1
|
Khodayari A, Hirn U, Spirk S, Ogawa Y, Seveno D, Thielemans W. Advancing plant cell wall modelling: Atomistic insights into cellulose, disordered cellulose, and hemicelluloses - A review. Carbohydr Polym 2024; 343:122415. [PMID: 39174111 DOI: 10.1016/j.carbpol.2024.122415] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/27/2024] [Accepted: 06/16/2024] [Indexed: 08/24/2024]
Abstract
The complexity of plant cell walls on different hierarchical levels still impedes the detailed understanding of biosynthetic pathways, interferes with processing in industry and finally limits applicability of cellulose materials. While there exist many challenges to readily accessing these hierarchies at (sub-) angström resolution, the development of advanced computational methods has the potential to unravel important questions in this field. Here, we summarize the contributions of molecular dynamics simulations in advancing the understanding of the physico-chemical properties of natural fibres. We aim to present a comprehensive view of the advancements and insights gained from molecular dynamics simulations in the field of carbohydrate polymers research. The review holds immense value as a vital reference for researchers seeking to undertake atomistic simulations of plant cell wall constituents. Its significance extends beyond the realm of molecular modeling and chemistry, as it offers a pathway to develop a more profound comprehension of plant cell wall chemistry, interactions, and behavior. By delving into these fundamental aspects, the review provides invaluable insights into future perspectives for exploration. Researchers within the molecular modeling and carbohydrates community can greatly benefit from this resource, enabling them to make significant strides in unraveling the intricacies of plant cell wall dynamics.
Collapse
Affiliation(s)
- Ali Khodayari
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven 3001, Belgium.
| | - Ulrich Hirn
- Institute of Bioproducts and Paper Technology, TU Graz, Inffeldgasse 23, Graz 8010, Austria
| | - Stefan Spirk
- Institute of Bioproducts and Paper Technology, TU Graz, Inffeldgasse 23, Graz 8010, Austria
| | - Yu Ogawa
- Centre de recherches sur les macromolécules végétales, CERMAV-CNRS, CS40700, 38041 Grenoble cedex 9, France
| | - David Seveno
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven 3001, Belgium
| | - Wim Thielemans
- Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| |
Collapse
|
2
|
Trovagunta R, Marquez R, Tolosa L, Barrios N, Zambrano F, Suarez A, Pal L, Gonzalez R, Hubbe MA. Lignin self-assembly phenomena and valorization strategies for pulping, biorefining, and materials development: Part 1. The physical chemistry of lignin self-assembly. Adv Colloid Interface Sci 2024; 332:103247. [PMID: 39126917 DOI: 10.1016/j.cis.2024.103247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/12/2024]
Abstract
Physical chemistry aspects are emphasized in this comprehensive review of self-assembly phenomena involving lignin in various forms. Attention to this topic is justified by the very high availability, low cost, and renewable nature of lignin, together with opportunities to manufacture diverse products, for instance, polymers/resins, bioplastics, carbon fibers, bio-asphalt, sunscreen components, hydrophobic layers, and microcapsules. The colloidal lignin material, nanoparticles, and microstructures that can be formed as a result of changes in solvent properties, pH, or other adjustments to a suspending medium have been shown to depend on many factors. Such factors are examined in this work based on the concepts of self-assembly, which can be defined as an organizing principle dependent on specific attributes of the starting entities themselves. As a means to promote such concepts and to facilitate further development of nano-scale lignin products, this article draws upon evidence from a wide range of studies. These include investigations of many different plant sources of lignin, processes of delignification, solvent systems, anti-solvent systems or other means of achieving phase separation, and diverse means of achieving colloidal stability (if desired) of resulting self-assembled lignin structures. Knowledge of the self-organization behavior of lignin can provide significant structural information to optimize the use of lignin in value-added applications. Examples include chemical conditions and preparation procedures in which lignin-related compounds of particles organize themselves as spheres, hollow spheres, surface-bound layers, and a variety of other structures. Published articles show that such processes can be influenced by the selection of lignin type, pulping or extraction processes, functional groups such as phenolic, carboxyl, and sulfonate, chemical derivatization reactions, solvent applications, aqueous conditions, and physical processes, such as agitation. Precipitation from non-aqueous solutions represents a key focus of lignin self-assembly research. The review also considers stabilization mechanisms of self-assembled lignin-related structures.
Collapse
Affiliation(s)
| | - Ronald Marquez
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC 27695, USA
| | - Laura Tolosa
- School of Chemical Engineering, Universidad de Los Andes, Mérida, Venezuela
| | - Nelson Barrios
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC 27695, USA
| | | | - Antonio Suarez
- WestRock Company, 2742 Charles City Rd, Richmond, VA 23231, USA
| | - Lokendra Pal
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC 27695, USA
| | - Ronalds Gonzalez
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC 27695, USA
| | - Martin A Hubbe
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
3
|
Chen Z, Shi Q, Zhao T, Liu Y, Hao J, Li Z, Ning L. Molecular insights into inhibiting effects of lignin on cellulase investigated by molecular dynamics simulation. J Biomol Struct Dyn 2024:1-13. [PMID: 38497800 DOI: 10.1080/07391102.2024.2328738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/05/2024] [Indexed: 03/19/2024]
Abstract
The hydrolysis of lignocellulose into fermentable monosaccharides using cellulases represents a critical stage in lignocellulosic bioconversion. However, the inactivation of cellulase in the presence of lignin is attributed to the high cost of biofinery. To address this challenge, a comprehensive investigation into the structure-function relationship underlying lignin-driven cellulase inactivation is essential. In this study, molecular docking and molecular dynamics (MD) simulations were employed to explore the impacts of lignin fragments on the catalytic efficiency of cellulase at the atomic level. The findings revealed that soluble lignin fragments and cellulose could spontaneously form stable complexes with cellulase, indicating a competitive binding scenario. The enzyme's structure remained unchanged upon binding to lignin. Furthermore, specific amino acid residues have been identified as involved in interactions with lignin and cellulose. Hydrophobic interactions were found to dominate the binding of lignin to cellulase. Based on the mechanisms underlying the interactions between lignin fragments and cellulase, decreased hydrophobicity and change in the charge of lignin may mitigate the inhibition of cellulase. Furthermore, site mutations and chemical modification are also feasible to improve the efficiency of cellulase. This study may contribute valuable insights into the design of more lignin-resistant enzymes and the optimization of lignocellulosic pretreatment technologies.
