1
|
Wang Y, Chang F, Li Y, Wang F, Li C, Li H, Jiang Y. Bi 2WO 6@Cu 2O-GO x bio-heterojunction p-n spray for accelerating chronic diabetic wound repairment with bilaterally enhanced sono-catalysis and glycolytic inhibition antisepsis. Biomaterials 2025; 317:123046. [PMID: 39729774 DOI: 10.1016/j.biomaterials.2024.123046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/12/2024] [Accepted: 12/23/2024] [Indexed: 12/29/2024]
Abstract
Chronic diabetic wound poses a pressing global healthcare challenge, necessitating an approach to address issues such as pathogenic bacteria elimination, blood sugar regulation, and angiogenesis stimulation. Herein, we engineered a Bi2WO6@Cu2O-GOx bio-heterojunction (BWCG bio-HJ) with exceptional cascade catalytic performance and impressive sonosensitivity to remodel the wound microenvironment and expedite the diabetic wound healing. Specifically, the Z-scheme junctions of Bi2WO6@Cu2O significantly augmented carrier separation dynamics, leading to the highly efficient generation of reactive oxygen species (ROS) upon US irradiations. Furthermore, glucose oxidase (GOx) grafted on the Bi2WO6@Cu2O surface facilitated the conversion of glucose into H2O2 and glucuronic acid, providing a rich supply for Cu+-mediated Fenton-like reactions. The robust oxidation effect disrupted the bacteria's phosphotransferase system (PTS), hindering glucose uptake, glycolysis, and energy metabolism, ultimately inducing bacterial death and reshaping the diabetic wound microenvironment. The BWCG bio-HJ was formulated as an antibacterial spray for chronic diabetic wound repair. Extensive in vitro and in vivo experiments confirmed that the BWCG bio-HJ spray could eliminate pathogenic bacteria, consume local blood sugar, and promote angiogenesis, collagen deposition, and epithelialization, thereby accelerating the diabetic wound healing process. This bio-heterojunction spray comprehensively addressed the principal pathological factors associated with diabetic wounds, offering a promising strategy for combatting stubborn infections.
Collapse
Affiliation(s)
- Yandong Wang
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, PR China
| | - Fei Chang
- Department of Oral and Maxillofacial Surgery, The Second Hospital of Shandong University, Jinan, Shandong, 250033, PR China
| | - Yutang Li
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, PR China
| | - Fenglong Wang
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, PR China
| | - Can Li
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, PR China
| | - Hui Li
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, PR China
| | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, PR China.
| |
Collapse
|
2
|
Wang S, Tan J, Zhang H, Guan S, Zeng Y, Nie X, Zhu H, Qian S, Liu X. Metastructure and strain-defect engineered Cu-doped TiO x coating to enhance antibacterial sonodynamic therapy. Bioact Mater 2025; 48:458-473. [PMID: 40093306 PMCID: PMC11910374 DOI: 10.1016/j.bioactmat.2025.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/24/2025] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
Sonodynamic therapy (SDT) has attracted widespread attention in treatment of implant-associated infections, one of the key factors leading to implant failure. Nevertheless, constructing efficient ultrasound-triggered coatings on implant surfaces remains a challenge. Herein, an acoustic metastructure Cu-doped defective titanium oxide coating (Cu-TiO x ) with lattice strain was constructed in situ on titanium implant to realize effective sonocatalysis. The redistribution of Cu atoms broke the pristine lattice of TiO2 during the thermal reduction treatment to regulate its energy structure, which favored separation of electron-hole pairs generated by ultrasound radiation to enhance the sonocatalytic generation of reactive oxygen species. In addition, the acoustic metastructure enhanced the absorption of ultrasound by Cu-TiO x metastructure coating, which further promoted its sonocatalytic effect. Thus, Cu-TiO x metastructure coating could efficiently eliminate Staphylococcus aureus and Escherichia coli infections under ultrasonic irradiation in 10 min. Besides, the osteogenic property of implant was significantly improved after infection clearance in vivo. This work provides a fresh perspective on the design of SDT biosurfaces based on metastructure and strain-defect engineering.
Collapse
Affiliation(s)
- Songsong Wang
- State Key Laboratory of Advanced Ceramics, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ji Tan
- State Key Laboratory of Advanced Ceramics, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Haifeng Zhang
- State Key Laboratory of Advanced Ceramics, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Shiwei Guan
- State Key Laboratory of Advanced Ceramics, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Yibo Zeng
- State Key Laboratory of Advanced Ceramics, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoshuang Nie
- State Key Laboratory of Advanced Ceramics, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongqin Zhu
- State Key Laboratory of Advanced Ceramics, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Shi Qian
- State Key Laboratory of Advanced Ceramics, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Xuanyong Liu
- State Key Laboratory of Advanced Ceramics, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Science, Hangzhou, 310024, China
| |
Collapse
|
3
|
Tran NA, Moonshi SS, Lam AK, Lu CT, Vu CQ, Arai S, Ta HT. Nanomaterials in cancer starvation therapy: pioneering advances, therapeutic potential, and clinical challenges. Cancer Metastasis Rev 2025; 44:51. [PMID: 40347350 DOI: 10.1007/s10555-025-10267-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 04/29/2025] [Indexed: 05/12/2025]
Abstract
Gaining significant attention in recent years, starvation therapy based on the blocking nutrients supply to cancer cells via blood occlusion and metabolic interventions is a promisingly novel approach in cancer treatment. However, there are many crucial obstacles to overcome to achieve effective treatment, for example, poor-targeting delivery, cellular hypoxia, adverse effects, and ineffective monotherapy. The starvation-based multitherapy based on multifunctional nanomaterials can narrow these gaps and pave a promising way for future clinical translation. This review focuses on the progression in nanomaterials-mediated muti-therapeutic modalities based on starvation therapy in recent years and therapeutic limitations that prevent their clinical applications. Moreover, unlike previous reviews that focused on a single aspect of the field, this comprehensive review presents a broader perspective on starvation therapy by summarising advancements across its various therapeutic strategies.
Collapse
Affiliation(s)
- Nam Anh Tran
- School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia
| | - Shehzahdi S Moonshi
- School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia
| | - Alfred K Lam
- School of Medicine and Dentistry, Griffith University, Southport, QLD, 4215, Australia
- Gold Coast University Hospital, Southport, QLD, 4215, Australia
| | - Cu Tai Lu
- School of Medicine and Dentistry, Griffith University, Southport, QLD, 4215, Australia
- Gold Coast University Hospital, Southport, QLD, 4215, Australia
| | - Cong Quang Vu
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan
| | - Satoshi Arai
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan
| | - Hang Thu Ta
- School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia.
| |
Collapse
|
4
|
Song K, Ming J, Tao B, Zhao F, Huang S, Wu W, Jiang C, Li X. Emerging glucose oxidase-delivering nanomedicines for enhanced tumor therapy. J Control Release 2025; 381:113580. [PMID: 40024341 DOI: 10.1016/j.jconrel.2025.02.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Abnormalities in glucose metabolism have been shown to characterize malignant tumors. Glucose depletion by glucose oxidase (GOD) has shown great potential in tumor therapy by causing tumor starvation. Since 2017, nanomedicines have been designed and utilized to deliver GOD for more precise and effective glucose modulation, which can overcome intrinsic limitations of different cancer therapeutic modalities by remodeling the tumor microenvironment to enhance antitumor therapy. To date, the topic of GOD-delivering nanomedicines for enhancing tumor therapy has not been comprehensively summarized. Herein, this review aims to provide an overview and discuss in detail recent advances in GOD delivery and directly involved starvation therapy strategies, GOD-sensitized various tumor therapy strategies, and GOD-mediated multimodal antitumor strategies. Finally, the challenges and outlooks for the future progress of the emerging tumor therapeutic nanomedicines are discussed. This review provides intuitive and specific insights to a broad audience in the fields of nanomedicines, biomaterials, and cancer therapy.
Collapse
Affiliation(s)
- Kaiyue Song
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Jiang Ming
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Bailong Tao
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Feng Zhao
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Shaorong Huang
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China.
| | - Wencheng Wu
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Cong Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200092, China.
| | - Xianglong Li
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China.
| |
Collapse
|
5
|
Wang H, Zheng B, Zhai S, Su D, Lu K. Porphyrin-based nanoscale metal-organic framework nanocarriers entrapping platinum nanoparticles and S-nitrosoglutathione for sonodynamic therapy in hypoxic tumors. Biomater Sci 2025. [PMID: 40327017 DOI: 10.1039/d5bm00127g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Sonodynamic therapy (SDT), which employs acoustic energy to generate reactive oxygen species (ROS), has emerged as a promising strategy for tumor treatment. While ultrasound (US) offers deep tissue penetration and minimal invasiveness, the low energy conversion efficiency of sonosensitizers and the hypoxic tumor microenvironment (TME) significantly limit SDT efficacy. To overcome these challenges, we developed a nano-sonosensitizer, TBP-Hf@Pt-GSNO (Hf-Pt-G), composed of a porphyrin-based nanoscale metal-organic framework (nMOF), TBP-Hf, integrated with platinum nanoparticles (Pt NPs) and S-nitrosoglutathione (GSNO). Pt NPs within the nMOF cavities enhance ultrasound reflection and scattering, thereby improving the acoustic energy conversion efficiency of TBP and boosting SDT efficacy. In addition, Pt NPs can catalyze the conversion of endogenous hydrogen peroxide (H2O2) into oxygen to alleviate tumor hypoxia. US irradiation further triggers the release of nitric oxide (NO) from GSNO, amplifying the killing effect on tumor cells. Enhanced singlet oxygen (1O2) generation and decreased hypoxia inducible factor-1α (HIF-1α) expression were observed in tumor cells following Hf-Pt-G treatment with US irradiation. In vivo, significant tumor suppression was achieved in 4T1 tumor-bearing mice treated with Hf-Pt-G combined with US. This study presents a novel strategy for enhancing acoustic energy conversion while integrating hypoxia alleviation and controllable NO release, thus improving the therapeutic outcomes of SDT.
Collapse
Affiliation(s)
- Hongbo Wang
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, P. R. China.
- Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, P. R. China
| | - Benchao Zheng
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, P. R. China.
- Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, P. R. China
| | - Shiyi Zhai
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, P. R. China.
- Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, P. R. China
| | - Danning Su
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, P. R. China.
- Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, P. R. China
| | - Kuangda Lu
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, P. R. China.
- Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, P. R. China
| |
Collapse
|
6
|
Li C, Zhang N, Xu Z, Rong Z, Song C, Zhang Y, Hua Y, Hu H, He Q, Shmanaid VV, Xia M, Zhang H, Zhao M, Jiao J, Zheng R. Inflammasome mediated in situ cancer vaccine activated by schottky heterojunction for augmented immunotherapy. J Control Release 2025; 380:1184-1197. [PMID: 39988306 DOI: 10.1016/j.jconrel.2025.02.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/26/2025] [Accepted: 02/19/2025] [Indexed: 02/25/2025]
Abstract
In situ cancer vaccines have emerged as an attractive paradigm for cancer immunotherapy. Nevertheless, insufficient antigens production, weak antigen presentation and immunosuppressive tumor microenvironment impeded the effectiveness of tumor immunotherapy. Herein, we constructed the NLRP3 inflammasome mediated in situ cancer vaccine (FPLB), in which rod shaped α-Fe2O3@Pt schottky heterojunction loaded with lactate oxidase (LOx) and surface-modified with bovine serum albumin and folic acid conjugation (FA-BSA). On the one hand, FPLB NPs utilizes its physicochemical properties of high aspect ratio to induce the breakdown of dendritic cells (DCs) lysosomes and the release of cathepsin B, thereby activating the NLRP3 inflammasome. Besides, the formation of "circulating pump" by harnessing catalase (CAT) activity and LOx activity could continuously consume lactic acid to alleviate the inactivation of cytokines induced by lactic acid excess, thereby transforming inflammatory activators into controllable nanoadjuvants. On the other hand, the "circulating pump" not only catalyze continuous generation of pyruvic acid to block the cell cycle, but also boosts charge utilization efficiency for excellent sonodynamic therapy (SDT) effect under ultrasound irradiation, thereby inducing the apoptosis or necrosis of tumor cells and releasing tumor-associated antigens (TAAs). FPLB demonstrates a significant NLRP3-mediated anti-tumor immune response both in vitro and in vivo. This strategy provides a new paradigm for the construction of NLRP3 inflammasome-mediated in situ cancer vaccines, which will have profound implications for the application of immunotherapy.
