1
|
Corona A, Meleddu R, Delelis O, Subra F, Cottiglia F, Esposito F, Distinto S, Maccioni E, Tramontano E. 5-Nitro-3-(2-(4-phenylthiazol-2-yl)hydrazineylidene)indolin-2-one derivatives inhibit HIV-1 replication by a multitarget mechanism of action. Front Cell Infect Microbiol 2023; 13:1193280. [PMID: 37424782 PMCID: PMC10328743 DOI: 10.3389/fcimb.2023.1193280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/25/2023] [Indexed: 07/11/2023] Open
Abstract
In the effort to identify and develop new HIV-1 inhibitors endowed with innovative mechanisms, we focused our attention on the possibility to target more than one viral encoded enzymatic function with a single molecule. In this respect, we have previously identified by virtual screening a new indolinone-based scaffold for dual allosteric inhibitors targeting both reverse transcriptase-associated functions: polymerase and RNase H. Pursuing with the structural optimization of these dual inhibitors, we synthesized a series of 35 new 3-[2-(4-aryl-1,3-thiazol-2-ylidene)hydrazin-1-ylidene]1-indol-2-one and 3-[3-methyl-4-arylthiazol-2-ylidene)hydrazine-1-ylidene)indolin-2-one derivatives, which maintain their dual inhibitory activity in the low micromolar range. Interestingly, compounds 1a, 3a, 10a, and 9b are able to block HIV-1 replication with EC50 < 20 µM. Mechanism of action studies showed that such compounds could block HIV-1 integrase. In particular, compound 10a is the most promising for further multitarget compound development.
Collapse
Affiliation(s)
- Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Rita Meleddu
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Olivier Delelis
- Laboratory of Biology and Applied Pharmacology (LBPA), Ecole Normale Supérieure (ENS) Cachan, Centre National de la Recherche Scientifique (CNRS), Cachan, France
| | - Frederic Subra
- Laboratory of Biology and Applied Pharmacology (LBPA), Ecole Normale Supérieure (ENS) Cachan, Centre National de la Recherche Scientifique (CNRS), Cachan, France
| | - Filippo Cottiglia
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Francesca Esposito
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Simona Distinto
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Elias Maccioni
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| |
Collapse
|
2
|
Piccirillo E, Alegria TGP, Discola KF, Cussiol JRR, Domingos RM, de Oliveira MA, de Rezende L, Netto LES, Amaral ATD. Structural insights on the efficient catalysis of hydroperoxide reduction by Ohr: Crystallographic and molecular dynamics approaches. PLoS One 2018; 13:e0196918. [PMID: 29782551 PMCID: PMC5962072 DOI: 10.1371/journal.pone.0196918] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/23/2018] [Indexed: 01/31/2023] Open
Abstract
Organic hydroperoxide resistance (Ohr) enzymes are highly efficient Cys-based peroxidases that play central roles in bacterial response to fatty acid hydroperoxides and peroxynitrite, two oxidants that are generated during host-pathogen interactions. In the active site of Ohr proteins, the conserved Arg (Arg19 in Ohr from Xylella fastidiosa) and Glu (Glu51 in Ohr from Xylella fastidiosa) residues, among other factors, are involved in the extremely high reactivity of the peroxidatic Cys (Cp) toward hydroperoxides. In the closed state, the thiolate of Cp is in close proximity to the guanidinium group of Arg19. Ohr enzymes can also assume an open state, where the loop containing the catalytic Arg is far away from Cp and Glu51. Here, we aimed to gain insights into the putative structural switches of the Ohr catalytic cycle. First, we describe the crystal structure of Ohr from Xylella fastidiosa (XfOhr) in the open state that, together with the previously described XfOhr structure in the closed state, may represent two snapshots along the coordinate of the enzyme-catalyzed reaction. These two structures were used for the experimental validation of molecular dynamics (MD) simulations. MD simulations employing distinct protonation states and in silico mutagenesis indicated that the polar interactions of Arg19 with Glu51 and Cp contributed to the stabilization of XfOhr in the closed state. Indeed, Cp oxidation to the disulfide state facilitated the switching of the Arg19 loop from the closed to the open state. In addition to the Arg19 loop, other portions of XfOhr displayed high mobility, such as a loop rich in Gly residues. In summary, we obtained a high correlation between crystallographic data, MD simulations and biochemical/enzymatic assays. The dynamics of the Ohr enzymes are unique among the Cys-based peroxidases, in which the active site Arg undergoes structural switches throughout the catalytic cycle, while Cp remains relatively static.