Collapse
Affiliation(s)
- Zhenjuan Chen
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresource Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, P. R. China
| | - Qingwen Shi
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresource Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, P. R. China
| | - Tengfei Zhao
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresource Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, P. R. China
| | - Yuxi Liu
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresource Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, P. R. China
| | - Jinhong Hao
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresource Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, P. R. China
| | - Zhijian Li
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresource Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, P. R. China
| | - Lulu Ning
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresource Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, P. R. China
| |
Collapse
|
4
|
Sarkar D, Santiago IJ, Vermaas JV. Atomistic Origins of Biomass Recalcitrance in Organosolv Pretreatment. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
5
|
Nascimento DM, Colombari FM, Focassio B, Schleder GR, Costa CAR, Biffe CA, Ling LY, Gouveia RF, Strauss M, Rocha GJM, Leite E, Fazzio A, Capaz RB, Driemeier C, Bernardes JS. How lignin sticks to cellulose-insights from atomic force microscopy enhanced by machine-learning analysis and molecular dynamics simulations. NANOSCALE 2022; 14:17561-17570. [PMID: 36346287 DOI: 10.1039/d2nr05541d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Elucidating cellulose-lignin interactions at the molecular and nanometric scales is an important research topic with impacts on several pathways of biomass valorization. Here, the interaction forces between a cellulosic substrate and lignin are investigated. Atomic force microscopy with lignin-coated tips is employed to probe the site-specific adhesion to a cellulose film in liquid water. Over seven thousand force-curves are analyzed by a machine-learning approach to cluster the experimental data into types of cellulose-tip interactions. The molecular mechanisms for distinct types of cellulose-lignin interactions are revealed by molecular dynamics simulations of lignin globules interacting with different cellulose Iβ crystal facets. This unique combination of experimental force-curves, data-driven analysis, and molecular simulations opens a new approach of investigation and updates the understanding of cellulose-lignin interactions at the nanoscale.
Collapse
Affiliation(s)
- Diego M Nascimento
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), CEP 13083-970 Campinas, São Paulo, Brazil.
| | - Felippe M Colombari
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), CEP 13083-970 Campinas, São Paulo, Brazil.
| | - Bruno Focassio
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), CEP 13083-970 Campinas, São Paulo, Brazil.
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), CEP 09606-070 Santo André, São Paulo, Brazil
| | - Gabriel R Schleder
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), CEP 13083-970 Campinas, São Paulo, Brazil.
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), CEP 09606-070 Santo André, São Paulo, Brazil
| | - Carlos A R Costa
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), CEP 13083-970 Campinas, São Paulo, Brazil.
| | - Cleyton A Biffe
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), CEP 13083-970 Campinas, São Paulo, Brazil.
| | - Liu Y Ling
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), CEP 13083-970 Campinas, São Paulo, Brazil.
| | - Rubia F Gouveia
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), CEP 13083-970 Campinas, São Paulo, Brazil.
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), CEP 09606-070 Santo André, São Paulo, Brazil
| | - Mathias Strauss
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), CEP 13083-970 Campinas, São Paulo, Brazil.
| | - George J M Rocha
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), CEP 13083-970 Campinas, São Paulo, Brazil.
| | - Edson Leite
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), CEP 13083-970 Campinas, São Paulo, Brazil.
- Department of Chemistry, Federal University of São Carlos (UFSCAR), CEP 13565905 São Carlos, São Paulo, Brazil
| | - Adalberto Fazzio
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), CEP 13083-970 Campinas, São Paulo, Brazil.
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), CEP 09606-070 Santo André, São Paulo, Brazil
| | - Rodrigo B Capaz
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), CEP 13083-970 Campinas, São Paulo, Brazil.
- Instituto de Física, Universidade Federal do Rio de Janeiro (UFRJ), CEP 21941-972 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos Driemeier
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), CEP 13083-970 Campinas, São Paulo, Brazil.
| | - Juliana S Bernardes
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), CEP 13083-970 Campinas, São Paulo, Brazil.
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), CEP 09606-070 Santo André, São Paulo, Brazil
| |
Collapse
|
6
|
Ray S, Savoie BM, Dudareva N, Morgan JA. Diffusion of volatile organics and water in the epicuticular waxes of petunia petal epidermal cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:658-672. [PMID: 35106853 DOI: 10.1111/tpj.15693] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/07/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
Plant cuticles are a mixture of crystalline and amorphous waxes that restrict the exchange of molecules between the plant and the atmosphere. The multicomponent nature of cuticular waxes complicates the study of the relationship between the physical and transport properties. Here, a model cuticle based on the epicuticular waxes of Petunia hybrida flower petals was formulated to test the effect of wax composition on diffusion of water and volatile organic compounds (VOCs). The model cuticle was composed of an n-tetracosane (C24 H50 ), 1-docosanol (C22 H45 OH), and 3-methylbutyl dodecanoate (C17 H34 O2 ), reflecting the relative chain length, functional groups, molecular arrangements, and crystallinity of the natural waxes. Molecular dynamics simulations were performed to obtain diffusion coefficients for compounds moving through waxes of varying composition. Simulated VOC diffusivities of the model system were found to highly correlate with in vitro measurements in isolated petunia cuticles. VOC diffusivity increased up to 30-fold in completely amorphous waxes, indicating a significant effect of crystallinity on cuticular permeability. The crystallinity of the waxes was highly dependent on the elongation of the lattice length and decrease in gap width between crystalline unit cells. Diffusion of water and higher molecular weight VOCs were significantly affected by alterations in crystalline spacing and lengths, whereas the low molecular weight VOCs were less affected. Comparison of measured diffusion coefficients from atomistic simulations and emissions from petunia flowers indicates that the role of the plant cuticle in the VOC emission network is attributed to the differential control on mass transfer of individual VOCs by controlling the composition, amount, and dynamics of scent emission.