Collapse
Affiliation(s)
- Chengzhilin Li
- Medical Science and Technology Innovation Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250021, Shandong, China
| | - Nianlei Zhang
- Medical Science and Technology Innovation Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250021, Shandong, China
| | - Ziang Xu
- Medical Science and Technology Innovation Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250021, Shandong, China
| | - Zhonghou Rong
- Medical Science and Technology Innovation Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250021, Shandong, China
| | - Cong Song
- Medical Science and Technology Innovation Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250021, Shandong, China
| | - Yachao Zhang
- Medical Science and Technology Innovation Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250021, Shandong, China
| | - Yue Hua
- Medical Science and Technology Innovation Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250021, Shandong, China
| | - Houyang Hu
- Medical Science and Technology Innovation Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250021, Shandong, China
| | - Qingbin He
- Medical Science and Technology Innovation Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250021, Shandong, China
| | - Vadim V Shmanaid
- The Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus, Minsk 220072, Belarus
| | - Ming Xia
- Medical Science and Technology Innovation Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250021, Shandong, China
| | - Haiyuan Zhang
- School of Biomedical Engineering & The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Miaoqing Zhao
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China.
| | - Jianwei Jiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Runxiao Zheng
- Medical Science and Technology Innovation Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250021, Shandong, China.
| |
Collapse
|
7
|
Han M, Zhou S, Liao Z, Zishan C, Yi X, Wu C, Zhang D, He Y, Leong KW, Zhong Y. Bimetallic peroxide-based nanotherapeutics for immunometabolic intervention and induction of immunogenic cell death to augment cancer immunotherapy. Biomaterials 2025; 315:122934. [PMID: 39509856 DOI: 10.1016/j.biomaterials.2024.122934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
Immunotherapy has transformed cancer treatment, but its efficacy is often limited by the immunosuppressive characteristics of the tumor microenvironment (TME), which are predominantly influenced by the metabolism of cancer cells. Among these metabolic pathways, the indoleamine 2,3-dioxygenase (IDO) pathway is particularly crucial, as it significantly contributes to TME suppression and influences immune cell activity. Additionally, inducing immunogenic cell death (ICD) in tumor cells can reverse the immunosuppressive TME, thereby enhancing the efficacy of immunotherapy. Herein, we develop CGDMRR, a novel bimetallic peroxide-based nanodrug based on copper-cerium peroxide nanoparticles. These nanotherapeutics are engineered to mitigate tumor hypoxia and deliver therapeutics such as 1-methyltryptophan (1MT), glucose oxidase (GOx), and doxorubicin (Dox) in a targeted manner. The design aims to alleviate tumor hypoxia, reduce the immunosuppressive effects of the IDO pathway, and promote ICD. CGDMRR effectively inhibits the growth of 4T1 tumors and elicits antitumor immune responses by leveraging immunometabolic interventions and therapies that induce ICD. Furthermore, when CGDMRR is combined with a clinically certified anti-PD-L1 antibody, its efficacy in inhibiting tumor growth is enhanced. This improved efficacy extends beyond unilateral tumor models, also affecting bilateral tumors and lung metastases, due to the activation of systemic antitumor immunity. This study underscores CGDMRR's potential to augment the efficacy of PD-L1 blockade in breast cancer immunotherapy.
Collapse
Affiliation(s)
- Min Han
- College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, 511443, China
| | - Shiying Zhou
- College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, 511443, China
| | - Zunde Liao
- College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, 511443, China
| | - Chen Zishan
- College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, 511443, China
| | - Xiangting Yi
- College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, 511443, China
| | - Chuanbin Wu
- College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, 511443, China.
| | - Dongmei Zhang
- College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, 511443, China.
| | - Yao He
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, United States.
| | - Yiling Zhong
- College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, 511443, China; Department of Biomedical Engineering, Columbia University, New York, NY, 10027, United States.
| |
Collapse
|
8
|
Su W, Wang H, Pan J, Zhou Q. Advances in Sonodynamic Therapy: Focus on Ferroptosis. J Med Chem 2025; 68:5976-5992. [PMID: 40063557 DOI: 10.1021/acs.jmedchem.4c02603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Ferroptosis is a nonapoptotic form of cell death discovered in 2012. Noninvasive treatments regulating ferroptosis are important for a wide range of diseases. Among the noninvasive treatments, sonodynamic therapy (SDT) has become promising due to its strong tissue penetration and few side effects. In recent years, targeted drug delivery platforms constructed on the basis of SDT have provided an efficient delivery mode for the regulation of ferroptosis. Based on the latest research reports, this Perspective introduces the basic mechanism of SDT and the influencing factors of therapeutic effects, elucidates the significance of ferroptosis-targeted SDT, and summarizes the recent studies on ferroptosis-targeted SDT through different pathways. We also present innovative studies of composite ultrasound-responsive drug delivery platforms. Finally, a brief summary and outlook based on current ferroptosis-targeted SDT are presented.
Collapse
Affiliation(s)
- Wendi Su
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hao Wang
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Juhong Pan
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qing Zhou
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
9
|
Guo J, Jin M, Huang Y, Yin L, Li X, Du Y, Zhai X. Ce Single Atom with Cascaded Self-Circulating Enzyme-Like Activities and Photothermal Activities for Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410041. [PMID: 39930724 DOI: 10.1002/smll.202410041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/26/2025] [Indexed: 03/20/2025]
Abstract
Specific regulation of the tumor microenvironment (TME) is a potential strategy for tumor therapy. Although many TME-responsive nanozymes have been developed for tumor therapy, the limited substrates affect the therapeutic effect. In this study, cerium single-atom nanozymes (Ce SAs) are prepared by immobilizing cerium (Ce) using zeolitic imidazolate framework-8 (ZIF-8) as a precursor. The reversible conversion between Ce3+ and Ce4+ endows Ce SAs with multiple enzyme-like activities, such as peroxidase (POD)-like activity, oxidase (OD)-like activity, catalase (CAT)-like activity, glucose oxidase (GOD)-like activity, and glutathione peroxidase (GSH-Px)-like activity. All of the above enzyme activities give Ce SAs cascade self-circulation properties and can be used for tumor therapy in the TME. In addition, the prepared Ce SAs also have photothermal properties, which can achieve photothermal therapy (PTT) of tumor cells under 808 nm near-infrared (NIR) irradiation. Combining the cascade self-cycling enzyme-like activities and the photothermal properties of Ce SAs, this synergistic therapy makes Ce SAs have attractive efficacy in tumor treatment.
Collapse
Affiliation(s)
- Jialiang Guo
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Mengdie Jin
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Yongkang Huang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Leilei Yin
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Xiaopeng Li
- Department of Minimally Invasive Spine Surgery, The First Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, 261000, P. R. China
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Xinyun Zhai
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
10
|
Yu Q, Zhou J, Tao Q, Liu Y, Zhou H, Kang B, Xu JJ. Ultrasound-Activated Copper Matrix Nanosonosensitizer for Cuproptosis-Based Synergy Therapy. ACS APPLIED BIO MATERIALS 2025; 8:1503-1510. [PMID: 39883479 DOI: 10.1021/acsabm.4c01710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Cuproptosis exhibits enormous application prospects in treatment. However, cuproptosis-based therapy is impeded by the limited intracellular copper ions, the nonspecific delivery, uncontrollable release, and chelation of endogenous overproduced glutathione (GSH). In this work, an ultrasound-triggered nanosonosensitizer (p-TiO2-Cu(I)) was constructed for Cu(I) delivery, on-demand release, GSH consumption, and deeper tissue response. When the nanomedicine was internalized into the tumor cells, ultrasound (US) induced the nanosonosensitizer to produce reactive oxygen species (ROS) to achieve sonodynamic therapy (SDT). GSH, acting as a hole trapping agent, improved the efficiency of SDT. Meanwhile, the downgrade of GSH was beneficial to cuproptosis and oxidative damage-based SDT in return. What is more, the US could regulate the release behavior of Cu(I). Cu(I) bonded to mitochondrial proteins and then aggregated the lipoylated protein, bringing about the turbulence of the tricarboxylic acid cycle. The combination of SDT and cuproptosis showed high matching to induce efficient cuproptosis and may inspire other cuproptosis-based nanosonosensitizer designs.
Collapse
Affiliation(s)
- Qiao Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jie Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Qianqian Tao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yong Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Hong Zhou
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Bin Kang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
11
|
Yang Y, Wang N, Wang Z, Yan F, Shi Z, Feng S. Glutathione-Responsive Metal-Organic-Framework-Derived Mn xO y/(A/R)TiO 2 Nanoparticles for Enhanced Synergistic Sonodynamic/Chemodynamic/Immunotherapy. ACS NANO 2025; 19:885-899. [PMID: 39752569 DOI: 10.1021/acsnano.4c12304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Despite the potential of sonodynamic therapy (SDT) in treating malignant tumors, the lack of effective sonosensitizers has limited its clinical implementation. In this study, we explored the relationship between the heteroatom doping concentration in metal-organic frameworks and interface formation after pyrolysis by regulating the addition of manganese sources and successfully derived Z-scheme heterojunctions MnxOy/(A/R)TiO2 (MTO) in situ from MIL-125-NH2 (Ti/Mn). The electron transfer pathway introduced by interfacial contact promoted carrier separation and greatly preserved the effective redox components, significantly influencing the performance of reactive oxygen species generation. Upon reaching the tumor sites, MTO effectively depleted glutathione to alleviate the suppressive tumor environment, and the heterojunctions and MnxOy in MTO facilitated SDT and synergistic chemodynamic therapy (CDT), respectively, leading to enhanced immunogenic cell death (ICD). Furthermore, Mn2+ uptake by dendritic cells (DCs) and the tumor-associated antigens released due to ICD activated the stimulator of interferon genes pathway, which elicited a robust tumor-specific immune response by driving the maturation of DCs and the activation of T cells. In addition, the activated T cells secreted high levels of interferon-γ to enhance Mn3+/Mn2+-mediated ferroptosis in metastatic tumor cells. The combination of MTO-mediated synergistic therapy and PD-L1 checkpoint blockade exhibited vaccine-like functions, inducing stronger systemic immunity and durable immune memory to inhibit tumor progression, metastasis, and recurrence. To summarize, we synthesized a self-enhancing nanoplatform for synergistic SDT/CDT/immunotherapy using multifunctional MOF-derived Z-scheme heterojunctions. This study provides an experimental basis for amplifying the potential of sonosensitizers while optimizing SDT-mediated systemic immunity while avoiding interference caused by additional adjuvants.
