1
|
Song W, Li C, Dong Y, Leung SSY, Liu Q, Liu H, Li F. DNA Aptamers with Chemically Locked Ends for Virus Infection Inhibition. ACS APPLIED MATERIALS & INTERFACES 2025; 17:19459-19470. [PMID: 40117505 DOI: 10.1021/acsami.5c00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Nucleic acid aptamers, known as chemical antibodies, demonstrate remarkable affinity and specificity for targets. Therefore, aptamers are proposed as an alternative to an antibody in extensive applications. However, nucleic acid aptamers exhibit poor tolerance to degradation by nucleases, which severely hampers their biological applications. Herein, we developed a biological regulation pattern for aptamers by utilizing small-molecule-mediated terminal manipulation, which could prevent the interaction of DNA aptamers with exonucleases and help aptamers persist in the desired conformation with high stability. Diagonal T-T bases were designed in the ends of aptamers and could be chemically cross-linked with trioxsalen via photocatalyzed cycloaddition. Aptamers with different patterns of terminal T-T cross-linking sites were synthesized. Experimental investigation and molecular dynamics simulations combinedly revealed that the cross-linking efficiency of ends depended on multiple factors: (i) the number of T-T cross-linking sites in the terminal sequences, (ii) the spatial conformation of aptamers, and (iii) the competitive binding ability of the T-T sites with trioxsalen compared to other base sites. The aptamers with locked ends exhibited superior exonuclease resistance, especially with both 3'- and 5'-cross-linked ends, thus demonstrating a great target binding capability. Notably, in the application exploration, the terminal locked aptamers, which bound to receptor-binding domains on SARS-CoV-2, showed superior performance in virus infection inhibition. This work puts forward a paradigm to develop a biological regulation pattern for aptamers based on chemical terminal manipulation of DNA, potentially promoting the clinical applications of nucleic acid drugs.
Collapse
Affiliation(s)
- Wenzhe Song
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chuanxi Li
- Petrochemical Research Institute, PetroChina, Beijing, 102206, China
- Centre of Process Integration, Department of Chemical Engineering, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Yuhang Dong
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | | | - Qiaoling Liu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Huiyu Liu
- State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Feng Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
2
|
Yao L, Liu T, Sun L, Gao S, Liu S, Qu H, Mao Y, Zheng L. Selection of High-Affinity and Selectivity AFB 1 Circular Aptamer for Biosensor Application. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3222-3231. [PMID: 39843228 DOI: 10.1021/acs.jafc.4c10737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Detecting trace amounts of aflatoxin B1 (AFB1), one of the most toxic food contaminants, is crucial for efficiently preventing potential health risks. Circular aptamers are promising candidates for bioanalytical applications due to their enhanced biological and structural stability as well as their compatibility with rolling circle amplification (RCA). Herein, we employed a high-efficiency magnetic chain graphene oxide-based SELEX to generate circular aptamers that bind AFB1 with high affinity and selectivity. Notably, the selected circular aptamer, CAFB1-A-2, exhibited a significant sequence similarity to the classical AFB1 linear aptamer but demonstrated a distinct thermodynamic mechanism for binding. The binding of CAFB1-A-2 was driven by both enthalpy and entropy, whereas the classical linear aptamer exhibited a notable entropy loss that required a greater enthalpy compensation. Utilizing this circular aptamer, we developed a sensitive AFB1 detection system featuring an RCA-assisted allosteric DNAzyme biosensor with a detection limit (LOD) of 265 pM. Furthermore, the constructed aptasensor successfully detected AFB1 in spiked rice and corn, achieving LODs of 11 and 9 μg/kg, respectively, within approximately 4 h. This study provides a sensitive and reliable alternative to the development of an aptasensor for AFB1, holding great potential in the field of food safety detection.
Collapse
Affiliation(s)
- Lili Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Tao Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Long Sun
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shengjie Gao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shuai Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hao Qu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yu Mao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
3
|
Nguyen JVL, Meziadi A, Nassif C, Da Fonte D, Malic L, Tabrizian M. Combinatorial Nanoparticle-Bound ssDNA Oligonucleotide Library Synthesized by Split-and-Pool Synthesis. ACS APPLIED BIO MATERIALS 2025; 8:844-853. [PMID: 39829268 DOI: 10.1021/acsabm.4c01681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Synthetic ssDNA oligonucleotides hold great potential for various applications, including DNA aptamers, DNA digital data storage, DNA origami, and synthetic genomes. In these contexts, precise control over the synthesis of the ssDNA strands is essential for generating combinatorial sequences with user-defined parameters. Desired features for creating synthetic DNA oligonucleotides include easy manipulation of DNA strands, effective detection of unique DNA sequences, and a straightforward mechanism for strand elongation and termination. In this study, we present a split-and-pool method for generating synthetic DNA oligonucleotides on nanoparticles, enabling the creation of scalable combinatorial libraries. Our approach involves coupling DNA to nanoparticles, ligating double-digested fragments for orientation-specific synthesis, and attaching a final single-digested fragment to ensure strand termination. We assess the quality of our method by characterizing both the DNA and the nanoparticles used as solid supports, confirming that our method produces scalable, combinatorial nanoparticle-bound ssDNA libraries with controllable strand lengths.