Collapse
Affiliation(s)
- Shaunak Ray
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907-2100, USA
| | - Brett M Savoie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907-2100, USA
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907-2063, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907-2010, USA
| | - John A Morgan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907-2100, USA
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907-2063, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
7
|
Insight into the dual effect of water on lignin dissolution in ionic liquids. Int J Biol Macromol 2022; 205:178-184. [PMID: 35182559 DOI: 10.1016/j.ijbiomac.2022.02.079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/29/2022] [Accepted: 02/13/2022] [Indexed: 11/23/2022]
Abstract
The dual regulation of water on lignin in ionic liquids was studied at the molecular level by molecular dynamics simulation. The simulation results show that a small amount of water will destroy the ion association in ionic liquids, that is, it will produce more free anions and cations. The free ions around lignin are conducive to the dissolution of lignin. On the contrary, excess water will seriously solvate anions and cations. By changing the number of lignin clusters, it is more intuitive to observe that the dissolution of lignin in ILs containing a small amount of water is stronger than that in pure IL, however, the dissolution ability of lignin is reduced after adding a large amount of water in ILs. It is concluded that with the increase of water content, water changes from co-solvent to anti-solvent in the dissolution process. This study provides ideas for the design of IL-water system for economic pretreatment of biomass.
Collapse
|
8
|
Beck S, Choi P, Mushrif SH. Physico-chemical interactions within lignocellulosic biomass and their importance in developing solvent based deconstruction methods. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00374k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Fundamental understanding of physico-chemical interactions among the biopolymers in lignocellulosic biomass is crucial to develop atom-efficient deconstruction methods.
Collapse
Affiliation(s)
- Seth Beck
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 St NW, Edmonton, AB, T6G 1H9, Canada
| | - Phillip Choi
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 St NW, Edmonton, AB, T6G 1H9, Canada
- Faculty of Engineering and Applied Science, University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A2, Canada
| | - Samir H. Mushrif
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 St NW, Edmonton, AB, T6G 1H9, Canada
| |
Collapse
|
9
|
Li Q, Dong Y, Hammond KD, Wan C. Revealing the role of hydrogen bonding interactions and supramolecular complexes in lignin dissolution by deep eutectic solvents. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Zhao X, Meng X, Ragauskas AJ, Lai C, Ling Z, Huang C, Yong Q. Unlocking the secret of lignin-enzyme interactions: Recent advances in developing state-of-the-art analytical techniques. Biotechnol Adv 2021; 54:107830. [PMID: 34480987 DOI: 10.1016/j.biotechadv.2021.107830] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/07/2021] [Accepted: 08/29/2021] [Indexed: 02/08/2023]
Abstract
Bioconversion of renewable lignocellulosics to produce liquid fuels and chemicals is one of the most effective ways to solve the problem of fossil resource shortage, energy security, and environmental challenges. Among the many biorefinery pathways, hydrolysis of lignocellulosics to fermentable monosaccharides by cellulase is arguably the most critical step of lignocellulose bioconversion. In the process of enzymatic hydrolysis, the direct physical contact between enzymes and cellulose is an essential prerequisite for the hydrolysis to occur. However, lignin is considered one of the most recalcitrant factors hindering the accessibility of cellulose by binding to cellulase unproductively, which reduces the saccharification rate and yield of sugars. This results in high costs for the saccharification of carbohydrates. The various interactions between enzymes and lignin have been explored from different perspectives in literature, and a basic lignin inhibition mechanism has been proposed. However, the exact interaction between lignin and enzyme as well as the recently reported promotion of some types of lignin on enzymatic hydrolysis is still unclear at the molecular level. Multiple analytical techniques have been developed, and fully unlocking the secret of lignin-enzyme interactions would require a continuous improvement of the currently available analytical techniques. This review summarizes the current commonly used advanced research analytical techniques for investigating the interaction between lignin and enzyme, including quartz crystal microbalance with dissipation (QCM-D), surface plasmon resonance (SPR), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, atomic force microscopy (AFM), nuclear magnetic resonance (NMR) spectroscopy, fluorescence spectroscopy (FLS), and molecular dynamics (MD) simulations. Interdisciplinary integration of these analytical methods is pursued to provide new insight into the interactions between lignin and enzymes. This review will serve as a resource for future research seeking to develop new methodologies for a better understanding of the basic mechanism of lignin-enzyme binding during the critical hydrolysis process.
Collapse
Affiliation(s)
- Xiaoxue Zhao
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xianzhi Meng
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA; Center for Renewable Carbon, Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN 37996, USA; Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Chenhuan Lai
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhe Ling
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing 210037, China
| | - Caoxing Huang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Qiang Yong
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
11
|
Interaction of lignin dimers with model cell membranes: A quartz crystal microbalance and molecular dynamics simulation study. Biointerphases 2021; 16:041003. [PMID: 34266242 DOI: 10.1116/6.0001029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A study of the interaction between cell membranes and small molecules derived from lignin, a protective phenolic biopolymer found in vascular plants, is crucial for identifying their potential as pharmacological and toxicological agents. In this work, the interactions of model cell membranes [supported 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid bilayers] are compared for three βO4 dimers of coniferyl alcohol (G lignin monomer): guaiacylglycerol guaiacol ester with a hydroxypropenyl (HOC3H4-) tail (G-βO4'-G), a truncated GG dimer without HOC3H4- (G-βO4'-truncG), and a benzylated GG dimer (benzG-βO4'-G). The uptake of the lignin dimers (per mass of lipid) and the energy dissipation (a measure of bilayer disorder) are higher for benzG-βO4'-G and G-βO4'-truncG than those for G-βO4'-G in the gel-phase DPPC bilayer, as measured using quartz crystal microbalance with dissipation (QCM-D). A similar uptake of G-βO4'-truncG is observed for a fluid-phase bilayer of 1,2-dioleoyl-sn-glycero-3-phosphocholine, suggesting that the effect of the bilayer phase on dimer uptake is minimal. The effects of increasing lignin dimer concentration are examined through an analysis of density profiles, potential of mean force curves, lipid order parameters, and bilayer area compressibilities (disorder) in the lipid bilayers obtained from molecular dynamics simulations. Dimer distributions and potentials of mean force indicate that the penetration into bilayers is higher for benzG-βO4'-G and G-βO4'-truncG than that for G-βO4'-G, consistent with the QCM-D results. Increased lipid tail disorder due to dimer penetration leads to a thinning and softening of the bilayers. Minor differences in the structure of lignin derivatives (such as truncating the hydroxypropenyl tail) have significant impacts on their ability to penetrate lipid bilayers.