Collapse
Affiliation(s)
- Yilin Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Ning Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Zhihua Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Fei Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Zhan Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
12
|
Zhou X, Feng S, Xu Q, Li Y, Lan J, Wang Z, Ding Y, Wang S, Zhao Q. Current advances in nanozyme-based nanodynamic therapies for cancer. Acta Biomater 2025; 191:1-28. [PMID: 39571955 DOI: 10.1016/j.actbio.2024.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/29/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
Nanozymes are nano-catalysis materials with enzyme-like activities, which can repair the defects of natural enzyme such as harsh catalytic conditions, and harness their strengths to treat tumor. The emerging nanodynamic therapies improved drug selectivity and decreased drug tolerance, while causing efficient cell apoptosis through the generated reactive oxygen species (ROS). Nanodynamic therapies based on nanozymes can improve the complicated tumor microenvironment (TME) to reduce the defect rate of nanodynamic therapies, and provide more options for tumor treatment. This review summarized the characteristics and applications of nanozymes with different activities and the factors influencing the activity of nanozymes. We also focused on the application of nanozymes in nanodynamic therapies, including photodynamic therapy (PDT), chemodynamic therapy (CDT), and sonodynamic therapy (SDT). Moreover, we discussed the strategies for optimizing nanodynamic therapies based on nanozymes for tumor treatment in detail, and provided a systematic review of tactics for synergies with other tumor therapies. Ultimately, we analyzed the shortcomings of nanodynamic therapies based on nanozymes and the relevant research prospect, which would provide sufficient evidence and lay a foundation for further research. STATEMENT OF SIGNIFICANCE: 1. The novelty and significance of the work with respect to the existing literatures. (1) Recent advances in nanozyme-based nanodynamic therapies are comprehensively and systematically reviewed, and strategies to address the limitations and challenges of current therapies based on nanozymes are discussed firstly. (2) The mechanism of nanozymes in nanodynamic therapies is described for the first time. The synergistic therapies, prospects, and challenges of nanozyme-based nanodynamic therapies are innovatively discussed. 2. The scientific impact and interest to our readership. This review focuses on the recent progress of nanozyme-based nanodynamic therapies. This review indicates the way forward for the combined treatment of nanozymes and nanodynamic therapies, and lays a foundation for facilitating theoretical development in clinic.
Collapse
Affiliation(s)
- Xubin Zhou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Shuaipeng Feng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Qingqing Xu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Yian Li
- School of Libra Arts of Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Jiaru Lan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Ziyi Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Yiduo Ding
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
13
|
Jiang Z, Li J, Liu G, Qiu Q, Zhang J, Hao M, Ren H, Zhang Y. A pH-Sensitive Glucose Oxidase and Hemin Coordination Micelle for Multi-Enzyme Cascade and Amplified Cancer Chemodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407674. [PMID: 39363789 DOI: 10.1002/smll.202407674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Indexed: 10/05/2024]
Abstract
Chemodynamic therapy (CDT) is an emerging therapeutic paradigm for cancer treatment that utilizes reactive oxygen species (ROS) to induce apoptosis of cancer cells but few biomaterials have been developed to differentiate the cancer cells and normal cells to achieve precise and targeted CDT. Herein, a simple cascade enzyme system is developed, termed hemin-micelles-GOx, based on hemin and glucose oxidase (GOx)-encapsulated Pluronic F127 (F127) micelles with pH-sensitive enzymatic activities. Histidine-tagged GOx can be easily chelated to hemin-F127 micelles via the coordination of histidine and ferrous ions in the center of hemin by simple admixture in an aqueous solution. In tumor microenvironment (TME), hemin-micelles-GOx exhibits enhanced peroxidase (POD)-like activities to generate toxic hydroxyl radicals due to the acidic condition, whereas in normal cells the catalase (CAT)-like, but not POD-like activity is amplified, resulting in the elimination of hydrogen peroxide to generate oxygen. In a murine melanoma model, hemin-micelles-GOx significantly suppresses tumor growth, demonstrating its great potential as a pH-mediated enzymatic switch for tumor management by CDT.
Collapse
Affiliation(s)
- Zhen Jiang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Jiexin Li
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Gengqi Liu
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Qian Qiu
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Jingyu Zhang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Minchao Hao
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - He Ren
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Yumiao Zhang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| |
Collapse
|
14
|
Han B, Liu Y, Zhou Q, Yu Y, Liu X, Guo Y, Zheng X, Zhou M, Yu H, Wang W. The advance of ultrasound-enabled diagnostics and therapeutics. J Control Release 2024; 375:1-19. [PMID: 39208935 DOI: 10.1016/j.jconrel.2024.08.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/27/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Point-of-care ultrasound demonstrates significant potential in biomedical research due to its noninvasive, real-time visualization, cost-effectiveness, and other biological benefits. Ultrasound irradiation can precisely control the mechanical and physicochemical effects on pathogenic lesions, enabling real-time visualization, tunable tissue penetration depth, and therapeutic applications. This review summarizes recent advancements in ultrasound-enabled diagnostics and therapeutics, focusing on mechanochemical effects that can be directly integrated into biomedical applications. Additionally, the structure-functionality relationships of sonotheranostic nanoplatforms are systematically discussed, providing insights into the underlying biological effects. Finally, the limitations of current ultrasonic medicine are discussed, along with potential expansions to facilitate patient-centered translations.
Collapse
Affiliation(s)
- Biying Han
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yan Liu
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Qianqian Zhou
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yuting Yu
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Xingxing Liu
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yu Guo
- State Key Laboratory of Chemical Biology & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaohua Zheng
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Mengjiao Zhou
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Haijun Yu
- State Key Laboratory of Chemical Biology & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Weiqi Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China.
| |
Collapse
|
15
|
Yang F, Lv J, Ma W, Yang Y, Hu X, Yang Z. Engineering Sonosensitizer-Derived Nanotheranostics for Augmented Sonodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402669. [PMID: 38970544 DOI: 10.1002/smll.202402669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/13/2024] [Indexed: 07/08/2024]
Abstract
Sonodynamic therapy (SDT), featuring noninvasive, deeper penetration, low cost, and repeatability, is a promising therapy approach for deep-seated tumors. However, the general or only utilization of SDT shows low efficiency and unsatisfactory treatment outcomes due to the complicated tumor microenvironment (TME) and SDT process. To circumvent the issues, three feasible approaches for enhancing SDT-based therapeutic effects, including sonosensitizer optimization, strategies for conquering hypoxia TME, and combinational therapy are summarized, with a particular focus on the combination therapy of SDT with other therapy modalities, including chemodynamic therapy, photodynamic therapy, photothermal therapy, chemotherapy, starvation therapy, gas therapy, and immunotherapy. In the end, the current challenges in SDT-based therapy on tumors are discussed and feasible approaches for enhanced therapeutic effects are provided. It is envisioned that this review will provide new insight into the strategic design of high-efficiency sonosensitizer-derived nanotheranostics, thereby augmenting SDT and accelerating the potential clinical transformation.
Collapse
Affiliation(s)
- Fuhong Yang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Jingqi Lv
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Wen Ma
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Yanling Yang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Xiaoming Hu
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
- Jiangxi Key Laboratory of Nanobiomaterials, School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, China
| | - Zhen Yang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| |
Collapse
|
16
|
Zhang M, Sun D, Huang H, Yang D, Song X, Feng W, Jing X, Chen Y. Nanosonosensitizer Optimization for Enhanced Sonodynamic Disease Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409663. [PMID: 39308222 DOI: 10.1002/adma.202409663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/16/2024] [Indexed: 11/16/2024]
Abstract
Low-intensity ultrasound-mediated sonodynamic therapy (SDT), which, by design, integrates sonosensitizers and molecular oxygen to generate therapeutic substances (e.g., toxic hydroxyl radicals, superoxide anions, or singlet oxygen) at disease sites, has shown enormous potential for the effective treatment of a variety of diseases. Nanoscale sonosensitizers play a crucial role in the SDT process because their structural, compositional, physicochemical, and biological characteristics are key determinants of therapeutic efficacy. In particular, advances in materials science and nanotechnology have invigorated a series of optimization strategies for augmenting the therapeutic efficacy of nanosonosensitizers. This comprehensive review systematically summarizes, discusses, and highlights state-of-the-art studies on the current achievements of nanosonosensitizer optimization in enhanced sonodynamic disease treatment, with an emphasis on the general design principles of nanosonosensitizers and their optimization strategies, mainly including organic and inorganic nanosonosensitizers. Additionally, recent advancements in optimized nanosonosensitizers for therapeutic applications aimed at treating various diseases, such as cancer, bacterial infections, atherosclerosis, and autoimmune diseases, are clarified in detail. Furthermore, the biological effects of the improved nanosonosensitizers for versatile SDT applications are thoroughly discussed. The review concludes by highlighting the current challenges and future opportunities in this rapidly evolving research field to expedite its practical clinical translation and application.
Collapse
Affiliation(s)
- Min Zhang
- Department of Ultrasound, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, P. R. China
| | - Dandan Sun
- Department of Ultrasound, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, P. R. China
| | - Hui Huang
- Materdicine Laboratory, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Dayan Yang
- Department of Ultrasound, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, P. R. China
| | - Xinran Song
- Materdicine Laboratory, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Wei Feng
- Materdicine Laboratory, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Xiangxiang Jing
- Department of Ultrasound, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, P. R. China
| | - Yu Chen
- Materdicine Laboratory, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute of Shanghai University, Wenzhou, Zhejiang, 325088, P. R. China
- Shanghai Institute of Materdicine, Shanghai, 200051, P. R. China
| |
Collapse
|
17
|
Han H, Santos HA. Nano- and Micro-Platforms in Therapeutic Proteins Delivery for Cancer Therapy: Materials and Strategies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409522. [PMID: 39263818 DOI: 10.1002/adma.202409522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/26/2024] [Indexed: 09/13/2024]
Abstract
Proteins have emerged as promising therapeutics in oncology due to their great specificity. Many treatment strategies are developed based on protein biologics, such as immunotherapy, starvation therapy, and pro-apoptosis therapy, while some protein biologics have entered the clinics. However, clinical translation is severely impeded by instability, short circulation time, poor transmembrane transportation, and immunogenicity. Micro- and nano-particles-based drug delivery platforms are designed to solve those problems and enhance protein therapeutic efficacy. This review first summarizes the different types of therapeutic proteins in clinical and research stages, highlighting their administration limitations. Next, various types of micro- and nano-particles are described to demonstrate how they can overcome those limitations. The potential of micro- and nano-particles are then explored to enhance the therapeutic efficacy of proteins by combinational therapies. Finally, the challenges and future directions of protein biologics carriers are discussed for optimized protein delivery.
Collapse
Affiliation(s)
- Huijie Han
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| |
Collapse
|
18
|
Wen D, Feng J, Deng R, Li K, Zhang H. Zn/Pt dual-site single-atom driven difunctional superimposition-augmented sonosensitizer for sonodynamic therapy boosted ferroptosis of cancer. Nat Commun 2024; 15:9359. [PMID: 39472589 PMCID: PMC11522694 DOI: 10.1038/s41467-024-53488-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/14/2024] [Indexed: 11/02/2024] Open
Abstract
Sonodynamic therapy (SDT) as a non-invasive antitumor strategy has been widely concerned. However, the rapid electron (e-) and hole (h+) recombination of traditional inorganic semiconductor sonosensitizers under ultrasonic (US) stimulation greatly limits the production of reactive oxygen species (ROS). Herein, we report a unique Zn/Pt dual-site single-atom driven difunctional superimposition-augmented TiO2-based sonosensitizer (Zn/Pt SATs). Initially, we verify through theoretical calculation that the strongly coupled Zn and Pt atoms can assist electron excitation at the atomic level by increasing electron conductivity and excitation efficiency under US, respectively, thus effectively improving the yield of ROS. Additionally, Zn/Pt SATs can significantly enhance ferroptosis by producing more ROS and sonoexcited holes under US stimuli. Therefore, the establishment of dual-site single-atom system represents an innovative strategy to enhance SDT in cancer model of female mice and provides a typical example for the development of inorganic sonosensitizer in the field of antitumor therapy.
