.71 times (0.108 to 0.509 W m-1 K-1 ), which indicates that LM-SMF can achieve the electrical and thermal dual-regulation. Moreover, LM-SMF can be used as a designable self-feedback/-warning integrated smart switch or tunable infrared stealth switch. This work proposes a novel strategy to get the material with electrical-thermal coordinated dual-regulation, which is possibly applied in intelligent heating system with real-time monitoring function, electrothermal sensor in the future.
Collapse
Affiliation(s)
- Ruoxi Zhao
- School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001P. R. China
| | - Sibo Kang
- State Key Laboratory of Marine CoatingMarine Chemical Research Institute Co., Ltd.Qingdao266071P. R. China
| | - Chao Wu
- School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001P. R. China
| | - Zhongjun Cheng
- School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001P. R. China
| | - Zhimin Xie
- National Key Laboratory of Science and Technology on Advanced Composites in Special EnvironmentsHarbin Institute of TechnologyHarbin150080P. R. China
| | - Yuyan Liu
- School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001P. R. China
| | - Dongjie Zhang
- School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001P. R. China
| |
Collapse
|
16
|
Shah NUH, Kanetkar S, Uppal A, Dickey MD, Wang RY, Rykaczewski K. Mechanism of Oil-in-Liquid Metal Emulsion Formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13279-13287. [PMID: 36256617 DOI: 10.1021/acs.langmuir.2c02428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Gallium-based liquid metals (LMs) combine metallic properties with the deformability of a liquid, which makes them promising candidates for a variety of applications. To broaden the range of physical and chemical properties, a variety of solid additives have been incorporated into the LMs in the literature. In contrast, only a handful of secondary fluids have been incorporated into LMs to create foams (gas-in-LM) or emulsions (liquid-in-LM). LM foams readily form through mixing of LM in air, facilitated by the formation of a native oxide on the LM. In contrast, LM breaks up into microdroplets when mixed with a secondary liquid such as silicone oil. Stable silicone oil-in-LM emulsions form only during mixing of the oil with LM foam. In this work, we investigate the fundamental mechanism underlying this process. We describe two possible microscale mechanisms for emulsion formation: (1) oil replacing air in the foam or (2) oil creating additional features in the foam. The associated foam-to-emulsion density difference demonstrates that emulsions predominantly form through the addition of oxide-covered silicone oil capsules to the LM foam. We demonstrate this through density and surface wettability measurements and multiscale imaging of LM foam mixed with varied silicone oil contents in air or nitrogen environments. We also demonstrate the presence of a continuous silicone oil film on the emulsion surface and that this oil film prevents the embrittlement of contacting aluminum.
Collapse
Affiliation(s)
- Najam Ul Hassan Shah
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona85287, United States
| | - Shreyas Kanetkar
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona85287, United States
| | - Aastha Uppal
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona85287, United States
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina27695, United States
| | - Robert Y Wang
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona85287, United States
| | - Konrad Rykaczewski
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona85287, United States
- Julie Ann Wrigley Global Futures Laboratory, Arizona State University, Tempe, Arizona85287, United States
| |
Collapse
|
17
|
Duan L, Zhang Y, Zhao J, Zhang J, Li Q, Lu Q, Fu L, Liu J, Liu Q. New Strategy and Excellent Fluorescence Property of Unique Core-Shell Structure Based on Liquid Metals/Metal Halides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204056. [PMID: 36101903 DOI: 10.1002/smll.202204056] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/11/2022] [Indexed: 06/15/2023]
Abstract
The further applications of liquid metals (LMs) are limited by their common shortcoming of silver-white physical appearance, which deviates from the impose stringent requirements for color and aesthetics. Herein, a concept is proposed for constructing fluorescent core-shell structures based on the components and properties of LMs, and metal halides. The metal halides endow LMs with polychromatic and stable fluorescence characteristics. As a proof-of-concept, LMs-Al obtained by mixing of LMs with aluminum (Al) is reported. The surface of LMs-Al is transformed directly from Al to a multi-phase metal halide of K3 AlCl6 with double perovskites structure, via redox reactions with KCl + HCl solution in a natural environment. The formation of core-shell structure from the K3 AlCl6 and LMs is achieved, and the shell with different phases can emit a cyan light by the superimposition of the polychromatic spectrum. Furthermore, the LMs can be directly converted into a fluorescent shell without affecting their original features. In particular, the luminescence properties of shells can be regulated by the components in LMs. This study provides a new direction for research in spontaneous interfacial modification and fluorescent functionalization of LMs and promises potential applications, such as lighting and displays, anti-counterfeiting measures, sensing, and chameleon robots.