Collapse
|
12
|
Aguilera-Segura SM, Di Renzo F, Mineva T. Molecular Insight into the Cosolvent Effect on Lignin-Cellulose Adhesion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:14403-14416. [PMID: 33202139 DOI: 10.1021/acs.langmuir.0c02794] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Understanding and controlling the physical adsorption of lignin compounds on cellulose pulp are key parameters in the successful optimization of organosolv processes. The effect of binary organic-aqueous solvents on the coordination of lignin to cellulose was studied with molecular dynamics simulations, considering ethanol and acetonitrile to be organic cosolvents in aqueous solutions in comparison to their monocomponent counterparts. The structures of the solvation shells around cellulose and lignin and the energetics of lignin-cellulose adhesion indicate a more effective disruption of lignin-cellulose binding by binary solvents. The synergic effect between solvent components is explained by their preferential interactions with lignin-cellulose complexes. In the presence of pure water, long-lasting H-bonds in the lignin-cellulose complex are observed, promoted by the nonfavorable interactions of lignin with water. Ethanol and acetonitrile compete with water and lignin for cellulose oxygen binding sites, causing a nonlinear decrease in the lignin-cellulose interactions with the amount of the organic component. This effect is modulated by the water exclusion from the cellulose solvation shell by the organic solvent component. The amount and rate of water exclusion depend on the type of organic cosolvent and its concentration.
Collapse
Affiliation(s)
| | | | - Tzonka Mineva
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| |
Collapse
|
13
|
Enzymes to unravel bioproducts architecture. Biotechnol Adv 2020; 41:107546. [PMID: 32275940 DOI: 10.1016/j.biotechadv.2020.107546] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/20/2020] [Accepted: 04/03/2020] [Indexed: 11/20/2022]
Abstract
Enzymes are essential and ubiquitous biocatalysts involved in various metabolic pathways and used in many industrial processes. Here, we reframe enzymes not just as biocatalysts transforming bioproducts but also as sensitive probes for exploring the structure and composition of complex bioproducts, like meat tissue, dairy products and plant materials, in both food and non-food bioprocesses. This review details the global strategy and presents the most recent investigations to prepare and use enzymes as relevant probes, with a focus on glycoside-hydrolases involved in plant deconstruction and proteases and lipases involved in food digestion. First, to expand the enzyme repertoire to fit bioproduct complexity, novel enzymes are mined from biodiversity and can be artificially engineered. Enzymes are further characterized by exploring sequence/structure/dynamics/function relationships together with the environmental factors influencing enzyme interactions with their substrates. Then, the most advanced experimental and theoretical approaches developed for exploring bioproducts at various scales (from nanometer to millimeter) using active and inactive enzymes as probes are illustrated. Overall, combining multimodal and multiscale approaches brings a better understanding of native-form or transformed bioproduct architecture and composition, and paves the way to mainstream the use of enzymes as probes.
Collapse
|
14
|
|
15
|
Patri AS, Mostofian B, Pu Y, Ciaffone N, Soliman M, Smith MD, Kumar R, Cheng X, Wyman CE, Tetard L, Ragauskas AJ, Smith JC, Petridis L, Cai CM. A Multifunctional Cosolvent Pair Reveals Molecular Principles of Biomass Deconstruction. J Am Chem Soc 2019; 141:12545-12557. [PMID: 31304747 DOI: 10.1021/jacs.8b10242] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The complex structure of plant cell walls resists chemical or biological degradation, challenging the breakdown of lignocellulosic biomass into renewable chemical precursors that could form the basis of future production of green chemicals and transportation fuels. Here, experimental and computational results reveal that the effect of the tetrahydrofuran (THF)-water cosolvents on the structure of lignin and on its interactions with cellulose in the cell wall drives multiple synergistic mechanisms leading to the efficient breakdown and fractionation of biomass into valuable chemical precursors. Molecular simulations show that THF-water is an excellent "theta" solvent, such that lignin dissociates from itself and from cellulose and expands to form a random coil. The expansion of the lignin molecules exposes interunit linkages, rendering them more susceptible to depolymerization by acid-catalyzed cleavage of aryl-ether bonds. Nanoscale infrared sensors confirm cosolvent-mediated molecular rearrangement of lignin in the cell wall of micrometer-thick hardwood slices and track the disappearance of lignin. At bulk scale, adding dilute acid to the cosolvent mixture liberates the majority of the hemicellulose and lignin from biomass, allowing unfettered access of cellulolytic enzymes to the remaining cellulose-rich material, allowing them to sustain high rates of hydrolysis to glucose without enzyme deactivation. Through this multiscale analysis, synergistic mechanisms for biomass deconstruction are identified, portending a paradigm shift toward first-principles design and evaluation of other cosolvent methods to realize low cost fuels and bioproducts.