Collapse
Affiliation(s)
- Ding Wen
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
- University of Science and Technology of China, 230026, Hefei, China
| | - Jing Feng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China.
- University of Science and Technology of China, 230026, Hefei, China.
| | - Ruiping Deng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Kai Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China.
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China.
- University of Science and Technology of China, 230026, Hefei, China.
- Department of Chemistry, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
19
|
Cheng M, Liu Y, You Q, Lei Z, Ji J, Zhang F, Dong WF, Li L. Metal-Doping Strategy for Carbon-Based Sonosensitizer in Sonodynamic Therapy of Glioblastoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404230. [PMID: 38984451 PMCID: PMC11425966 DOI: 10.1002/advs.202404230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/25/2024] [Indexed: 07/11/2024]
Abstract
Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor and known for its challenging prognosis. Sonodynamic therapy (SDT) is an innovative therapeutic approach that shows promise in tumor elimination by activating sonosensitizers with low-intensity ultrasound. In this study, a novel sonosensitizer is synthesized using Cu-doped carbon dots (Cu-CDs) for the sonodynamic treatment of GBM. Doping with copper transforms the carbon dots into a p-n type semiconductor having a bandgap of 1.58 eV, a prolonged lifespan of 10.7 µs, and an improved electron- and hole-separation efficiency. The sonodynamic effect is efficiency enhanced. Western blot analysis reveals that the Cu-CDs induces a biological response leading to cell death, termed as cuproptosis. Specifically, Cu-CDs upregulate dihydrosulfanyl transacetylase expression, thereby establishing a synergistic therapeutic effect against tumor cell death when combined with SDT. Furthermore, Cu-CDs exhibit excellent permeability through the blood-brain barrier and potent anti-tumor activity. Importantly, the Cu-CDs effectively impede the growth of glioblastoma tumors and prolong the survival of mice bearing these tumors. This study provides support for the application of carbon-based nanomaterials as sonosensitizers in tumor therapy.
Collapse
Affiliation(s)
- Mingming Cheng
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China
| | - Yan Liu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China
| | - Qiannan You
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China
| | - Zhubing Lei
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China
| | - Jiajian Ji
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China
| | - Fan Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China
| | - Wen-Fei Dong
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China
| | - Li Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China
| |
Collapse
|
20
|
Zeng G, Mao J, Xing H, Xu Z, Cao Z, Kang Y, Liu G, Xue P. Gold Nanodots-Anchored Cobalt Ferrite Nanoflowers as Versatile Tumor Microenvironment Modulators for Reinforced Redox Dyshomeostasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406683. [PMID: 38984397 PMCID: PMC11529044 DOI: 10.1002/advs.202406683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Indexed: 07/11/2024]
Abstract
Given that tumor microenvironment (TME) exerts adverse impact on the therapeutic response and clinical outcome, robust TME modulators may significantly improve the curative effect and increase survival benefits of cancer patients. Here, Au nanodots-anchored CoFe2O4 nanoflowers with PEGylation (CFAP) are developed to respond to TME cues, aiming to exacerbate redox dyshomeostasis for efficacious antineoplastic therapy under ultrasound (US) irradiation. After uptake by tumor cells, CFAP with glucose oxidase (GOx)-like activity can facilitate glucose depletion and promote the production of H2O2. Multivalent elements of Co(II)/Co(III) and Fe(II)/Fe(III) in CFAP display strong Fenton-like activity for·OH production from H2O2. On the other hand, energy band structure CFAP is superior for US-actuated 1O2 generation, relying on the enhanced separation and retarded recombination of e-/h+ pairs. In addition, catalase-mimic CFAP can react with cytosolic H2O2 to generate molecular oxygen, which may increase the product yields from O2-consuming reactions, such as glucose oxidation and sonosensitization processes. Besides the massive production of reactive oxygen species, CFAP is also capable of exhausting glutathione to devastate intracellular redox balance. Severe immunogenic cell death and effective inhibition of solid tumor by CFAP demonstrates the clinical potency of such heterogeneous structure and may inspire more relevant designs for disease therapy.
Collapse
Affiliation(s)
- Guicheng Zeng
- School of Materials and EnergySouthwest UniversityChongqing400715China
| | - Jinning Mao
- Health Management CenterThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Haiyan Xing
- School of Materials and EnergySouthwest UniversityChongqing400715China
| | - Zhigang Xu
- School of Materials and EnergySouthwest UniversityChongqing400715China
| | - Zhong Cao
- School of Biomedical EngineeringShenzhen Campus of Sun Yat‐sen UniversityShenzhenGuangdong518107China
| | - Yuejun Kang
- School of Materials and EnergySouthwest UniversityChongqing400715China
| | - Guodong Liu
- Department of NeurosurgeryThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Peng Xue
- School of Materials and EnergySouthwest UniversityChongqing400715China
| |
Collapse
|
21
|
Liu J, Dong S, Gai S, Li S, Dong Y, Yu C, He F, Yang P. Four Birds with One Stone: A Bandgap-Regulated Multifunctional Schottky Heterojunction for Robust Synergistic Antitumor Therapy upon Endo-/Exogenous Stimuli. ACS NANO 2024; 18:23579-23598. [PMID: 39150904 DOI: 10.1021/acsnano.4c07904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
Considering the profound impact of structure on heterojunction catalysts, the rational design of emerging catalysts with optimized energy band structures is required for antitumor efficiency. Herein, we select titanium nitride (TiN) and Pt to develop a multifunctional Schottky heterojunction named Pt/H-TiN&SRF (PHTS) nanoparticles (NPs) with a narrowed bandgap to accomplish "four birds with one stone" involving enzyo/sono/photo three modals and additional ferroptosis. The in situ-grown Pt NPs acted as electron traps that can cause the energy band to bend upward and form a Schottky barrier, thereby facilitating the separation of electron/hole pairs in exogenous stimulation catalytic therapy. In addition, endogenous catalytic reactions based on peroxidase (POD)- and catalase (CAT)-mimicking activities can also be amplified, triggering intense oxidative stress, in which CAT-like activity decomposes endogenous H2O2 into O2 alleviating hypoxia and provides reactants for sonodynamic therapy. Moreover, PHTS NPs can elicit mild photothermal therapy with boosted photothermal properties as well as ferroptosis with loaded ferroptosis inducer sorafenib for effective tumor ablation and apoptosis-ferroptosis synergistic tumor inhibitory effect. In summary, this paper proposes an attractive design for antitumor strategies and highlights findings for heterojunction catalytic therapy with potential in tumor theranostics.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Shuming Dong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Shuyao Li
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Yushan Dong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Chenghao Yu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| |
Collapse
|
22
|
Yang Y, Wang N, Yan F, Shi Z, Feng S. Metal-organic frameworks as candidates for tumor sonodynamic therapy: Designable structures for targeted multifunctional transformation. Acta Biomater 2024; 181:67-97. [PMID: 38697383 DOI: 10.1016/j.actbio.2024.04.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/25/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024]
Abstract
Sonodynamic therapy (SDT), utilizing ultrasound (US) as the trigger, has gained popularity recently as a therapeutic approach with significant potential for treating various diseases. Metal-organic frameworks (MOFs), characterized by structural flexibility, are prominently emerging in the SDT realm as an innovative type of sonosensitizer, offering functional tunability and biocompatibility. However, due to the inherent limitations of MOFs, such as low reactivity to reactive oxygen species and challenges posed by the complex tumor microenvironment, MOF-based sonosensitizers with singular functions are unable to demonstrate the desired therapeutic efficacy and may pose risks of toxicity, limiting their biological applications to superficial tissues. MOFs generally possess distinctive crystalline structures and properties, and their controlled coordination environments provide a flexible platform for exploring structure-effect relationships and guiding the design and development of MOF-based nanomaterials to unlock their broader potential in biological fields. The primary focus of this paper is to summarize cases involving the modification of different MOF materials and the innovative strategies developed for various complex conditions. The paper outlines the diverse application areas of functionalized MOF-based sonosensitizers in tumor synergistic therapies, highlighting the extensive prospects of SDT. Additionally, challenges confronting SDT are briefly summarized to stimulate increased scientific interest in the practical application of MOFs and the successful clinical translation of SDT. Through these discussions, we strive to foster advancements that lead to early-stage clinical benefits for patients. STATEMENT OF SIGNIFICANCE: 1. An overview for the progresses in SDT explored from a novel and fundamental perspective. 2. Different modification strategies to improve the MOFs-mediated SDT efficacy are provided. 3. Guidelines for the design of multifunctional MOFs-based sonosensitizers are offered. 4. Powerful tumor ablation potential is reflected in SDT-led synergistic therapies. 5. Future challenges in the field of MOFs-based SDT in clinical translation are suggested.
Collapse
Affiliation(s)
- Yilin Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Ning Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Fei Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Zhan Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
23
|
Li G, Wu S, Liu J, Wang K, Chen X, Liu H. Narrow Bandgap Schottky Heterojunction Sonosensitizer with High Electron-Hole Separation Boosted Sonodynamic Therapy in Bladder Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401252. [PMID: 38549283 DOI: 10.1002/adma.202401252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/16/2024] [Indexed: 04/11/2024]
Abstract
Sonodynamic therapy (SDT) is applied to bladder cancer (BC) given its advantages of high depth of tissue penetration and nontoxicity due to the unique anatomical location of the bladder near the abdominal surface. However, low electron-hole separation efficiency and wide bandgap of sonosensitizers limit the effectiveness of SDT. This study aims to develop a TiO2-Ru-PEG Schottky heterojunction sonosensitizer with high electron-hole separation and narrow bandgap for SDT in BC. Density functional theory (DFT) calculations and experiments collectively demonstrate that the bandgap of TiO2-Ru-PEG is reduced due to the Schottky heterojunction with the characteristic of crystalline-amorphous interface formed by the deposition of ruthenium (Ru) within the shell layer of TiO2. Thanks to the enhancement of oxygen adsorption and the efficient separation of electron-hole pairs, TiO2-Ru-PEG promotes the generation of reactive oxygen species (ROS) under ultrasound (US) irradiation, resulting in cell cycle arrest and apoptosis of bladder tumor cells. The in vivo results prove that TiO2-Ru-PEG boosted the subcutaneous and orthotopic bladder tumor models while exhibiting good safety. This study adopts the ruthenium complex for optimizing sonosensitizers, contributing to the progress of SDT improvement strategies and presenting a paradigm for BC therapy.