Collapse
Affiliation(s)
- Erika Piccirillo
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Thiago G. P. Alegria
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Karen F. Discola
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - José R. R. Cussiol
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Renato M. Domingos
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Marcos A. de Oliveira
- Instituto de Biociências, Campus do Litoral Paulista, Universidade Estadual Paulista Júlio de Mesquita Filho, São Vicente, SP, Brazil
| | - Leandro de Rezende
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Luis E. S. Netto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
- * E-mail: (LESN); (ATA)
| | - Antonia T-do Amaral
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
- * E-mail: (LESN); (ATA)
| |
Collapse
|
3
|
Qing XY, Steenackers H, Venken T, De Maeyer M, Voet A. Computational Studies of the Active and Inactive Regulatory Domains of Response Regulator PhoP Using Molecular Dynamics Simulations. Mol Inform 2017; 36. [PMID: 28598557 DOI: 10.1002/minf.201700031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/30/2017] [Indexed: 12/25/2022]
Abstract
The response regulator PhoP is part of the PhoP/PhoQ two-component system, which is responsible for regulating the expression of multiple genes involved in controlling virulence, biofilm formation, and resistance to antimicrobial peptides. Therefore, modulating the transcriptional function of the PhoP protein is a promising strategy for developing new antimicrobial agents. There is evidence suggesting that phosphorylation-mediated dimerization in the regulatory domain of PhoP is essential for its transcriptional function. Disruption or stabilization of protein-protein interactions at the dimerization interface may inhibit or enhance the expression of PhoP-dependent genes. In this study, we performed molecular dynamics simulations on the active and inactive dimers and monomers of the PhoP regulatory domains, followed by pocket-detecting screenings and a quantitative hot-spot analysis in order to assess the druggability of the protein. Consistent with prior hypothesis, the calculation of the binding free energy shows that phosphorylation enhances dimerization of PhoP. Furthermore, we have identified two different putative binding sites at the dimerization active site (the α4-β5-α5 face) with energetic "hot-spot" areas, which could be used to search for modulators of protein-protein interactions. This study delivers insight into the dynamics and druggability of the dimerization interface of the PhoP regulatory domain, and may serve as a basis for the rational identification of new antimicrobial drugs.
Collapse
Affiliation(s)
- Xiao-Yu Qing
- Laboratory for Biomolecular Modelling, and Laboratory for Biomolecular Modelling and design, the Chemistry Department, KULeuven, Celestijnenlaan 200G-bus2403, Heverlee, Belgium
| | - Hans Steenackers
- Centre of Microbial and Plant Genetics, KULeuven, Kasteelpark Arenberg 20-bus2460, Belgium
| | - Tom Venken
- Flemish Institute for Technological Research, VITO, Boeretang 200, 2400, MOL, Belgium
| | - Marc De Maeyer
- Laboratory for Biomolecular Modelling, and Laboratory for Biomolecular Modelling and design, the Chemistry Department, KULeuven, Celestijnenlaan 200G-bus2403, Heverlee, Belgium
| | - Arnout Voet
- Laboratory for Biomolecular Modelling, and Laboratory for Biomolecular Modelling and design, the Chemistry Department, KULeuven, Celestijnenlaan 200G-bus2403, Heverlee, Belgium
| |
Collapse
|
4
|
Galilee M, Alian A. Identification of Phe187 as a crucial dimerization determinant facilitates crystallization of a monomeric retroviral integrase core domain. Structure 2014; 22:1512-9. [PMID: 25199694 DOI: 10.1016/j.str.2014.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 07/14/2014] [Accepted: 08/02/2014] [Indexed: 01/09/2023]
Abstract
Retroviral DNA integration into the host genome is mediated by nucleoprotein assemblies containing tetramers of viral integrase (IN). Whereas the fully active form of IN comprises a dimer of dimers, the molecular basis of IN multimerization has not been fully characterized. IN has consistently been crystallized in an analogous dimeric form in all crystallographic structures and experimental evidence as to the level of similarity between IN monomeric and dimeric conformations is missing because of the lack of IN monomeric structures. Here we identify Phe187 as a critical dimerization determinant of IN from feline immunodeficiency virus (FIV), a nonprimate lentivirus that causes AIDS in the natural host, and report, in addition to a canonical dimeric structure of the FIV IN core-domain, a monomeric structure revealing the preservation of the backbone structure between the two multimeric forms and suggest a role for Phe187 in "hinging" the flexible IN dimer.