Collapse
Affiliation(s)
- Abhishek S Patri
- Department of Chemical and Environmental Engineering, Bourns College of Engineering , University of California, Riverside , 900 University Avenue , Riverside , California 92521 , United States.,Center for Environmental Research and Technology, Bourns College of Engineering , University of California, Riverside , 1084 Columbia Avenue , Riverside , California 92507 , United States
| | | | | | - Nicholas Ciaffone
- NanoScience Technology Center and ¶Department of Physics , University of Central Florida , Orlando , Florida 32826 , United States
| | - Mikhael Soliman
- NanoScience Technology Center and ¶Department of Physics , University of Central Florida , Orlando , Florida 32826 , United States
| | | | - Rajeev Kumar
- Center for Environmental Research and Technology, Bourns College of Engineering , University of California, Riverside , 1084 Columbia Avenue , Riverside , California 92507 , United States
| | - Xiaolin Cheng
- College of Pharmacy , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Charles E Wyman
- Department of Chemical and Environmental Engineering, Bourns College of Engineering , University of California, Riverside , 900 University Avenue , Riverside , California 92521 , United States.,Center for Environmental Research and Technology, Bourns College of Engineering , University of California, Riverside , 1084 Columbia Avenue , Riverside , California 92507 , United States
| | - Laurene Tetard
- NanoScience Technology Center and ¶Department of Physics , University of Central Florida , Orlando , Florida 32826 , United States
| | | | | | | | - Charles M Cai
- Department of Chemical and Environmental Engineering, Bourns College of Engineering , University of California, Riverside , 900 University Avenue , Riverside , California 92521 , United States.,Center for Environmental Research and Technology, Bourns College of Engineering , University of California, Riverside , 1084 Columbia Avenue , Riverside , California 92507 , United States
| |
Collapse
|
16
|
|
17
|
Yang H, Watts HD, Gibilterra V, Weiss TB, Petridis L, Cosgrove DJ, Kubicki JD. Quantum Calculations on Plant Cell Wall Component Interactions. Interdiscip Sci 2018; 11:485-495. [DOI: 10.1007/s12539-018-0293-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 03/13/2018] [Accepted: 03/21/2018] [Indexed: 10/17/2022]
|
18
|
Arslan B, Egerton K, Zhang X, Abu-Lail NI. Effects of the Surface Morphology and Conformations of Lignocellulosic Biomass Biopolymers on Their Nanoscale Interactions with Hydrophobic Self-Assembled Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:6857-6868. [PMID: 28617601 DOI: 10.1021/acs.langmuir.7b01470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The effects of the morphology and conformations of the surface biopolymers present on lignocellulosic biomass as well as their steric hindrance on enzymatic adsorption to biomass surfaces remain elusive. In a step to better understand these effects, nanoscale steric forces between a model surface that represents the hydrophobic residues of a cellulase enzyme and a set of reference lignocellulosic substrates were measured using atomic force microscopy (AFM) in liquid media. The reference substrates investigated were prepared by kraft, sulfite, and organosolv pulping pretreatment methods and varied in their surface lignin, xylan, and acetone extractives' contents. Measured steric forces were quantified through fitting to a model developed to describe polyelectrolytes brushes in terms of a brush thickness and a brush grafting density. Our data indicated that cellulose microfibrils extend from the microfibril matrix leading to a long-range steric repulsion and low attractive forces to the hydrophobic model of the enzyme, suggesting that steric hindering can be a possible mechanism for nonproductive binding of enzymes to cellulose. When the amount of xylan increased in the absence of lignin, steric repulsions between the hydrophobic model of the enzyme, and biomass biopolymers decreased as a result of collapsed cellulose microfibrils and adhesion forces increased. This suggests that leaving a small amount of xylan after biomass pretreatment can help improve enzymatic binding to cellulose. Irrespective of the type of lignin present on biomass, grafting densities increased and brush thicknesses decreased compared to those of lignin-free substrates. When compared to lignin-free substrates, lignin-containing substrates had higher attractive forces and lower steric repulsive forces. In addition, AFM images of the reference substrates in the wet and dry states showed that lignin precipitates on the biomass surface where kraft lignin had the highest particle size leading to a limited accessibility of the enzyme to the cellulose in biomass. When the effects of lignin precipitate size, the adhesion force, and steric forces on nonproductive enzymatic binding were all considered, our results indicate that organosolv pretreatment should be the treatment of choice to minimize enzymatic nonproductive binding to lignin.
Collapse
Affiliation(s)
- Baran Arslan
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University , Pullman, Washington 99164-6515, United States
| | - Kirstin Egerton
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University , Pullman, Washington 99164-6515, United States
| | - Xiao Zhang
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Bioproducts' Science and Engineering Laboratory, Washington State University , Richland, Washington 99354-1670, United States
| | - Nehal I Abu-Lail
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University , Pullman, Washington 99164-6515, United States
| |
Collapse
|
19
|
Mostofian B, Cai CM, Smith MD, Petridis L, Cheng X, Wyman CE, Smith JC. Local Phase Separation of Co-solvents Enhances Pretreatment of Biomass for Bioenergy Applications. J Am Chem Soc 2016; 138:10869-78. [DOI: 10.1021/jacs.6b03285] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Barmak Mostofian
- UT/ORNL
Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- Joint
Institute for Biological Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- BioEnergy
Science Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Charles M. Cai
- BioEnergy
Science Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- Center
for Environmental Research and Technology (CE-CERT), Bourns College
of Engineering, University of California, Riverside, California 92507, United States
- Department
of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, California 92521, United States
| | - Micholas Dean Smith
- UT/ORNL
Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- BioEnergy
Science Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- Department of Biochemistry, Cellular & Molecular Biology, The University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Loukas Petridis
- UT/ORNL
Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- BioEnergy
Science Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- Department of Biochemistry, Cellular & Molecular Biology, The University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Xiaolin Cheng
- UT/ORNL
Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- BioEnergy
Science Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- Department of Biochemistry, Cellular & Molecular Biology, The University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Charles E. Wyman
- BioEnergy
Science Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- Center
for Environmental Research and Technology (CE-CERT), Bourns College
of Engineering, University of California, Riverside, California 92507, United States
- Department
of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, California 92521, United States
| | - Jeremy C. Smith
- UT/ORNL
Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- BioEnergy
Science Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- Department of Biochemistry, Cellular & Molecular Biology, The University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
20
|
Gunnoo M, Cazade PA, Galera-Prat A, Nash MA, Czjzek M, Cieplak M, Alvarez B, Aguilar M, Karpol A, Gaub H, Carrión-Vázquez M, Bayer EA, Thompson D. Nanoscale Engineering of Designer Cellulosomes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:5619-47. [PMID: 26748482 DOI: 10.1002/adma.201503948] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/01/2015] [Indexed: 05/27/2023]
Abstract
Biocatalysts showcase the upper limit obtainable for high-speed molecular processing and transformation. Efforts to engineer functionality in synthetic nanostructured materials are guided by the increasing knowledge of evolving architectures, which enable controlled molecular motion and precise molecular recognition. The cellulosome is a biological nanomachine, which, as a fundamental component of the plant-digestion machinery from bacterial cells, has a key potential role in the successful development of environmentally-friendly processes to produce biofuels and fine chemicals from the breakdown of biomass waste. Here, the progress toward so-called "designer cellulosomes", which provide an elegant alternative to enzyme cocktails for lignocellulose breakdown, is reviewed. Particular attention is paid to rational design via computational modeling coupled with nanoscale characterization and engineering tools. Remaining challenges and potential routes to industrial application are put forward.