Collapse
Affiliation(s)
- Guanlin Li
- Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally invasive surgery Robot and Intelligent Equipment, Guangzhou Institute of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, China
| | - Sicheng Wu
- Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally invasive surgery Robot and Intelligent Equipment, Guangzhou Institute of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, China
| | - Jinggong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Kaiyuan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, P. R. China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Hongxing Liu
- Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally invasive surgery Robot and Intelligent Equipment, Guangzhou Institute of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, China
| |
Collapse
|
24
|
Zheng H, Yin N, Lv K, Niu R, Zhou S, Wang Y, Zhang H. Defect-rich sonosensitizers based on CeO 2 with Schottky heterojunctions for boosting sonodynamic/chemodynamic synergistic therapy. J Mater Chem B 2024; 12:4162-4171. [PMID: 38619400 DOI: 10.1039/d4tb00084f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Sonodynamic therapy (SDT) has been recognized as a promising treatment for cancer due to its advantages of superior specificity, non-invasiveness, and deep tissue penetration. However, the antitumor effect of SDT remains restricted by the limited generation of reactive oxygen species (ROS) due to the lack of highly efficient sonosensitizers. In this work, we developed the novel sonosensitizer Pt/CeO2-xSx by constructing oxygen defects through S doping and Pt loading in situ. Large amounts of oxygen defects have been obtained by S doping, endowing Pt/CeO2-xSx with the ability to suppress electron-hole recombination, further promoting ROS production. Moreover, the introduction of Pt nanoparticles can not only produce oxygen in situ for relieving hypoxia but also form a Schottky heterojunction with CeO2-xSx for further inhibiting electron-hole recombination. In addition, Pt/CeO2-xSx could effectively deplete overexpressed glutathione (GSH) via redox reactions, amplifying oxidative stress in the tumor microenvironment (TME). Combined with the excellent POD-mimetic activity, Pt/CeO2-xSx can achieve highly efficient synergistic therapy of SDT and chemodynamic therapy (CDT). All these findings demonstrated that Pt/CeO2-xSx has great potential for cancer therapy, and this work provides a promising direction for designing and constructing efficient sonosensitizers.
Collapse
Affiliation(s)
- Haiyang Zheng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Na Yin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Kehong Lv
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Rui Niu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Shijie Zhou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yinghui Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
25
|
Cheng J, Pan W, Zheng Y, Zhang J, Chen L, Huang H, Chen Y, Wu R. Piezocatalytic Schottky Junction Treats Atherosclerosis by a Biomimetic Trojan Horse Strategy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312102. [PMID: 38289723 DOI: 10.1002/adma.202312102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/11/2024] [Indexed: 02/01/2024]
Abstract
The atherosclerotic vulnerable plaque is characterized by the foamy macrophage burden, involving impaired cholesterol efflux and deficient efferocytosis. Correspondingly, piezocatalytic therapy is an emerging solution for eliminating the foamy macrophage burden with satisfactory spatiotemporal controllability and deep penetration depth. Herein, a biomimetic Trojan horse (Au-ZnO@MM) is engineered by coating the macrophage membrane (MM) onto the surface of a rod-like Au-ZnO Schottky Junction to effectively relieve the atherosclerotic progression. These Trojan horses with the coating of MM are actively transported into subsistent foamy macrophages and generate abundant reactive oxygen species (ROS) via ultrasound-activated piezocatalysis. ROS-initiated autophagy and mitochondrial dysfunction induce substantial cell apoptosis, alleviating the burden of subsistent foamy macrophages. The resulting apoptotic fragments further significantly facilitate cholesterol excretion and trigger efferocytosis of intraplaque fresh macrophages. Ultimately, the biomimetic Au-ZnO@MM piezocatalyst not only inhibits the foaming capacity of macrophages, but also improves the function of removing cell debris, which can stabilize atherosclerotic vulnerable plaque. Meanwhile, the plasmon resonance effect of integrated gold nanoparticles enables favorable photoacoustic molecular imaging for real-time image-guided atherosclerotic therapy. This proposed biomimetic Trojan horse strategy provides the paradigm of employing ultrasound-activated piezocatalytic methodology for enhanced atherosclerotic theranostics.
Collapse
Affiliation(s)
- Jingyun Cheng
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P. R. China
| | - Wenqi Pan
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P. R. China
| | - Yi Zheng
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P. R. China
| | - Jingyi Zhang
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200040, P. R. China
| | - Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Hui Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute of Shanghai University, Wenzhou, Zhejiang, 325088, P. R. China
- Shanghai Institute of Materdicine, Shanghai, 200051, P. R. China
| | - Rong Wu
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P. R. China
| |
Collapse
|
26
|
Yang Z, Yuan M, Cheng Z, Liu B, Ma Z, Ma J, Zhang J, Ma X, Ma P, Lin J. Defect-Repaired g-C 3N 4 Nanosheets: Elevating the Efficacy of Sonodynamic Cancer Therapy Through Enhanced Charge Carrier Migration. Angew Chem Int Ed Engl 2024; 63:e202401758. [PMID: 38320968 DOI: 10.1002/anie.202401758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/08/2024]
Abstract
Sonodynamic therapy (SDT) has garnered growing interest owing to its high tissue penetration depth and minimal side effects. However, the lack of efficient sonosensitizers remains the primary limiting factor for the clinical application of this treatment method. Here, defect-repaired graphene phase carbon nitride (g-C3N4) nanosheets are prepared and utilized for enhanced SDT in anti-tumor treatment. After defect engineering optimization, the bulk defects of g-C3N4 are significantly reduced, resulting in higher crystallinity and exhibiting a polyheptazine imide (PHI) structure. Due to the more extended conjugated structure of PHI, facilitating faster charge transfer on the surface, it exhibits superior SDT performance for inducing apoptosis in tumor cells. This work focuses on introducing a novel carbon nitride nanomaterial as a sonosensitizer and a strategy for optimizing sonosensitizer performance by reducing bulk defects.
Collapse
Affiliation(s)
- Zhuang Yang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Meng Yuan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Ziyong Cheng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, 150001, Harbin, P. R. China
| | - Bin Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, 150001, Harbin, P. R. China
| | - Zhizi Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Jie Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Jiashi Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Xinyu Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
| |
Collapse
|
27
|
Liu W, Shao R, Guo L, Man J, Zhang C, Li L, Wang H, Wang B, Guo L, Ma S, Zhang B, Diao H, Qin Y, Yan L. Precise Design of TiO 2@CoO x Heterostructure via Atomic Layer Deposition for Synergistic Sono-Chemodynamic Oncotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304046. [PMID: 38311581 PMCID: PMC11005734 DOI: 10.1002/advs.202304046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/21/2023] [Indexed: 02/06/2024]
Abstract
Sonodynamic therapy (SDT), a tumor treatment modality with high tissue penetration and low side effects, is able to selectively kill tumor cells by producing cytotoxic reactive oxygen species (ROS) with ultrasound-triggered sonosensitizers. N-type inorganic semiconductor TiO2 has low ROS quantum yields under ultrasound irradiation and inadequate anti-tumor activity. Herein, by using atomic layer deposition (ALD) to create a heterojunction between porous TiO2 and CoOx, the sonodynamic therapy efficiency of TiO2 can be improved. Compared to conventional techniques, the high controllability of ALD allows for the delicate loading of CoOx nanoparticles into TiO2 pores, resulting in the precise tuning of the interfaces and energy band structures and ultimately optimal SDT properties. In addition, CoOx exhibits a cascade of H2O2→O2→·O2 - in response to the tumor microenvironment, which not only mitigates hypoxia during the SDT process, but also contributes to the effect of chemodynamic therapy (CDT). Correspondingly, the synergistic CDT/SDT treatment is successful in inhibiting tumor growth. Thus, ALD provides new avenues for catalytic tumor therapy and other pharmaceutical applications.
Collapse
Affiliation(s)
- Wen Liu
- Basic Medical CollegeShanxi Medical UniversityTaiyuan030001P. R. China
- Key Laboratory of Cellular Physiology at Shanxi Medical UniversityMinistry of EducationTaiyuan030001P. R. China
| | - Runrun Shao
- Basic Medical CollegeShanxi Medical UniversityTaiyuan030001P. R. China
| | - Lingyun Guo
- Basic Medical CollegeShanxi Medical UniversityTaiyuan030001P. R. China
- Pharmacy CollegeShanxi Medical UniversityTaiyuan030001P. R. China
| | - Jianliang Man
- Basic Medical CollegeShanxi Medical UniversityTaiyuan030001P. R. China
| | - Chengwu Zhang
- Basic Medical CollegeShanxi Medical UniversityTaiyuan030001P. R. China
| | - Lihong Li
- Basic Medical CollegeShanxi Medical UniversityTaiyuan030001P. R. China
| | - Haojiang Wang
- Basic Medical CollegeShanxi Medical UniversityTaiyuan030001P. R. China
| | - Bin Wang
- Basic Medical CollegeShanxi Medical UniversityTaiyuan030001P. R. China
| | - Lixia Guo
- Basic Medical CollegeShanxi Medical UniversityTaiyuan030001P. R. China
| | - Sufang Ma
- Basic Medical CollegeShanxi Medical UniversityTaiyuan030001P. R. China
| | - Bin Zhang
- State Key Laboratory of Coal ConversionInstitute of Coal ChemistryChinese Academy of SciencesTaiyuan030001P. R. China
| | - Haipeng Diao
- Basic Medical CollegeShanxi Medical UniversityTaiyuan030001P. R. China
- Key Laboratory of Cellular Physiology at Shanxi Medical UniversityMinistry of EducationTaiyuan030001P. R. China
| | - Yong Qin
- State Key Laboratory of Coal ConversionInstitute of Coal ChemistryChinese Academy of SciencesTaiyuan030001P. R. China
| | - Lili Yan
- Basic Medical CollegeShanxi Medical UniversityTaiyuan030001P. R. China
- Key Laboratory of Cellular Physiology at Shanxi Medical UniversityMinistry of EducationTaiyuan030001P. R. China
| |
Collapse
|
28
|
Xiao C, Wang R, Fu R, Yu P, Guo J, Li G, Wang Z, Wang H, Nie J, Liu W, Zhai J, Li C, Deng C, Chen D, Zhou L, Ning C. Piezo-enhanced near infrared photocatalytic nanoheterojunction integrated injectable biopolymer hydrogel for anti-osteosarcoma and osteogenesis combination therapy. Bioact Mater 2024; 34:381-400. [PMID: 38269309 PMCID: PMC10806218 DOI: 10.1016/j.bioactmat.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/26/2024] Open
Abstract
Preventing local tumor recurrence while promoting bone tissue regeneration is an urgent need for osteosarcoma treatment. However, the therapeutic efficacy of traditional photosensitizers is limited, and they lack the ability to regenerate bone. Here, a piezo-photo nanoheterostructure is developed based on ultrasmall bismuth/strontium titanate nanocubes (denoted as Bi/SrTiO3), which achieve piezoelectric field-driven fast charge separation coupling with surface plasmon resonance to efficiently generate reactive oxygen species. These hybrid nanotherapeutics are integrated into injectable biopolymer hydrogels, which exhibit outstanding anticancer effects under the combined irradiation of NIR and ultrasound. In vivo studies using patient-derived xenograft models and tibial osteosarcoma models demonstrate that the hydrogels achieve tumor suppression with efficacy rates of 98.6 % and 67.6 % in the respective models. Furthermore, the hydrogel had good filling and retention capabilities in the bone defect region, which exerted bone repair therapeutic efficacy by polarizing and conveying electrical stimuli to the cells under mild ultrasound radiation. This study provides a comprehensive and clinically feasible strategy for the overall treatment and tissue regeneration of osteosarcoma.
