1
|
França TC, Maddalena M, Kouidmi I, Ayotte Y, Islam ST, LaPlante SR. SI/II Pocket of Ras: An Opportunity for a Once "Undruggable" Target. ACS OMEGA 2025; 10:9463-9473. [PMID: 40092832 PMCID: PMC11904710 DOI: 10.1021/acsomega.4c10493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/19/2025] [Accepted: 02/05/2025] [Indexed: 03/19/2025]
Abstract
Mutations on the Ras-family of small GTPases are among the most common molecular oncogenic drivers, with the HRas isoform being primarily associated with head-and-neck and genito-urinary cancers. Although once considered "undruggable," recent efforts have identified a structurally conserved surface pocket in the Ras family, designated the SI/II pocket, situated near the binding site of the guanidine exchange factor (GEF) SOS1. The SI/II pocket may represent a potential target site for a pan-Ras drug. A crystal structure representing the native state of GDP-bound HRasG12V was generated to characterize the topology of the SI/II pocket. This native-state structure was employed, together with the published structure of GppNHp-bound HRasG12V in state 1 (PDB ID: 4EFM), as a base for further molecular dynamics simulations exploring the conformational dynamics of the SI/II pocket via four generated synthetic HRas model structures. Our results show that the SI/II pocket is natively inaccessible in GDP-bound HRas yet becomes accessible in state 1 GppNHp-bound HRas systems, an effect that seems to be more evident in the mutated enzyme. This points to the GTP-bound state as a most promising target for Ras inhibitors directed at the SI/II pocket. Occlusion of the SI/II pocket is dictated by the spatial position of the α2 α helix in relation to the protein core, with α2 residue Y71 acting as a "tyrosine toggle" capable of restricting the pocket access.
Collapse
Affiliation(s)
- Tanos
C. C. França
- INRS
Centre Armand Frappier Santé Biotechnologie, 531 des Prairies Boulevard, Laval, Quebec H7 V 1B7, Canada
- Laboratory
of Molecular Modeling Applied to the Chemical and Biological Defense
(LMCBD), Military Institute of Engineering (IME), Praça General Tibúrcio
80, 22290-270 Rio
de Janeiro, Brazil
- Center
for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Michael Maddalena
- Institut
National de la Recherche Scientifique (INRS), Centre Armand-Frappier
Sante Biotechnologie, Universite du Quebec,
Institut Pasteur International Network, Laval, QC, H7V
1B7, Canada
- PROTEO,
the Quebec Network for Research on Protein Function, Engineering,
and Applications, Universite Laval, Quebec, QC, G1V 0A6, Canada
| | - Imène Kouidmi
- Institut
National de la Recherche Scientifique (INRS), Centre Armand-Frappier
Sante Biotechnologie, Universite du Quebec,
Institut Pasteur International Network, Laval, QC, H7V
1B7, Canada
- PROTEO,
the Quebec Network for Research on Protein Function, Engineering,
and Applications, Universite Laval, Quebec, QC, G1V 0A6, Canada
| | - Yann Ayotte
- NMX
Research and Solutions Inc., Laval, Québec H7 V 5B7, Canada
| | - Salim T. Islam
- Institut
National de la Recherche Scientifique (INRS), Centre Armand-Frappier
Sante Biotechnologie, Universite du Quebec,
Institut Pasteur International Network, Laval, QC, H7V
1B7, Canada
- PROTEO,
the Quebec Network for Research on Protein Function, Engineering,
and Applications, Universite Laval, Quebec, QC, G1V 0A6, Canada
| | - Steven R. LaPlante
- NMX
Research and Solutions Inc., Laval, Québec H7 V 5B7, Canada
- PROTEO,
the Quebec Network for Research on Protein Function, Engineering,
and Applications, Universite Laval, Quebec, QC, G1V 0A6, Canada
| |
Collapse
|
2
|
Yang X, Wei A, Cao X, Wang Z, Wan H, Wang B, Peng H. Identification and Biological Evaluation of a Novel Small-Molecule Inhibitor of Ricin Toxin. Molecules 2024; 29:1435. [PMID: 38611715 PMCID: PMC11012547 DOI: 10.3390/molecules29071435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