Collapse
Affiliation(s)
- John V L Nguyen
- Department of Biomedical Engineering, McGill University, 3775 University Street, Montreal, Quebec H3A 2B4, Canada
| | - Ahlem Meziadi
- Department of Biomedical Engineering, McGill University, 3775 University Street, Montreal, Quebec H3A 2B4, Canada
| | - Christina Nassif
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, Quebec J4B 6Y4, Canada
| | - Dillon Da Fonte
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, Quebec J4B 6Y4, Canada
| | - Lidija Malic
- Department of Biomedical Engineering, McGill University, 3775 University Street, Montreal, Quebec H3A 2B4, Canada
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, Quebec J4B 6Y4, Canada
| | - Maryam Tabrizian
- Department of Biomedical Engineering, McGill University, 3775 University Street, Montreal, Quebec H3A 2B4, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, 2001 McGill College Avenue, Montreal, Quebec H3A 1G1, Canada
| |
Collapse
|
4
|
Escobar L, Sun D, Dhiman M, Hunter CA. Sequence-selective pulldown of recognition-encoded melamine oligomers using covalent capture on a solid support. Chem Commun (Camb) 2025; 61:504-507. [PMID: 39641167 PMCID: PMC11622007 DOI: 10.1039/d4cc06018k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
The covalent capture of recognition-encoded melamine oligomers (REMO) with a target attached to a solid support was investigated. Sequence-selective pulldown of complementary oligomers was observed when the target was challenged with a randomised library of oligomers. The approach provides an affinity selection method for the discovery of functional REMO sequences.
Collapse
Affiliation(s)
- Luis Escobar
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Daniel Sun
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Mohit Dhiman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Christopher A Hunter
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
5
|
Ouyang Y, Zhang P, Willner I. DNA Tetrahedra as Functional Nanostructures: From Basic Principles to Applications. Angew Chem Int Ed Engl 2024; 63:e202411118. [PMID: 39037936 DOI: 10.1002/anie.202411118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
Self-assembled supramolecular DNA tetrahedra composed of programmed sequence-engineered complementary base-paired strands represent elusive nanostructures having key contributions to the development and diverse applications of DNA nanotechnology. By appropriate engineering of the strands, DNA tetrahedra of tuneable sizes and chemical functionalities were designed. Programmed functionalities for diverse applications were integrated into tetrahedra structures including sequence-specific recognition strands (aptamers), catalytic DNAzymes, nanoparticles, proteins, or fluorophore. The article presents a comprehensive review addressing methods to assemble and characterize the DNA tetrahedra nanostructures, and diverse applications of DNA tetrahedra framework are discussed. Topics being addressed include the application of structurally functionalized DNA tetrahedra nanostructure for the assembly of diverse optical or electrochemical sensing platforms and functionalized intracellular sensing and imaging modules. In addition, the triggered reconfiguration of DNA tetrahedra nanostructures and dynamic networks and circuits emulating biological transformations are introduced. Moreover, the functionalization of DNA tetrahedra frameworks with nanoparticles provides building units for the assembly of optical devices and for the programmed crystallization of nanoparticle superlattices. Finally, diverse applications of DNA tetrahedra in the field of nanomedicine are addressed. These include the DNA tetrahedra-assisted permeation of nanocarriers into cells for imaging, controlled drug release, active chemodynamic/photodynamic treatment of target tissues, and regenerative medicine.