Collapse
Affiliation(s)
- Cairong Xiao
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510641, China
| | - Renxian Wang
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, China
- JST Sarcopenia Research Centre, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Rumin Fu
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510641, China
| | - Peng Yu
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510641, China
| | - Jianxun Guo
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Guangping Li
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Zhengao Wang
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510641, China
| | - Honggang Wang
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Jingjun Nie
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Weifeng Liu
- Department of Orthopaedic Oncology Surgery, Beijing Jishuitan Hospital, Peking University, Beijing, 100035, China
| | - Jinxia Zhai
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510641, China
| | - Changhao Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, China
| | - Chunlin Deng
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510641, China
| | - Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Lei Zhou
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Spine Surgery, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Chengyun Ning
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
29
|
Wang X, He M, Zhao Y, He J, Huang J, Zhang L, Xu Z, Kang Y, Xue P. Bimetallic PtPd Atomic Clusters as Apoptosis/Ferroptosis Inducers for Antineoplastic Therapy through Heterogeneous Catalytic Processes. ACS NANO 2024; 18:8083-8098. [PMID: 38456744 DOI: 10.1021/acsnano.3c11610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Active polymetallic atomic clusters can initiate heterogeneous catalytic reactions in the tumor microenvironment, and the products tend to cause manifold damage to cell metabolic functions. Herein, bimetallic PtPd atomic clusters (BAC) are constructed by the stripping of Pt and Pd nanoparticles on nitrogen-doped carbon and follow-up surface PEGylation, aiming at efficacious antineoplastic therapy through heterogeneous catalytic processes. After endocytosed by tumor cells, BAC with catalase-mimic activity can facilitate the decomposition of endogenous H2O2 into O2. The local oxygenation not only alleviates hypoxia to reduce the invasion ability of cancer cells but also enhances the yield of •O2- from O2 catalyzed by BAC. Meanwhile, BAC also exhibit peroxidase-mimic activity for •OH production from H2O2. The enrichment of reactive oxygen species (ROS), including the radicals of •OH and •O2-, causes significant oxidative cellular damage and triggers severe apoptosis. In another aspect, intrinsic glutathione (GSH) peroxidase-like activity of BAC can indirectly upregulate the level of lipid peroxides and promote ferroptosis. Such deleterious redox dyshomeostasis caused by ROS accumulation and GSH consumption also results in immunogenic cell death to stimulate antitumor immunity for metastasis suppression. Collectively, this paradigm is expected to inspire more facile designs of polymetallic atomic clusters in disease therapy.
Collapse
Affiliation(s)
- Xiaoqin Wang
- School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Mengting He
- School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Yinmin Zhao
- School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Jie He
- School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Jiansen Huang
- School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Lei Zhang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Zhigang Xu
- School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Yuejun Kang
- School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Peng Xue
- School of Materials and Energy, Southwest University, Chongqing 400715, China
| |
Collapse
|
30
|
Wu X, Li Y, Wen M, Xie Y, Zeng K, Liu YN, Chen W, Zhao Y. Nanocatalysts for modulating antitumor immunity: fabrication, mechanisms and applications. Chem Soc Rev 2024; 53:2643-2692. [PMID: 38314836 DOI: 10.1039/d3cs00673e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Immunotherapy harnesses the inherent immune system in the body to generate systemic antitumor immunity, offering a promising modality for defending against cancer. However, tumor immunosuppression and evasion seriously restrict the immune response rates in clinical settings. Catalytic nanomedicines can transform tumoral substances/metabolites into therapeutic products in situ, offering unique advantages in antitumor immunotherapy. Through catalytic reactions, both tumor eradication and immune regulation can be simultaneously achieved, favoring the development of systemic antitumor immunity. In recent years, with advancements in catalytic chemistry and nanotechnology, catalytic nanomedicines based on nanozymes, photocatalysts, sonocatalysts, Fenton catalysts, electrocatalysts, piezocatalysts, thermocatalysts and radiocatalysts have been rapidly developed with vast applications in cancer immunotherapy. This review provides an introduction to the fabrication of catalytic nanomedicines with an emphasis on their structures and engineering strategies. Furthermore, the catalytic substrates and state-of-the-art applications of nanocatalysts in cancer immunotherapy have also been outlined and discussed. The relationships between nanostructures and immune regulating performance of catalytic nanomedicines are highlighted to provide a deep understanding of their working mechanisms in the tumor microenvironment. Finally, the challenges and development trends are revealed, aiming to provide new insights for the future development of nanocatalysts in catalytic immunotherapy.
Collapse
Affiliation(s)
- Xianbo Wu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Yuqing Li
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Mei Wen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Yongting Xie
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Ke Zeng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - You-Nian Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Wansong Chen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| |
Collapse
|
31
|
Zhang Z, Liang X, Yang X, Liu Y, Zhou X, Li C. Advances in Nanodelivery Systems Based on Metabolism Reprogramming Strategies for Enhanced Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6689-6708. [PMID: 38302434 DOI: 10.1021/acsami.3c15686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Tumor development and metastasis are closely related to the complexity of the metabolism network. Recently, metabolism reprogramming strategies have attracted much attention in tumor metabolism therapy. Although there is preliminary success of metabolism therapy agents, their therapeutic effects have been restricted by the effective reaching of the tumor sites of drugs. Nanodelivery systems with unique physical properties and elaborate designs can specifically deliver to the tumors. In this review, we first summarize the research progress of nanodelivery systems based on tumor metabolism reprogramming strategies to enhance therapies by depleting glucose, inhibiting glycolysis, depleting lactic acid, inhibiting lipid metabolism, depleting glutamine and glutathione, and disrupting metal metabolisms combined with other therapies, including chemotherapy, radiotherapy, photodynamic therapy, etc. We further discuss in detail the advantages of nanodelivery systems based on tumor metabolism reprogramming strategies for tumor therapy. As well as the opportunities and challenges for integrating nanodelivery systems into tumor metabolism therapy, we analyze the outlook for these emerging areas. This review is expected to improve our understanding of modulating tumor metabolisms for enhanced therapy.
Collapse
Affiliation(s)
- Zongquan Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiaoya Liang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xi Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yan Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiangyu Zhou
- Department of Thyroid and Vascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Basic Medicine Research Innovation Center for Cardiometabolic Disease, Ministry of Education, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|
32
|
Dai X, Du Y, Li Y, Yan F. Nanomaterials-based precision sonodynamic therapy enhancing immune checkpoint blockade: A promising strategy targeting solid tumor. Mater Today Bio 2023; 23:100796. [PMID: 37766898 PMCID: PMC10520454 DOI: 10.1016/j.mtbio.2023.100796] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/24/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Burgeoning is an evolution from conventional photodynamic therapy (PDT). Thus, sonodynamic therapy (SDT) regulated by nanoparticles (NPs) possesses multiple advantages, including stronger penetration ability, better biological safety, and not reactive oxygen species (ROS)-dependent tumor-killing effect. However, the limitation to tumor inhibition instead of shrinkage and the incapability of eliminating metastatic tumors hinder the clinical potential for SDT. Fortunately, immune checkpoint blockade (ICB) can revive immunological function and induce a long-term immune memory against tumor rechallenges. Hence, synergizing NPs-based SDT with ICB can provide a promising therapeutic outcome for solid tumors. Herein, we briefly reviewed the progress in NPs-based SDT and ICB therapy. We highlighted the synergistic anti-tumor mechanisms and summarized the representative preclinical trials on SDT-assisted immunotherapy. Compared to other reviews, we provided comprehensive and unique perspectives on the innovative sonosensitizers in each trial. Moreover, we also discussed the current challenges and future corresponding solutions.
Collapse
Affiliation(s)
- Xinlun Dai
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, 71 Xinmin Street, Changchun 130021, China
| | - Yangyang Du
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Yumei Li
- Department of Pediatric Intensive Care Unit, First Hospital of Jilin University, 71 Xinmin Street, Changchun 130021, China
| | - Fei Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
33
|
He R, Yang P, Liu A, Zhang Y, Chen Y, Chang C, Lu B. Cascade strategy for glucose oxidase-based synergistic cancer therapy using nanomaterials. J Mater Chem B 2023; 11:9798-9839. [PMID: 37842806 DOI: 10.1039/d3tb01325a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Nanomaterial-based cancer therapy faces significant limitations due to the complex nature of the tumor microenvironment (TME). Starvation therapy is an emerging therapeutic approach that targets tumor cell metabolism using glucose oxidase (GOx). Importantly, it can provide a material or environmental foundation for other diverse therapeutic methods by manipulating the properties of the TME, such as acidity, hydrogen peroxide (H2O2) levels, and hypoxia degree. In recent years, this cascade strategy has been extensively applied in nanoplatforms for ongoing synergetic therapy and still holds undeniable potential. However, only a few review articles comprehensively elucidate the rational designs of nanoplatforms for synergetic therapeutic regimens revolving around the conception of the cascade strategy. Therefore, this review focuses on innovative cascade strategies for GOx-based synergetic therapy from representative paradigms to state-of-the-art reports to provide an instructive, comprehensive, and insightful reference for readers. Thereafter, we discuss the remaining challenges and offer a critical perspective on the further advancement of GOx-facilitated cancer treatment toward clinical translation.
Collapse
Affiliation(s)
- Ruixuan He
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
| | - Peida Yang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
| | - Aoxue Liu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
| | - Yueli Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
| | - Yuqi Chen
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
| | - Cong Chang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People's Republic of China.
| | - Bo Lu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
| |
Collapse
|
34
|
Li S, Wang Q, Jia Z, Da M, Zhao J, Yang R, Chen D. Recent advances in glucose oxidase-based nanocarriers for tumor targeting therapy. Heliyon 2023; 9:e20407. [PMID: 37780773 PMCID: PMC10539972 DOI: 10.1016/j.heliyon.2023.e20407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023] Open
Abstract
Glucose oxidase (GOx) can specifically catalyze the conversion of β-d-glucose into gluconic acid and hydrogen peroxide (H2O2) in the presence of oxygen, making it promising for tumor starvation therapy and oxidative therapy. However, GOx's immunogenicity, poor in vivo stability, short half-life, and potential systemic toxicity, limit its application in cancer therapy. Nanocarriers are capable of improving the pharmacological properties of therapeutic drugs (e.g. stability, circulating half-life, and tumor accumulation) and lower toxicity, hence resolving GOx issues and enhancing its efficacy. Although the application of targeted nanocarriers based on GOx has recently flourished, this field has not yet been reviewed and evaluated. Herein, we initially examined the mechanism of GOx-based nanocarriers for enhanced tumor therapy. Also, we present a comprehensive and up-to-date review that highlights GOx-based nanocarriers for tumor targeting therapy. This review expands on GOx-based nano-targeted combination therapies from both passive and active targeting perspectives, meanwhile, active targeting is further classified into ligand-mediated targeting and physical-mediated targeting. Furthermore, this review also emphasizes the present challenges and promising advancements.