Collapse
Affiliation(s)
- Meytal Galilee
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 320003, Israel
| | - Akram Alian
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 320003, Israel.
| |
Collapse
|
5
|
Computational design of a full-length model of HIV-1 integrase: modeling of new inhibitors and comparison of their calculated binding energies with those previously studied. J Mol Model 2013; 19:4349-68. [PMID: 23907552 DOI: 10.1007/s00894-013-1943-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 07/11/2013] [Indexed: 12/28/2022]
Abstract
A full-length model of integrase (IN) of the human immunodeficiency virus type 1 (HIV-1) was constructed based on the distinctly resolved X-ray crystal structures of its three domains, named N-terminal, catalytic core and C-terminal. Thirty-one already known inhibitors with varieties of structural differences as well as nine newly tested ones were docked into the catalytic core. The molecular dynamic (MD) and binding properties of these complexes were obtained by MD calculations. The binding energies calculated by molecular mechanic/Poisson Boltzmann solvation area were significantly correlationed with available IC50. Four inhibitors including two newly designed were also docked into the full-length model and their MD behaviors and binding properties were calculated. It was found that one of the newly designed compounds forms a better complex with HIV-1 IN compared to the rest including raltegravir. MD calculations were performed with AMBER suite of programs using ff99SB force field for the proteins and the general Amber force field for the ligands. In conclusion, the results have produced a promising standpoint not only in the construction of the full-length model but also in development of new drugs against it. However, the role of multimer formation and the involvement of DNAs, and their subsequent effect on the complexation and inhibition, are required to arrive at a conclusive decision.
Collapse
|
6
|
Ramamoorthy D, Turos E, Guida WC. Identification of a New Binding Site in E. coli FabH using Molecular Dynamics Simulations: Validation by Computational Alanine Mutagenesis and Docking Studies. J Chem Inf Model 2013; 53:1138-56. [DOI: 10.1021/ci3003528] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Divya Ramamoorthy
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue,
Tampa, Florida 33620, United States
| | - Edward Turos
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue,
Tampa, Florida 33620, United States
- Center for Molecular Diversity in Drug Design, Discovery and Delivery, 4202
E. Fowler Avenue, Tampa, Florida 33620, United States
- Center for Drug Discovery and Innovation, 4202 E. Fowler Avenue, Tampa,
Florida 33620, United States
| | - Wayne C. Guida
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue,
Tampa, Florida 33620, United States
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa,
Florida 33612, United States
- Center for Molecular Diversity in Drug Design, Discovery and Delivery, 4202
E. Fowler Avenue, Tampa, Florida 33620, United States
- Center for Drug Discovery and Innovation, 4202 E. Fowler Avenue, Tampa,
Florida 33620, United States
| |
Collapse
|
7
|
Xue W, Jin X, Ning L, Wang M, Liu H, Yao X. Exploring the Molecular Mechanism of Cross-Resistance to HIV-1 Integrase Strand Transfer Inhibitors by Molecular Dynamics Simulation and Residue Interaction Network Analysis. J Chem Inf Model 2012; 53:210-22. [DOI: 10.1021/ci300541c] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Weiwei Xue
- State
Key Laboratory of Applied Organic Chemistry, Department of Chemistry, ‡School of Pharmacy, and §Key Lab of Preclinical
Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Xiaojie Jin
- State
Key Laboratory of Applied Organic Chemistry, Department of Chemistry, ‡School of Pharmacy, and §Key Lab of Preclinical
Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Lulu Ning
- State
Key Laboratory of Applied Organic Chemistry, Department of Chemistry, ‡School of Pharmacy, and §Key Lab of Preclinical
Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Meixia Wang
- State
Key Laboratory of Applied Organic Chemistry, Department of Chemistry, ‡School of Pharmacy, and §Key Lab of Preclinical
Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Huanxiang Liu
- State
Key Laboratory of Applied Organic Chemistry, Department of Chemistry, ‡School of Pharmacy, and §Key Lab of Preclinical
Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Xiaojun Yao
- State
Key Laboratory of Applied Organic Chemistry, Department of Chemistry, ‡School of Pharmacy, and §Key Lab of Preclinical
Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
8
|