Collapse
Affiliation(s)
- Melissabye Gunnoo
- Materials and Surface Science Institute and Department of Physics and Energy, University of Limerick, Limerick, Ireland
| | - Pierre-André Cazade
- Materials and Surface Science Institute and Department of Physics and Energy, University of Limerick, Limerick, Ireland
| | - Albert Galera-Prat
- Instituto Cajal, Consejo Superior de Investigaciones Cientificas (CSIC), IMDEA Nanociencias and CIBERNED, Madrid, Spain
| | - Michael A Nash
- Lehrstuhl für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-University, 80799, Munich, Germany
| | - Mirjam Czjzek
- Sorbonne Universités, UPMC, Université Paris 06, and Centre National de la Recherche Scientifique, UMR 8227, Integrative Biology of Marine Models, Station Biologique, de Roscoff, CS 90074, F-29688, Roscoff cedex, Bretagne, France
| | - Marek Cieplak
- Laboratory of Biological Physics, Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Beatriz Alvarez
- Biopolis S.L., Parc Científic de la Universitat de Valencia, Edificio 2, C/Catedrático Agustín Escardino 9, 46980, Paterna (Valencia), Spain
| | - Marina Aguilar
- Abengoa, S.A., Palmas Altas, Calle Energía Solar nº 1, 41014, Seville, Spain
| | - Alon Karpol
- Designer Energy Ltd., 2 Bergman St., Tamar Science Park, Rehovot, 7670504, Israel
| | - Hermann Gaub
- Lehrstuhl für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-University, 80799, Munich, Germany
| | - Mariano Carrión-Vázquez
- Instituto Cajal, Consejo Superior de Investigaciones Cientificas (CSIC), IMDEA Nanociencias and CIBERNED, Madrid, Spain
| | - Edward A Bayer
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Damien Thompson
- Materials and Surface Science Institute and Department of Physics and Energy, University of Limerick, Limerick, Ireland
| |
Collapse
|
21
|
Petridis L, Smith JC. Conformations of Low-Molecular-Weight Lignin Polymers in Water. CHEMSUSCHEM 2016; 9:289-295. [PMID: 26763657 DOI: 10.1002/cssc.201501350] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 12/04/2015] [Indexed: 06/05/2023]
Abstract
Low-molecular-weight lignin binds to cellulose during the thermochemical pretreatment of biomass for biofuel production, which prevents the efficient hydrolysis of the cellulose to sugars. The binding properties of lignin are influenced strongly by the conformations it adopts. Here, we use molecular dynamics simulations in aqueous solution to investigate the dependence of the shape of lignin polymers on chain length and temperature. Lignin is found to adopt collapsed conformations in water at 300 and 500 K. However, at 300 K, a discontinuous transition is found in the shape of the polymer as a function of the chain length. Below a critical degree of polymerization, Nc =15, the polymer adopts less spherical conformations than above Nc. The transition disappears at high temperatures (500 K) at which only spherical shapes are adopted. An implication relevant to cellulosic biofuel production is that lignin will self-aggregate even at high pretreatment temperatures.
Collapse
Affiliation(s)
- Loukas Petridis
- Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Jeremy C Smith
- Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
22
|
Fong M, Berrin JG, Paës G. Investigation of the binding properties of a multi-modular GH45 cellulase using bioinspired model assemblies. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:12. [PMID: 26788125 PMCID: PMC4717654 DOI: 10.1186/s13068-016-0428-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/05/2016] [Indexed: 05/09/2023]
Abstract
BACKGROUND Enzymes degrading plant biomass polymers are widely used in biotechnological applications. Their efficiency can be limited by non-specific interactions occurring with some chemical motifs. In particular, the lignin component is known to bind enzymes irreversibly. In order to determine interactions of enzymes with their substrates, experiments are usually performed on isolated simple polymers which are not representative of plant cell wall complexity. But when using natural plant substrates, the role of individual chemical and structural features affecting enzyme-binding properties is also difficult to decipher. RESULTS We have designed and used lignified model assemblies of plant cell walls as templates to characterize binding properties of multi-modular cellulases. These three-dimensional assemblies are modulated in their composition using the three principal polymers found in secondary plant cell walls (cellulose, hemicellulose, and lignin). Binding properties of enzymes are obtained from the measurement of their mobility that depends on their interactions with the polymers and chemical motifs of the assemblies. The affinity of the multi-modular GH45 cellulase was characterized using a statistical analysis to determine the role played by each assembly polymer. Presence of hemicellulose had much less impact on affinity than cellulose and model lignin. Depending on the number of CBMs appended to the cellulase catalytic core, binding properties toward cellulose and lignin were highly contrasted. CONCLUSIONS Model assemblies bring new insights into the molecular determinants that are responsible for interactions between enzymes and substrate without the need of complex analysis. Consequently, we believe that model bioinspired assemblies will provide relevant information for the design and optimization of enzyme cocktails in the context of biorefineries.