The plant-derived toxin ricin is classified as a type 2 ribosome-inactivating protein (RIP) and currently lacks effective clinical antidotes. The toxicity of ricin is mainly due to its ricin toxin A chain (RTA), which has become an important target for drug development. Previous studies have identified two essential binding pockets in the active site of RTA, but most existing inhibitors only target one of these pockets. In this study, we used computer-aided virtual screening to identify a compound called RSMI-29, which potentially interacts with both active pockets of RTA. We found that RSMI-29 can directly bind to RTA and effectively attenuate protein synthesis inhibition and rRNA depurination induced by RTA or ricin, thereby inhibiting their cytotoxic effects on cells in vitro. Moreover, RSMI-29 significantly reduced ricin-mediated damage to the liver, spleen, intestine, and lungs in mice, demonstrating its detoxification effect against ricin in vivo. RSMI-29 also exhibited excellent drug-like properties, featuring a typical structural moiety of known sulfonamides and barbiturates. These findings suggest that RSMI-29 is a novel small-molecule inhibitor that specifically targets ricin toxin A chain, providing a potential therapeutic option for ricin intoxication.
Collapse
Affiliation(s)
- Xinran Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, China; (X.Y.)
- Department of Operational Medicine, Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin 300050, China
| | - Aili Wei
- Department of Operational Medicine, Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin 300050, China
| | - Xiyuan Cao
- Department of Operational Medicine, Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin 300050, China
| | - Zicheng Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, China; (X.Y.)
| | - Hongzhi Wan
- Department of Operational Medicine, Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin 300050, China
| | - Bo Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, China; (X.Y.)
| | - Hui Peng
- Department of Operational Medicine, Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin 300050, China
| |
Collapse
|
3
|
França TC, Saïdi F, Ajamian A, Islam ST, LaPlante SR. Molecular Dynamics of Outer Membrane-Embedded Polysaccharide Secretion Porins Reveals Closed Resting-State Surface Gates Targetable by Virtual Fragment Screening for Drug Hotspot Identification. ACS OMEGA 2024; 9:13217-13226. [PMID: 38524450 PMCID: PMC10955716 DOI: 10.1021/acsomega.3c09970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/06/2024] [Accepted: 02/14/2024] [Indexed: 03/26/2024]
Abstract
Recent advances in iterative neural network analyses (e.g., AlphaFold2 and RoseTTA fold) have been revolutionary for protein 3D structure prediction, especially for difficult-to-manipulate α-helical/β-barrel integral membrane proteins. These model structures are calculated based on the coevolution of amino acids within the protein of interest and similarities to existing protein structures; the local effects of the membrane on folding and stability of the calculated model structures are not considered. We recently reported the discovery, 3D modeling, and characterization of 18-β-stranded outer-membrane (OM) WzpX, WzpS, and WzpB β-barrel secretion porins for the exopolysaccharide (EPS), major spore coat polysaccharide (MASC), and biosurfactant polysaccharide (BPS) pathways (respectively) in the Gram-negative social predatory bacterium Myxococcus xanthus DZ2. However, information was not obtained regarding the dynamic behavior of surface-gating WzpX/S/B loop domains or on potential treatments to inactivate these porins. Herein, we developed a molecular dynamics (MD) protocol to study the core stability and loop dynamism of neural network-based integral membrane protein structure models embedded in an asymmetric OM bilayer, using the M. xanthus WzpX, WzpS, and WzpB proteins as test candidates. This was accomplished through integration of the CHARMM-graphical user interface (GUI) and Molecular Operating Environment (MOE) workflows to allow for a rapid simulation system setup and facilitate data analysis. In addition to serving as a method of model structure validation, our molecular dynamics simulations revealed a minimal movement of extracellular WzpX/S/B loops in the absence of an external stimulus as well as druggable cavities between the loops. Virtual screening of a commercial fragment library against these cavities revealed putative fragment-binding hotspots on the cell-surface face of each β-barrel, along with key interacting residues, and identified promising hits for the design of potential binders capable of plugging the β-barrels and inhibiting polysaccharide secretion.