Collapse
Affiliation(s)
- Su Li
- Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Hospital of Nanjing Medical University, Wuxi, 214002, China
| | - Qinghua Wang
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu, 214002, China
| | - Zhen Jia
- Department of Obstetrics and Gynecology, Haidong No. 2 People's Hospital, Haidong, 810699, China
| | - Mengting Da
- Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University and Affiliated Cancer Hospital of Qinghai University, Xining, 810001, China
| | - Jiuda Zhao
- Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University and Affiliated Cancer Hospital of Qinghai University, Xining, 810001, China
| | - Rui Yang
- Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Hospital of Nanjing Medical University, Wuxi, 214002, China
| | - Daozhen Chen
- Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Hospital of Nanjing Medical University, Wuxi, 214002, China
- Department of Obstetrics and Gynecology, Haidong No. 2 People's Hospital, Haidong, 810699, China
| |
Collapse
|
35
|
Qiao X, Liang J, Qiu L, Feng W, Cheng G, Chen Y, Ding H. Ultrasound-activated nanosonosensitizer for oxygen/sulfate dual-radical nanotherapy. Biomaterials 2023; 301:122252. [PMID: 37542858 DOI: 10.1016/j.biomaterials.2023.122252] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/04/2023] [Accepted: 07/22/2023] [Indexed: 08/07/2023]
Abstract
An all-in-one therapy for cooperatively fighting cancer, infection and boosting wound repair is exceedingly demanded for patients with advanced superficial cancers or after surgical intervention to avoid multiple drug abuse and resultant adverse effects. Here, the ultrasound-activated nanosonosensitizer PHMP that integrated peroxymonosulfate (PMS) into the Pd-catalyzed hydrogenated mesoporous titanium dioxide (PHM) was dexterously designed for combined therapy of cancer and infected wound based on oxygen/sulfate dual-radical nanotherapy. Firstly, the PHM with single crystal structure and abundant oxygen deficiencies exhibited excellent ultrasound-excited reactive oxygen species (ROS) production for enhanced sonodynamic therapy (SDT) under the support of Pd nanozyme-mediated O2 supply. Simultaneously, the physically targeted ultrasound irradiation effectively transformed PMS loaded in the hollow cavities into distinct sulfate radical (•SO4-) with longer half-life and stronger oxidation, which remarkably enhanced the therapeutic efficacy of PHM-mediated SDT for cancer and bacteria. In addition, by embedding PHMP into the hydrogel, the enrichment of PHMP in the focal site was guaranteed, and meanwhile a moist and ventilated environment was created to speed up wound repair. The study broadens the potential of •SO4- in the therapeutic fields and contributes a simple and appealing tactic for the comprehensive treatment of cancer, infection and wound repair.
Collapse
Affiliation(s)
- Xiaohui Qiao
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, 200040, PR China
| | - Jing Liang
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, 200040, PR China
| | - Luping Qiu
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, 200040, PR China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Guangwen Cheng
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, 200040, PR China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| | - Hong Ding
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, 200040, PR China.
| |
Collapse
|
36
|
Liang S, Yao J, Liu D, Rao L, Chen X, Wang Z. Harnessing Nanomaterials for Cancer Sonodynamic Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211130. [PMID: 36881527 DOI: 10.1002/adma.202211130] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Immunotherapy has made remarkable strides in cancer therapy over the past decade. However, such emerging therapy still suffers from the low response rates and immune-related adverse events. Various strategies have been developed to overcome these serious challenges. Therein, sonodynamic therapy (SDT), as a non-invasive treatment, has received ever-increasing attention especially in the treatment of deep-seated tumors. Significantly, SDT can effectively induce immunogenic cell death to trigger systemic anti-tumor immune response, termed sonodynamic immunotherapy. The rapid development of nanotechnology has revolutionized SDT effects with robust immune response induction. As a result, more and more innovative nanosonosensitizers and synergistic treatment modalities are established with superior efficacy and safe profile. In this review, the recent advances in cancer sonodynamic immunotherapy are summarized with a particular emphasis on how nanotechnology can be explored to harness SDT for amplifying anti-tumor immune response. Moreover, the current challenges in this field and the prospects for its clinical translation are also presented. It is anticipated that this review can provide rational guidance and facilitate the development of nanomaterials-assisted sonodynamic immunotherapy, helping to pave the way for next-generation cancer therapy and eventually achieve a durable response in patients.
Collapse
Affiliation(s)
- Shuang Liang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jianjun Yao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dan Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Zhaohui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
37
|
Yang R, Chen L, Wang Y, Zhang L, Zheng X, Yang Y, Zhu Y. Tumor microenvironment responsive metal nanoparticles in cancer immunotherapy. Front Immunol 2023; 14:1237361. [PMID: 37575228 PMCID: PMC10413122 DOI: 10.3389/fimmu.2023.1237361] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Malignant tumors have a unique tumor microenvironment (TME), which includes mild acidity, hypoxia, overexpressed reactive oxygen species (ROS), and high glutathione (GSH) levels, among others. Recently, TME regulation approaches have attracted widespread attention in cancer immunotherapy. Nanoparticles as drug delivery systems have ability to modulate the hydrophilicity of drugs to affect drug uptake and efflux in tumor. Especially, the metal nanoparticles have been extensive applied for tumor immunotherapy due to their unique physical properties and elaborate design. However, the potential deficiencies of metal nanoparticles due to their low biodegradability, toxicity and treatment side effects restrict their clinical application. In this review, we briefly introduce the feature characteristics of the TME and the recent advances in tumor microenvironment responsive metal nanoparticles for tumor immunotherapy. In addition, nanoparticles could be combined with other treatments, such as chemotherapy, radiotherapy and photodynamic therapy also is presented. Finally, the challenges and outlook for improving the antitumor immunotherapy efficiency, side effect and potential risks of metal nanoparticles has been discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Yong Yang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuxuan Zhu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
38
|
Huang Z, Zhang X, Luo Y, Wang Y, Zhou S. KCl Nanoparticles as Potential Inducer of Immunogenic Cell Death for Cancer Immunotherapy. ACS APPLIED BIO MATERIALS 2023. [PMID: 37192493 DOI: 10.1021/acsabm.3c00219] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Immunogenic cell death (ICD) is a promising cancer immunotherapy by inducing antigen-presenting cell maturation. Many inorganic nanomodulators have been developed for cancer therapy via ion overload, and their ICD-inducing properties have also been explored for immunotherapy. Here, we report a potassium chloride nanoparticle (PCNP)-loaded poly(lactic-co-glycolic acid) nanoparticle coated with cancer cell membrane (PC@P-CCM) for cancer therapy. Through cancer cell membrane (CCM)-achieved surface functionalization, the homotypic targeting behaviors of PC@P-CCM are dramatically enhanced. Once internalized by cancer cells, the PC@P-CCM could be degraded in acidic lysosomes, thus releasing K+ and Cl- ions. These ions can change the osmotic pressure of cancer cells, causing a hypertonic state in the cancer cells in a short time and leading to the rupture and death of cancer cells. Furthermore, these ions can stimulate cancer cells to secrete adenosine triphosphate (ATP) and high mobility group box 1 (HMGB-1); meanwhile, calreticulin (CRT) showed increased presentation on the surface of cancer cells, which can further induce dendritic cell maturation and promote the immunotherapy. This work provides a new perspective on KCl nanoparticle-based cancer immunotherapy.
Collapse
Affiliation(s)
- Zhengjie Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Xiaohong Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Yang Luo
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Yi Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Shaobing Zhou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, P. R. China
| |
Collapse
|
39
|
He M, Yu H, Zhao Y, Liu J, Dong Q, Xu Z, Kang Y, Xue P. Ultrasound-Activatable g-C 3 N 4 -Anchored Titania Heterojunction as an Intracellular Redox Homeostasis Perturbator for Augmented Oncotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300244. [PMID: 36843276 DOI: 10.1002/smll.202300244] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/11/2023] [Indexed: 05/25/2023]
Abstract
Energy band structure of inorganic nano-sonosensitizers is usually optimized by surface decoration with noble metals or metal oxide semiconductors, aiming to enhance interfacial charge transfer, augment spin-flip and promote radical generation. To avoid potential biohazards of metallic elements, herein, metal-free graphitic carbon nitride quantum dots (g-C3 N4 QDs) are anchored onto hollow mesoporous TiO2 nanostructure to formulate TiO2 @g-C3 N4 heterojunction. The direct Z-scheme charge transfer significantly improves the separation/recombination dynamics of electron/hole (e- /h+ ) pairs upon ultrasound (US) stimulation, which promotes the yield of singlet oxygen (1 O2 ) and hydroxyl radicals (·OH). The conjugated g-C3 N4 QDs with peroxidase-mimic activity further react with the elevated endogenous H2 O2 and aggravate oxidative stress. After loading prodrug romidepsin (RMD) in TiO2 @g-C3 N4 , stimulus-responsive drug delivery can be realized by US irradiation. The disulfide bridge of the released RMD tends to be reduced by glutathione (GSH) into a monocyclic dithiol, which arrests cell cycle in G2/M phase and evokes apoptosis through enhanced histone acetylation. Importantly, reactive oxygen species accumulation accompanied by GSH depletion is devoted to deleterious redox dyshomeostasis, leading to augmented systemic oncotherapy by eliciting antitumor immunity. Collectively, this paradigm provides useful insights in optimizing the performance of TiO2 -based nano-sonosensitizers for tackling critical diseases.
Collapse
Affiliation(s)
- Mengting He
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Honglian Yu
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Yinmin Zhao
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Jiahui Liu
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Qi Dong
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Zhigang Xu
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Yuejun Kang
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Peng Xue
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| |
Collapse
|
40
|
Yang M, Ren W, Cui H, Qin Q, Wang Q, Zhu W, Wu X, Pan C, Qi X, Wu A. Ginsenoside Rk1-Loaded Manganese-Doped Hollow Titania for Enhancing Tumor Sonodynamic Therapy via Upregulation of Intracellular Reactive Oxygen Species. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20800-20810. [PMID: 37078779 DOI: 10.1021/acsami.3c03476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Amplifying the intracellular reactive oxygen species (ROS) level remains an urgent challenge for efficient sonodynamic therapy (SDT) of tumors. Herein, by loading ginsenoside Rk1 with manganese-doped hollow titania (MHT), a Rk1@MHT sonosensitizer was conceived to strengthen the outcome of tumor SDT. The results verify that manganese-doping remarkably elevates the UV-visible absorption and decreases the bandgap energy of titania from 3.2 to 3.0 eV, which improves ROS production under ultrasonic irradiation. Immunofluorescence and Western blot analysis demonstrate that ginsenoside Rk1 can block the critical protein of the glutathione synthesis pathway, glutaminase, thus enhancing intracellular ROS by eliminating the endogenous glutathione-depleted pathway of ROS. Manganese-doping confers the nanoprobe T1-weighted MRI function (r2/r1 = 1.41). Moreover, the in vivo tests confirm that Rk1@MHT-based SDT eradicates liver cancer in tumor-bearing mice via dual upregulation of intracellular ROS production. In summary, our study provides a new strategy for designing high-performance sonosensitizer to achieve noninvasive cancer treatment.
Collapse
Affiliation(s)
- Ming Yang
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, P. R. China
| | - Wenzhi Ren
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, P. R. China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, P. R. China
| | - Haijing Cui
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, P. R. China
| | - Qiongyu Qin
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, P. R. China
| | - Qiuye Wang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, P. R. China
| | - Weihao Zhu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, P. R. China
| | - Xiaoxia Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, P. R. China
| | - Chunshu Pan
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, P. R. China
- Department of Radiology, Ningbo No. 2 Hospital, Ningbo 315010, P. R. China
| | - Xiaopeng Qi
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, P. R. China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, P. R. China
| |
Collapse
|
41
|
Wang W, Jia R, Qu F, Lin H. Defect-Rich Ni-CoO@PEG Porous Hexagonal Nanosheets: Multi-enzyme and Ultrasound Catalysis for Synergistic Anticancer Treatment. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36912634 DOI: 10.1021/acsami.2c20999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Given the similarity with photocatalysis, sonodynamic therapy (SDT) can be defined as ultrasonic (US) catalysis. Encouraged by the principles of photocatalysis and defect chemistry, defect-rich nickel (Ni)-doped cobaltous oxide (Ni-CoO@PEG) porous hexagonal nanosheets have been synthesized as a sonosensitizer. The doping of Ni decreases the band gap that is testified by density functional theory to increase the US-generated charges. Under US irradiation, Ni-CoO@PEG nanosheets produce 1O2 as an active species that is determined by dissolved O2 and electrons. Moreover, the doping also brings abundant oxygen vacancies (OV) that not only are in favor of efficient separation of electron-hole but also enhance the interaction toward O2, boosting 1O2 generation. In addition, Ni-CoO@PEG shows robust mimic catalase (CAT) and peroxidase characterization to effectively improve the intratumor O2 content and oxidation stress. What is more, the nanosheets also possess glucose oxidase activity that can consume glucose to elevate the H2O2/acid level and to block the intracellular energy supply. The tandem nanozyme behaviors would further regulate the tumor microenvironment for assisting anticancer treatment. It is noted that Ni-CoO@PEG reveals a novel half-metallic feature endowing great magnetism and magnetic resonance imaging capacity. The above synergistic treatments exhibit outstanding anticancer performance that also evokes antitumor immunity to suppress metastasis and recurrence, efficiently.