Collapse
Affiliation(s)
- Liangfei Duan
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, International Joint Research Center for Optoelectronic and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| | - Yumin Zhang
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, International Joint Research Center for Optoelectronic and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| | - Jianhong Zhao
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, International Joint Research Center for Optoelectronic and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| | - Jin Zhang
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, International Joint Research Center for Optoelectronic and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| | - Qian Li
- CAS Key Laboratory of Cryogenics and Beijing Key Laboratory of Cryo- Biomedical Engineering, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Qingjie Lu
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, International Joint Research Center for Optoelectronic and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| | - Li Fu
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, International Joint Research Center for Optoelectronic and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| | - Jing Liu
- CAS Key Laboratory of Cryogenics and Beijing Key Laboratory of Cryo- Biomedical Engineering, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Department of Biomedical Engineering School of Medicine Tsinghua University Beijing, Beijing, 100084, China
| | - Qingju Liu
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, International Joint Research Center for Optoelectronic and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| |
Collapse
|
18
|
Duan L, Zhang Y, Zhao J, Zhang J, Li Q, Lu Q, Fu L, Liu J, Liu Q. Unique Surface Fluorescence Induced from the Core-Shell Structure of Gallium-Based Liquid Metals Prepared by Thermal Oxidation Processing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39654-39664. [PMID: 35979950 DOI: 10.1021/acsami.2c12420] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Liquid metals (LMs) have emerged as promising functional materials that combine the properties of both liquid and metal. These characteristics enabled them to find applications in many fields. However, the LMs usually can only display a silver-white physical appearance, which limits their further applications in the fields with the imposition of stringent requirements for color and aesthetics. Herein, we report that the surface of LMs was transformed directly from metal to fluorescent semiconductor layer by an example of eutectic GaInSn (eGaInSn) induced by thermal oxidation. Specifically, a core-shell structure is formed from the fluorescent layer and the LMs. The shell endows the LMs with fluorescence without affecting their interior fluidity and conductivity. In particular, the formation process as well as the degree of crystallization, phase transformation, and light emission of the fluorescent oxide shell on the surface of LMs is regulated by the component content. A thorough analysis of surface morphology, composition, structure, and properties of the fluorescent shell suggests that the Ga2O3 layer is formed on the surface of gallium-based LMs after their immersion in deionized water. Subsequently, thermal oxidation results in the formation of the β-Ga2O3 shell on the surface of liquid metals. Importantly, abundant oxygen vacancies (VO) in β-Ga2O3 as the donors and the gallium vacancies (VGa), gallium-oxygen vacancy pairs (VO-VGa), defect energy levels, and intrinsic defects as the acceptors enabled the light emission. The fluorescent LMs have promising potential for flexible lighting and displays, anticounterfeiting measures, sensing, and chameleon robots.
Collapse
Affiliation(s)
- Liangfei Duan
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, International Joint Research Center for Optoelectronic and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Yumin Zhang
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, International Joint Research Center for Optoelectronic and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Jianhong Zhao
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, International Joint Research Center for Optoelectronic and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Jin Zhang
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, International Joint Research Center for Optoelectronic and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Qian Li
- CAS Key Laboratory of Cryogenics and Beijing Key Laboratory of Cryo- Biomedical Engineering, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Qingjie Lu
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, International Joint Research Center for Optoelectronic and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Li Fu
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, International Joint Research Center for Optoelectronic and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Jing Liu
- CAS Key Laboratory of Cryogenics and Beijing Key Laboratory of Cryo- Biomedical Engineering, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Department of Biomedical Engineering School of Medicine Tsinghua University, Beijing 100084, China
| | - Qingju Liu
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, International Joint Research Center for Optoelectronic and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| |
Collapse
|
19
|
Sun X, Fu JH, Teng C, Zhang M, Liu T, Guo M, Qin P, Zhan F, Ren Y, Zhao H, Wang L, Liu J. Superhydrophobic E-textile with an Ag-EGaIn Conductive Layer for Motion Detection and Electromagnetic Interference Shielding. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33650-33661. [PMID: 35839288 DOI: 10.1021/acsami.2c09554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As as emerging innovation, electronic textiles have shown promising potential in health monitoring, energy harvesting, temperature regulation, and human-computer interactions. To access broader application scenarios, numerous e-textiles have been designed with a superhydrophobic surface to steer clear of interference from humidity or chemical decay. Nevertheless, even the cutting-edge electronic textiles (e-textiles) still have difficulty in realizing superior conductivity and satisfactory water repellency simultaneously. Herein, a facile and efficient approach to integrate a hierarchical elastic e-textile is proposed by electroless silver plating on GaIn alloy liquid metal coated textiles. The continuous uneven surface of AgNPs and deposition of FAS-17 endow the textile with exceptional and robust superhydrophobic performance, in which the conductivity and the contact angle of the as-made textile could reach 2145 ± 122 S/cm and 161.5 ± 2.1°, respectively. On the basis of such excellent conductivity, the electromagnetic interference (EMI) shielding function is excavated and the average shielding efficiency (SE) reaches about 87.56 dB within frequencies of 8.2-12.4 GHz. Furthermore, due to its high elasticity and low modulus, the textile can serve as a wearable strain sensor for motion detection, health monitoring, and underwater message transmission. This work provides a novel route to fabricate high-performance hydrophobic e-textiles, in which the encapsulation strategy could be referenced for the further development of conductive textiles.