Collapse
Affiliation(s)
- Monica Fong
- />UMR0614, Fractionnement des AgroRessources et Environnement, INRA, 2 esplanade Roland-Garros, 51100 Reims, France
- />UMR0614, Fractionnement des AgroRessources et Environnement, University of Reims Champagne Ardenne, 2 esplanade Roland-Garros, 51100 Reims, France
| | - Jean-Guy Berrin
- />UMR1163, Biodiversité et Biotechnologie Fongiques, INRA, 13288 Marseille, France
- />UMR1163, Biodiversité et Biotechnologie Fongiques, Aix Marseille Université, 13288 Marseille, France
- />UMR1163, Biodiversité et Biotechnologie Fongiques, Polytech’Marseille, 13288 Marseille, France
| | - Gabriel Paës
- />UMR0614, Fractionnement des AgroRessources et Environnement, INRA, 2 esplanade Roland-Garros, 51100 Reims, France
- />UMR0614, Fractionnement des AgroRessources et Environnement, University of Reims Champagne Ardenne, 2 esplanade Roland-Garros, 51100 Reims, France
| |
Collapse
|
23
|
Youssefian S, Rahbar N. Molecular Origin of Strength and Stiffness in Bamboo Fibrils. Sci Rep 2015; 5:11116. [PMID: 26054045 PMCID: PMC4459167 DOI: 10.1038/srep11116] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/15/2015] [Indexed: 11/09/2022] Open
Abstract
Bamboo, a fast-growing grass, has a higher strength-to-weight ratio than steel and concrete. The unique properties of bamboo come from the natural composite structure of fibers that consists mainly of cellulose microfibrils in a matrix of intertwined hemicellulose and lignin called lignin-carbohydrate complex (LCC). Here, we have used atomistic simulations to study the mechanical properties of and adhesive interactions between the materials in bamboo fibers. With this aim, we have developed molecular models of lignin, hemicellulose and LCC structures to study the elastic moduli and the adhesion energies between these materials and cellulose microfibril faces. Good agreement was observed between the simulation results and experimental data. It was also shown that the hemicellulose model has stronger mechanical properties than lignin while lignin exhibits greater tendency to adhere to cellulose microfibrils. The study suggests that the abundance of hydrogen bonds in hemicellulose chains is responsible for improving the mechanical behavior of LCC. The strong van der Waals forces between lignin molecules and cellulose microfibril is responsible for higher adhesion energy between LCC and cellulose microfibrils. We also found out that the amorphous regions of cellulose microfibrils are the weakest interfaces in bamboo fibrils. Hence, they determine the fibril strength.
Collapse
Affiliation(s)
- Sina Youssefian
- Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA
| | - Nima Rahbar
- Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA
- Civil and Environmental Engineering Department Worcester Polytechnic Institute, Worcester, MA
| |
Collapse
|
24
|
Molecular dynamics simulations of large macromolecular complexes. Curr Opin Struct Biol 2015; 31:64-74. [PMID: 25845770 DOI: 10.1016/j.sbi.2015.03.007] [Citation(s) in RCA: 275] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 03/13/2015] [Accepted: 03/16/2015] [Indexed: 12/11/2022]
Abstract
Connecting dynamics to structural data from diverse experimental sources, molecular dynamics simulations permit the exploration of biological phenomena in unparalleled detail. Advances in simulations are moving the atomic resolution descriptions of biological systems into the million-to-billion atom regime, in which numerous cell functions reside. In this opinion, we review the progress, driven by large-scale molecular dynamics simulations, in the study of viruses, ribosomes, bioenergetic systems, and other diverse applications. These examples highlight the utility of molecular dynamics simulations in the critical task of relating atomic detail to the function of supramolecular complexes, a task that cannot be achieved by smaller-scale simulations or existing experimental approaches alone.
Collapse
|
25
|
Silveira RL, Stoyanov SR, Gusarov S, Skaf MS, Kovalenko A. Supramolecular Interactions in Secondary Plant Cell Walls: Effect of Lignin Chemical Composition Revealed with the Molecular Theory of Solvation. J Phys Chem Lett 2015; 6:206-11. [PMID: 26263115 DOI: 10.1021/jz502298q] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Plant biomass recalcitrance, a major obstacle to achieving sustainable production of second generation biofuels, arises mainly from the amorphous cell-wall matrix containing lignin and hemicellulose assembled into a complex supramolecular network that coats the cellulose fibrils. We employed the statistical-mechanical, 3D reference interaction site model with the Kovalenko-Hirata closure approximation (or 3D-RISM-KH molecular theory of solvation) to reveal the supramolecular interactions in this network and provide molecular-level insight into the effective lignin-lignin and lignin-hemicellulose thermodynamic interactions. We found that such interactions are hydrophobic and entropy-driven, and arise from the expelling of water from the mutual interaction surfaces. The molecular origin of these interactions is carbohydrate-π and π-π stacking forces, whose strengths are dependent on the lignin chemical composition. Methoxy substituents in the phenyl groups of lignin promote substantial entropic stabilization of the ligno-hemicellulosic matrix. Our results provide a detailed molecular view of the fundamental interactions within the secondary plant cell walls that lead to recalcitrance.
Collapse
Affiliation(s)
- Rodrigo L Silveira
- †National Institute for Nanotechnology, 11421 Saskatchewan Drive NW, Edmonton, Alberta T6G 2M9, Canada
- ‡Institute of Chemistry, University of Campinas, Caixa Postal 6154, Campinas CEP 13083-970, São Paulo, Brazil
| | - Stanislav R Stoyanov
- †National Institute for Nanotechnology, 11421 Saskatchewan Drive NW, Edmonton, Alberta T6G 2M9, Canada
- §Department of Mechanical Engineering, University of Alberta, 4-9 Mechanical Engineering Building, Edmonton T6G 2G8, Alberta, Canada
- ∥Department of Chemical and Materials Engineering, University of Alberta, 9107 - 116 Street, Edmonton T6G 2V4, Alberta, Canada
| | - Sergey Gusarov
- †National Institute for Nanotechnology, 11421 Saskatchewan Drive NW, Edmonton, Alberta T6G 2M9, Canada
| | - Munir S Skaf
- ‡Institute of Chemistry, University of Campinas, Caixa Postal 6154, Campinas CEP 13083-970, São Paulo, Brazil
| | - Andriy Kovalenko
- †National Institute for Nanotechnology, 11421 Saskatchewan Drive NW, Edmonton, Alberta T6G 2M9, Canada
- ∥Department of Chemical and Materials Engineering, University of Alberta, 9107 - 116 Street, Edmonton T6G 2V4, Alberta, Canada
| |
Collapse
|
26
|
Vermaas JV, Petridis L, Qi X, Schulz R, Lindner B, Smith JC. Mechanism of lignin inhibition of enzymatic biomass deconstruction. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:217. [PMID: 26697106 PMCID: PMC4687093 DOI: 10.1186/s13068-015-0379-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/09/2015] [Indexed: 05/06/2023]
Abstract
BACKGROUND The conversion of plant biomass to ethanol via enzymatic cellulose hydrolysis offers a potentially sustainable route to biofuel production. However, the inhibition of enzymatic activity in pretreated biomass by lignin severely limits the efficiency of this process. RESULTS By performing atomic-detail molecular dynamics simulation of a biomass model containing cellulose, lignin, and cellulases (TrCel7A), we elucidate detailed lignin inhibition mechanisms. We find that lignin binds preferentially both to the elements of cellulose to which the cellulases also preferentially bind (the hydrophobic faces) and also to the specific residues on the cellulose-binding module of the cellulase that are critical for cellulose binding of TrCel7A (Y466, Y492, and Y493). CONCLUSIONS Lignin thus binds exactly where for industrial purposes it is least desired, providing a simple explanation of why hydrolysis yields increase with lignin removal.