Collapse
Affiliation(s)
- Tanos
C. C. França
- Institut
National de la Recherche Scientifique (INRS), Centre Armand-Frappier
Santé Biotechnologie, Université
du Québec, Institut Pasteur International Network, Laval, QC H7V 1B7, Canada
- PROTEO,
the Quebec Network for Research on Protein Function, Engineering,
and Applications, Université Laval, Quebec, QC G1V 0A6, Canada
- Laboratory
of Molecular Modeling Applied to Chemical and Biological Defense, Military Institute of Engineering, Rio de Janeiro 22290-270, Brazil
- Department
of Chemistry, Faculty of Science, University
of Hradec Kralove, Rokitanskeho
62, 50003 Hradec
Kralove, Czech Republic
| | - Fares Saïdi
- Institut
National de la Recherche Scientifique (INRS), Centre Armand-Frappier
Santé Biotechnologie, Université
du Québec, Institut Pasteur International Network, Laval, QC H7V 1B7, Canada
- PROTEO,
the Quebec Network for Research on Protein Function, Engineering,
and Applications, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Alain Ajamian
- Chemical
Computing Group, Montreal, Quebec H3A 2R7, Canada
| | - Salim T. Islam
- Institut
National de la Recherche Scientifique (INRS), Centre Armand-Frappier
Santé Biotechnologie, Université
du Québec, Institut Pasteur International Network, Laval, QC H7V 1B7, Canada
- PROTEO,
the Quebec Network for Research on Protein Function, Engineering,
and Applications, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Steven R. LaPlante
- Institut
National de la Recherche Scientifique (INRS), Centre Armand-Frappier
Santé Biotechnologie, Université
du Québec, Institut Pasteur International Network, Laval, QC H7V 1B7, Canada
- PROTEO,
the Quebec Network for Research on Protein Function, Engineering,
and Applications, Université Laval, Quebec, QC G1V 0A6, Canada
| |
Collapse
|
4
|
Botelho FD, Franca TCC, LaPlante SR. The Search for Antidotes Against Ricin. Mini Rev Med Chem 2024; 24:1148-1161. [PMID: 38350844 DOI: 10.2174/0113895575270509231121060105] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/30/2023] [Accepted: 10/18/2023] [Indexed: 02/15/2024]
Abstract
The castor plant (Ricinus communis) is primarily known for its seeds, which contain a unique fatty acid called ricinoleic acid with several industrial and commercial applications. Castor seeds also contain ricin, a toxin considered a chemical and biological warfare agent. Despite years of investigation, there is still no effective antidote or vaccine available. However, some progress has been made, and the development of an effective treatment may be on the horizon. To provide an updated overview of this issue, we have conducted a comprehensive review of the literature on the current state of research in the fight against ricin. This review is based on the reported research and aims to address the challenges faced by researchers, as well as highlight the most successful cases achieved thus far. Our goal is to encourage the scientific community to continue their efforts in this critical search.
Collapse
Affiliation(s)
- Fernanda Diniz Botelho
- Laboratory of Molecular Modeling Applied to the Chemical and Biological Defense (LMCBD), Military Institute of Engineering, Praça General Tibúrcio 80, 22290-270, Rio de Janeiro, RJ, Brazil
| | - Tanos Celmar Costa Franca
- Laboratory of Molecular Modeling Applied to the Chemical and Biological Defense (LMCBD), Military Institute of Engineering, Praça General Tibúrcio 80, 22290-270, Rio de Janeiro, RJ, Brazil
- Université de Québec, INRS - Centre Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, Laval, Québec, H7V 1B7, Canada
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czech Republic
| | - Steven R LaPlante
- Université de Québec, INRS - Centre Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, Laval, Québec, H7V 1B7, Canada
| |
Collapse
|