Collapse
Affiliation(s)
- WenJia Wang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Ran Jia
- Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Fengyu Qu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Huiming Lin
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
- Laboratory for Photon and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China
| |
Collapse
|
42
|
Li J, Wu T, Li S, Chen X, Deng Z, Huang Y. Nanoparticles for cancer therapy: a review of influencing factors and evaluation methods for biosafety. Clin Transl Oncol 2023:10.1007/s12094-023-03117-5. [PMID: 36807057 DOI: 10.1007/s12094-023-03117-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/07/2023] [Indexed: 02/23/2023]
Abstract
Nanoparticles are widely used in the biomedical field for diagnostic and therapeutic purposes due to their small size, high carrier capacity, and ease of modification, which enable selective targeting and as contrast agents. Over the past decades, more and more nanoparticles have received regulatory approval to enter the clinic, more nanoparticles have shown potential for clinical translation, and humans have increasing access to them. However, nanoparticles have a high potential to cause unpredictable adverse effects on human organs, tissues, and cells due to their unique physicochemical properties and interactions with DNA, lipids, cells, tissues, proteins, and biological fluids. Currently, issues, such as nanoparticle side effects and toxicity, remain controversial, and these pitfalls must be fully considered prior to their application to body systems. Therefore, it is particularly urgent and important to assess the safety of nanoparticles acting in living organisms. In this paper, we review the important factors influencing the biosafety of nanoparticles in terms of their properties, and introduce common methods to summarize the biosafety evaluation of nanoparticles through in vitro and in body systems.
Collapse
Affiliation(s)
- Jinghua Li
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Guangxi Medical University, Nanning, 530021, China
| | - Tao Wu
- The First People's Hospital of Changde City, Changde, 415000, China
| | - Shiman Li
- School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, China
| | - Xinyan Chen
- Key Laboratory of Clinical Laboratory Medicine of Guangxi, Department of Education, Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhiming Deng
- The First People's Hospital of Changde City, Changde, 415000, China
| | - Yong Huang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Guangxi Medical University, Nanning, 530021, China. .,The First People's Hospital of Changde City, Changde, 415000, China.
| |
Collapse
|
43
|
Xie Z, Wang J, Luo Y, Qiao B, Jiang W, Zhu L, Ran H, Wang Z, Zhu W, Ren J, Zhou Z. Tumor-penetrating nanoplatform with ultrasound "unlocking" for cascade synergistic therapy and visual feedback under hypoxia. J Nanobiotechnology 2023; 21:30. [PMID: 36698190 PMCID: PMC9878980 DOI: 10.1186/s12951-023-01765-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Combined therapy based on the effects of cascade reactions of nanoplatforms to combat specific solid tumor microenvironments is considered a cancer treatment strategy with transformative clinical value. Unfortunately, an insufficient O2 supply and the lack of a visual indication hinder further applications of most nanoplatforms for solid tumor therapy. RESULTS A visualizable nanoplatform of liposome nanoparticles loaded with GOD, H(Gd), and PFP and grafted with the peptide tLyP-1, named tLyP-1H(Gd)-GOD@PFP, was constructed. The double-domain peptide tLyP-1 was used to specifically target and penetrate the tumor cells; then, US imaging, starvation therapy and sonodynamic therapy (SDT) were then achieved by the ultrasound (US)-activated cavitation effect under the guidance of MR/PA imaging. GOD not only deprived the glucose for starvation therapy but also produced H2O2, which in coordination with 1O2 produced by H(Gd), enable the effects of SDT to achieve a synergistic therapeutic effect. Moreover, the synergistic therapy was enhanced by O2 from PFP and low-intensity focused ultrasound (LIFU)-accelerated redox effects of the GOD. The present study demonstrated that the nanoplatform could generate a 3.3-fold increase in ROS, produce a 1.5-fold increase in the maximum rate of redox reactions and a 2.3-fold increase in the O2 supply in vitro, and achieve significant tumor inhibition in vivo. CONCLUSION We present a visualizable nanoplatform with tumor-penetrating ability that can be unlocked by US to overcome the current treatment problems by improving the controllability of the O2 supply, which ultimately synergistically enhanced cascade therapy.
Collapse
Affiliation(s)
- Zhuoyan Xie
- Department of Ultrasound, Chongqing General Hospital, Chongqing, 401147 China ,grid.412461.40000 0004 9334 6536Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China
| | - Junrui Wang
- grid.412461.40000 0004 9334 6536Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China ,grid.412461.40000 0004 9334 6536Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China
| | - Yuanli Luo
- grid.412461.40000 0004 9334 6536Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China
| | - Bin Qiao
- grid.412461.40000 0004 9334 6536Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China
| | - Weixi Jiang
- grid.412461.40000 0004 9334 6536Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China
| | - Leilei Zhu
- Department of Ultrasound, Chongqing General Hospital, Chongqing, 401147 China ,grid.412461.40000 0004 9334 6536Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China
| | - Haitao Ran
- grid.412461.40000 0004 9334 6536Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China
| | - Zhigang Wang
- grid.412461.40000 0004 9334 6536Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China
| | - Wei Zhu
- grid.440771.10000 0000 8820 2504Depatment of Medical College, Hubei University for Nationalities, Enshi, 445000 Hubei China
| | - Jianli Ren
- grid.412461.40000 0004 9334 6536Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China
| | - Zhiyi Zhou
- grid.412461.40000 0004 9334 6536Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China ,Depatment of General Practice, Chongqing General Hospital, Chongqing, 401147 China
| |
Collapse
|
44
|
Zhang L, Zhu P, Wan T, Wang H, Mao Z. Glutamine coated titanium for synergistic sonodynamic and photothermal on tumor therapy upon targeted delivery. Front Bioeng Biotechnol 2023; 11:1139426. [PMID: 37101748 PMCID: PMC10123279 DOI: 10.3389/fbioe.2023.1139426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/06/2023] [Indexed: 04/28/2023] Open
Abstract
Introduction: The application of titanium dioxide nanoparticles (TiO2 NPs) for cancer therapy has been studied for decades; however, the targeted delivery of TiO2 NPs to tumor tissues is challenging, and its efficiency needs to be improved. Method: In this study, we designed an oxygen-deficient TiO2-x coated with glutamine layer for targeted delivery, as well as the enhanced separation of electrons (e-) and holes (h+) following the joint application of sonodynamic therapy (SDT) and photothermal therapy (PTT). Results: This oxygen-deficient TiO2-x possesses relatively high photothermal and sonodynamic efficiency at the 1064 nm NIR-II bio-window. The GL-dependent design eased the penetration of the TiO2-x into the tumor tissues (approximately three-fold). The in vitro and in vivo tests showed that the SDT/PTT-based synergistic treatment achieved more optimized therapeutic effects than the sole use of either SDT or PTT. Conclusion: Our study provided a safety targeted delivery strategy, and enhanced the therapeutic efficiency of SDT/PTT synergistic treatment.
Collapse
Affiliation(s)
- Lina Zhang
- Changzhou Maternal and Child Healthcare Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Pengfeng Zhu
- Changzhou Maternal and Child Healthcare Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Ting Wan
- Changzhou Maternal and Child Healthcare Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Huaiyan Wang
- Changzhou Maternal and Child Healthcare Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
- *Correspondence: Zhilei Mao, ; Huaiyan Wang,
| | - Zhilei Mao
- Changzhou Maternal and Child Healthcare Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
- *Correspondence: Zhilei Mao, ; Huaiyan Wang,
| |
Collapse
|
45
|
Selective Pt recovery from spent catalyst enabled by hierarchical porous poly(imine dioxime)/polyethylenimine composite membrane for recycled Pt/C catalyst. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
46
|
Qiao H, Chen Z, Fu S, Yu X, Sun M, Zhai Y, Sun J. Emerging platinum(0) nanotherapeutics for efficient cancer therapy. J Control Release 2022; 352:276-287. [PMID: 36273531 DOI: 10.1016/j.jconrel.2022.10.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
Platinum (Pt)-based chemotherapy has been necessary for clinical cancer treatment. However, traditional bivalent drugs are hindered by poor physicochemical properties, severe toxic side effects, and drug resistance. Currently, elemental Pt(0) nanotherapeutics (NTs) have emerged to tackle the dilemma. The inherent acid-responsiveness of Pt(0) NTs could help to improve tumor selectivity and alleviate toxic effects. Moreover, the metal nature of Pt facilitates the great combination of Pt(0) NTs with photothermal and photodynamic therapy and imaging-guided diagnosis. Based on recent important researches, this review provides an updated introduction to Pt(0) NTs. First, the challenges of traditional Pt-based chemotherapy have been outlined. Then, Pt(0) NTs with multiple applications of tumor theranostics have been overviewed. Furthermore, the combinations of Pt(0) NTs with other therapeutical modalities are introduced. Last but not least, we envision the possible challenges and prospects associated with Pt(0) NTs.
Collapse
Affiliation(s)
- Han Qiao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Zhichao Chen
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Shuwen Fu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Xiang Yu
- Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Affiliated Central Hospital Huzhou University, Huzhou, China
| | - Mengchi Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China.
| | - Yinglei Zhai
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China.
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
47
|
Wang JW, Chen QW, Luo GF, Ji P, Han ZY, Song WF, Chen WH, Zhang XZ. Interference of Glucose Bioavailability of Tumor by Engineered Biohybrids for Potentiating Targeting and Uptake of Antitumor Nanodrugs. NANO LETTERS 2022; 22:8735-8743. [PMID: 36286590 DOI: 10.1021/acs.nanolett.2c03608] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The chemotherapy efficacy of nanodrugs is restricted by poor tumor targeting and uptake. Here, an engineered biohybrid living material (designated as EcN@HPB) is constructed by integrating paclitaxel and BAY-876 bound human serum albumin nanodrugs (HPB) with Escherichia coli Nissle 1917 (EcN). Due to the inherent tumor tropism of EcN, EcN@HPB could actively target the tumor site and competitively deprive glucose through bacterial respiration. Thus, albumin would be used as an alternative nutrient source for tumor metabolism, which significantly promotes the internalization of HPB by tumor cells. Subsequently, BAY-876 internalized along with HPB nanodrugs would further depress glucose uptake of tumor cells via inhibiting glucose transporter 1 (GLUT1). Together, the decline of glucose bioavailability of tumor cells would activate and promote the macropinocytosis in an AMP-activated protein kinase (AMPK)-dependent manner, resulting in more uptake of HPB by tumor cells and boosting the therapeutic outcome of paclitaxel.
Collapse
Affiliation(s)
- Jia-Wei Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Qi-Wen Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Guo-Feng Luo
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Ping Ji
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Zi-Yi Han
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Wen-Fang Song
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Wei-Hai Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| |
Collapse
|