Collapse
Affiliation(s)
- Xinlong Sun
- Beijing Key Lab of Cryo-biomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, People's Republic of China
| | - Jun-Heng Fu
- Beijing Key Lab of Cryo-biomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Chao Teng
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| | - MingKuan Zhang
- Beijing Key Lab of Cryo-biomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - TianYing Liu
- Beijing Key Lab of Cryo-biomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - MingHui Guo
- Beijing Key Lab of Cryo-biomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Peng Qin
- Beijing Key Lab of Cryo-biomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Fei Zhan
- School of Electrical and Electronic Engineering, Shijiazhuang Railway University, Shijiazhuang, Hebei 050043, People's Republic of China
| | - Yan Ren
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, People's Republic of China
| | - Hongbin Zhao
- State Key Laboratory of Advanced Materials for Smart Sensing, General Research Institute for Nonferrous Metals, Beijing 100088, People's Republic of China
| | - Lei Wang
- Beijing Key Lab of Cryo-biomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Jing Liu
- Beijing Key Lab of Cryo-biomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
20
|
Duan L, Zhang Y, Zhao J, Zhang J, Li Q, Chen Y, Liu J, Liu Q. Unique and Excellent Paintable Liquid Metal for Fluorescent Displays. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23951-23963. [PMID: 35537086 DOI: 10.1021/acsami.2c02714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A liquid metal (LM) generally has excellent electrical conductivity, thermal conductivity, flexibility, fluidity, and reflectivity. Innovative electronics using a LM to paint colorful fluorescent patterns may be applied to many important fields. Herein we propose, for the first time, the use of a LM to paint fluorescent patterns in the field of natural science. An LM containing a main-group metal (Ga50.25Bi8.28In28.2Sn13.27) is used to paint a uniform alloy film on a ceramic substrate. The painting is not restricted by any curved surface, shape, or size, which therefore gives the LM diverse adaptability. We have adopted the strategy of "painting-annealing-dealloying" through which LM can easily be diffused and doped into the substrate to produce various defects. Defects, my themselves or through their interactions, can produce different colors of emitted light. The primary fluorescence colors, such as purple, yellow, blue, and white, have been painted with the LM. Importantly, the brightness and color coordinates can be adjusted by changing the LM composition or annealing temperature, and intricate, delicate, colorful fluorescence patterns can be produced. Due to the unique painting form, colorful fluorescence, high stability, corrosion resistance, and low cost of the technique used for the LM, it can be used for displays, lighting panels, flexible electronic circuits, anticounterfeiting devices, and sensors.
Collapse
Affiliation(s)
- Liangfei Duan
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, International Joint Research Center for Optoelectronic and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China
| | - Yumin Zhang
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, International Joint Research Center for Optoelectronic and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China
| | - Jianhong Zhao
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, International Joint Research Center for Optoelectronic and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China
| | - Jin Zhang
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, International Joint Research Center for Optoelectronic and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China
| | - Qian Li
- CAS Key Laboratory of Cryogenics and Beijing Key Laboratory of Cryo- Biomedical Engineering, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Yu Chen
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, International Joint Research Center for Optoelectronic and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China
| | - Jing Liu
- CAS Key Laboratory of Cryogenics and Beijing Key Laboratory of Cryo- Biomedical Engineering, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, People's Republic of China
| | - Qingju Liu
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, International Joint Research Center for Optoelectronic and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China
| |
Collapse
|
21
|
Shah NUH, Kong W, Casey N, Kanetkar S, Wang RY, Rykaczewski K. Gallium oxide-stabilized oil in liquid metal emulsions. SOFT MATTER 2021; 17:8269-8275. [PMID: 34397076 DOI: 10.1039/d1sm00982f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Gallium based liquid metals (LM) have prospective biomedical, stretchable electronics, soft robotics, and energy storage applications, and are being widely adopted as thermal interface materials. The danger of gallium corroding most metals used in microelectronics requires the cumbersome addition of "barrier" layers or LM break-up into droplets within an inert matrix such as silicone oil. Such LM-in-oil emulsions are stabilized by native oxide on the droplets but have decreased thermal performance. Here we show that mixing of the silicone oil into an LM-air foam yields emulsions with inverted phases. We investigate the stability of these oil-in-LM emulsions through a range of processing times and oil viscosities, and characterize the impact of these parameters on the materials' structure and thermal property relationships. We demonstrate that the emulsion with 40 vol% of 10 cSt silicone oil provides a unique thermal management material with a 10 W m-1 K-1 thermal conductivity and an exterior lubricant thin film that completely prevents corrosion of contacting aluminum.
Collapse
Affiliation(s)
- Najam Ul Hassan Shah
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287, USA.
| | - Wilson Kong
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287, USA.
| | - Nathan Casey
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287, USA.
| | - Shreyas Kanetkar
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287, USA.
| | - Robert Y Wang
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287, USA.
| | - Konrad Rykaczewski
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|