Collapse
Affiliation(s)
- Josh V. Vermaas
- />UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, 37831 Oak Ridge, TN USA
- />Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 61801 Urbana, IL USA
| | - Loukas Petridis
- />UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, 37831 Oak Ridge, TN USA
| | - Xianghong Qi
- />UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, 37831 Oak Ridge, TN USA
- />Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, 37996 Knoxville, TN USA
| | - Roland Schulz
- />UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, 37831 Oak Ridge, TN USA
- />Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, 37996 Knoxville, TN USA
| | - Benjamin Lindner
- />UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, 37831 Oak Ridge, TN USA
| | - Jeremy. C. Smith
- />UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, 37831 Oak Ridge, TN USA
- />Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, 37996 Knoxville, TN USA
- />University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, P.O.Box 2008, Oak Ridge, TN 37831-6309 USA
| |
Collapse
|
27
|
Carmona C, Langan P, Smith JC, Petridis L. Why genetic modification of lignin leads to low-recalcitrance biomass. Phys Chem Chem Phys 2015; 17:358-64. [DOI: 10.1039/c4cp05004e] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Molecular dynamics simulations show genetically modified lignin to associate less with hemicellulose than does wild type.
Collapse
Affiliation(s)
- Christopher Carmona
- University of California
- Los Angeles
- Los Angeles
- USA
- Center for Molecular Biophysics
| | - Paul Langan
- Biology and Soft Matter Division
- Oak Ridge
- USA
| | - Jeremy C. Smith
- Center for Molecular Biophysics
- Oak Ridge National Laboratory
- Oak Ridge
- USA
- Department of Biochemistry and Cellular and Molecular Biology
| | - Loukas Petridis
- Center for Molecular Biophysics
- Oak Ridge National Laboratory
- Oak Ridge
- USA
| |
Collapse
|
28
|
Kovalenko A. Predictive Multiscale Modeling of Nanocellulose Based Materials and Systems. ACTA ACUST UNITED AC 2014. [DOI: 10.1088/1757-899x/64/1/012040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
29
|
Larsson P, Pouya I, Lindahl E. From Side Chains Rattling on Picoseconds to Ensemble Simulations of Protein Folding. Isr J Chem 2014. [DOI: 10.1002/ijch.201400020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
30
|
Srinivas G, Cheng X, Smith JC. Coarse-Grain Model for Natural Cellulose Fibrils in Explicit Water. J Phys Chem B 2014; 118:3026-34. [DOI: 10.1021/jp407953p] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Goundla Srinivas
- University of Tennessee/Oak Ridge National Laboratory, Center for Molecular Biophysics, P.O.
Box 2008, Oak Ridge, Tennessee 37831-6164, United States
- Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Lee Street, Greensboro, North Carolina 27401, United States
| | - Xiaolin Cheng
- University of Tennessee/Oak Ridge National Laboratory, Center for Molecular Biophysics, P.O.
Box 2008, Oak Ridge, Tennessee 37831-6164, United States
- Department
of Biochemistry and Cellular and Molecular Biology, University of Tennessee, M407 Walters Life Science, Knoxville, Tennessee 37996-0840, United States
| | - Jeremy C. Smith
- University of Tennessee/Oak Ridge National Laboratory, Center for Molecular Biophysics, P.O.
Box 2008, Oak Ridge, Tennessee 37831-6164, United States
- Department
of Biochemistry and Cellular and Molecular Biology, University of Tennessee, M407 Walters Life Science, Knoxville, Tennessee 37996-0840, United States
| |
Collapse
|
31
|
Silveira RL, Stoyanov SR, Gusarov S, Skaf MS, Kovalenko A. Plant biomass recalcitrance: effect of hemicellulose composition on nanoscale forces that control cell wall strength. J Am Chem Soc 2013; 135:19048-51. [PMID: 24274712 DOI: 10.1021/ja405634k] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Efficient conversion of lignocellulosic biomass to second-generation biofuels and valuable chemicals requires decomposition of resilient plant cell wall structure. Cell wall recalcitrance varies among plant species and even phenotypes, depending on the chemical composition of the noncellulosic matrix. Changing the amount and composition of branches attached to the hemicellulose backbone can significantly alter the cell wall strength and microstructure. We address the effect of hemicellulose composition on primary cell wall assembly forces by using the 3D-RISM-KH molecular theory of solvation, which provides statistical-mechanical sampling and molecular picture of hemicellulose arrangement around cellulose. We show that hemicellulose branches of arabinose, glucuronic acid, and especially glucuronate strengthen the primary cell wall by strongly coordinating to hydrogen bond donor sites on the cellulose surface. We reveal molecular forces maintaining the cell wall structure and provide directions for genetic modulation of plants and pretreatment design to render biomass more amenable to processing.
Collapse
Affiliation(s)
- Rodrigo L Silveira
- National Institute for Nanotechnology , 11421 Saskatchewan Drive, Edmonton, Alberta, T6G 2M9, Canada
| | | | | | | | | |
Collapse
|