Serrao E, Thys W, Demeulemeester J, Al-Mawsawi LQ, Christ F, Debyser Z, Neamati N. A symmetric region of the HIV-1 integrase dimerization interface is essential for viral replication. PLoS One 2012; 7:e45177. [PMID: 23028829 PMCID: PMC3445459 DOI: 10.1371/journal.pone.0045177] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 08/17/2012] [Indexed: 01/06/2023] Open
Abstract
HIV-1 integrase (IN) is an important target for contemporary antiretroviral drug design research. Historically, efforts at inactivating the enzyme have focused upon blocking its active site. However, it has become apparent that new classes of allosteric inhibitors will be necessary to advance the antiretroviral field in light of the emergence of viral strains resistant to contemporary clinically used IN drugs. In this study we have characterized the importance of a close network of IN residues, distant from the active site, as important for the obligatory multimerization of the enzyme and viral replication as a whole. Specifically, we have determined that the configuration of six residues within a highly symmetrical region at the IN dimerization interface, composed of a four-tiered aromatic interaction flanked by two salt bridges, significantly contributes to proper HIV-1 replication. Additionally, we have utilized a quantitative luminescence assay to examine IN oligomerization and have determined that there is a very low tolerance for amino acid substitutions along this region. Even conservative residue substitutions negatively impacted IN multimerization, resulting in an inactive viral enzyme and a non-replicative virus. We have shown that there is a very low tolerance for amino acid variation at the symmetrical dimeric interface region characterized in this study, and therefore drugs designed to target the amino acid network detailed here could be expected to yield a significantly reduced number of drug-resistant escape mutations compared to contemporary clinically-evaluated antiretrovirals.
Collapse
Affiliation(s)
- Erik Serrao
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, United States of America
| | - Wannes Thys
- Laboratory for Molecular Virology and Gene Therapy, Division of Molecular Medicine, Katholieke Universiteit Leuven, Flanders, Belgium
| | - Jonas Demeulemeester
- Laboratory for Molecular Virology and Gene Therapy, Division of Molecular Medicine, Katholieke Universiteit Leuven, Flanders, Belgium
| | - Laith Q. Al-Mawsawi
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, United States of America
| | - Frauke Christ
- Laboratory for Molecular Virology and Gene Therapy, Division of Molecular Medicine, Katholieke Universiteit Leuven, Flanders, Belgium
| | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Division of Molecular Medicine, Katholieke Universiteit Leuven, Flanders, Belgium
| | - Nouri Neamati
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
9
|
Tintori C, Demeulemeester J, Franchi L, Massa S, Debyser Z, Christ F, Botta M. Discovery of small molecule HIV-1 integrase dimerization inhibitors. Bioorg Med Chem Lett 2012; 22:3109-14. [PMID: 22483582 DOI: 10.1016/j.bmcl.2012.03.064] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 03/15/2012] [Accepted: 03/15/2012] [Indexed: 10/28/2022]
Abstract
Human immunodeficiency virus-1 integrase (HIV-1 IN) inserts the viral DNA into host cell chromatin in a multistep process. This enzyme exists in equilibrium between monomeric, dimeric, tetrameric and high order oligomeric states. However, monomers of IN are not capable of supporting its catalytic functions and the active form has been shown to be at least a dimer. As a consequence, the development of inhibitors targeting IN dimerization constitutes a promising novel antiviral strategy. In this work, we successfully combined different computational techniques in order to identify small molecule inhibitors of IN dimerization. Additionally, a novel AlphaScreen-based IN dimerization assay was used to evaluate the inhibitory activities of the selected compounds. To the best of our knowledge, this study represents the first successful virtual screening and evaluation of small molecule HIV-1 IN dimerization inhibitors, which may serve as attractive hit compounds for the development of novel anti-HIV.
Collapse
Affiliation(s)
- Cristina Tintori
- Dipartimento Farmaco Chimico Tecnologico, University of Siena, Via Alcide de Gasperi 2, I-53100 Siena, Italy
| | | | | | | | | | | | | |
Collapse
|
10
|
Xue W, Qi J, Yang Y, Jin X, Liu H, Yao X. Understanding the effect of drug-resistant mutations of HIV-1 intasome on raltegravir action through molecular modeling study. MOLECULAR BIOSYSTEMS 2012; 8:2135-44. [DOI: 10.1039/c2mb25114k] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|