Collapse
Affiliation(s)
- Yu Ouyang
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Pu Zhang
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
- Current address: Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P.R. China
| | - Itamar Willner
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
6
|
Yao L, Wang L, Liu S, Qu H, Mao Y, Li Y, Zheng L. Evolution of a bispecific G-quadruplex-forming circular aptamer to block IL-6/sIL-6R interaction for inflammation inhibition. Chem Sci 2024; 15:13011-13020. [PMID: 39148786 PMCID: PMC11323322 DOI: 10.1039/d4sc02183e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
IL-6 (interleukin-6) is an essential cytokine that participates in many inflammatory and immune responses, and disrupting the interaction between IL-6 and its receptor sIL-6R (soluble form of IL-6 receptor) represents a promising treatment strategy for inflammation and related diseases. Herein we report the first-ever effort of evolving a bispecific circular aptamer, named CIL-6A6-1, that is capable of binding both IL-6 and sIL-6R with nanomolar affinities and is stable in serum for more than 48 hours. CIL-6A6-1 can effectively block the IL-6/sIL-6R interaction and significantly inhibit cell inflammation. Most importantly, this bispecific aptamer is much more effective than aptamers that bind IL-6 and sIL-6R alone as well as tocilizumab, a commercially available humanized monoclonal antibody against sIL-6R, highlighting the advantage of selecting bispecific circular aptamers as molecular tools for anti-inflammation therapy. Interestingly, CIL-6A6-1 is predicted to adopt a unique structural fold with two G-quadruplex motifs capped by a long single-stranded region, which differs from all known DNA aptamers. This unique structural fold may also contribute to its excellent functionality and high stability in biological complex media. We anticipate that our study will represent a significant step forward towards demonstrating the practical utility of bispecific DNA aptamers for therapeutic applications.
Collapse
Affiliation(s)
- Lili Yao
- School of Food and Biological Engineering, Hefei University of Technology Hefei 230009 China
| | - Lei Wang
- School of Food and Biological Engineering, Hefei University of Technology Hefei 230009 China
| | - Shuai Liu
- School of Food and Biological Engineering, Hefei University of Technology Hefei 230009 China
| | - Hao Qu
- School of Food and Biological Engineering, Hefei University of Technology Hefei 230009 China
| | - Yu Mao
- School of Food and Biological Engineering, Hefei University of Technology Hefei 230009 China
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University Hamilton L8S4K1 Canada
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology Hefei 230009 China
| |
Collapse
|
7
|
Domsicova M, Korcekova J, Poturnayova A, Breier A. New Insights into Aptamers: An Alternative to Antibodies in the Detection of Molecular Biomarkers. Int J Mol Sci 2024; 25:6833. [PMID: 38999943 PMCID: PMC11240909 DOI: 10.3390/ijms25136833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
Aptamers are short oligonucleotides with single-stranded regions or peptides that recently started to transform the field of diagnostics. Their unique ability to bind to specific target molecules with high affinity and specificity is at least comparable to many traditional biorecognition elements. Aptamers are synthetically produced, with a compact size that facilitates deeper tissue penetration and improved cellular targeting. Furthermore, they can be easily modified with various labels or functional groups, tailoring them for diverse applications. Even more uniquely, aptamers can be regenerated after use, making aptasensors a cost-effective and sustainable alternative compared to disposable biosensors. This review delves into the inherent properties of aptamers that make them advantageous in established diagnostic methods. Furthermore, we will examine some of the limitations of aptamers, such as the need to engage in bioinformatics procedures in order to understand the relationship between the structure of the aptamer and its binding abilities. The objective is to develop a targeted design for specific targets. We analyse the process of aptamer selection and design by exploring the current landscape of aptamer utilisation across various industries. Here, we illuminate the potential advantages and applications of aptamers in a range of diagnostic techniques, with a specific focus on quartz crystal microbalance (QCM) aptasensors and their integration into the well-established ELISA method. This review serves as a comprehensive resource, summarising the latest knowledge and applications of aptamers, particularly highlighting their potential to revolutionise diagnostic approaches.
Collapse
Affiliation(s)
- Michaela Domsicova
- Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Dúbravská Cesta 9, 84005 Bratislava, Slovakia; (M.D.); (J.K.); (A.P.)
| | - Jana Korcekova
- Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Dúbravská Cesta 9, 84005 Bratislava, Slovakia; (M.D.); (J.K.); (A.P.)
| | - Alexandra Poturnayova
- Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Dúbravská Cesta 9, 84005 Bratislava, Slovakia; (M.D.); (J.K.); (A.P.)
| | - Albert Breier
- Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Dúbravská Cesta 9, 84005 Bratislava, Slovakia; (M.D.); (J.K.); (A.P.)
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovakia
| |
Collapse
|
8
|
Ouyang Y, O'Hagan MP, Willner B, Willner I. Aptamer-Modified Homogeneous Catalysts, Heterogenous Nanoparticle Catalysts, and Photocatalysts: Functional "Nucleoapzymes", "Aptananozymes", and "Photoaptazymes". ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2210885. [PMID: 37083210 DOI: 10.1002/adma.202210885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/18/2023] [Indexed: 05/03/2023]
Abstract
Conjugation of aptamers to homogeneous catalysts ("nucleoapzymes"), heterogeneous nanoparticle catalysts ("aptananozymes"), and photocatalysts ("photoaptazymes") yields superior catalytic/photocatalytic hybrid nanostructures emulating functions of native enzymes and photosystems. The concentration of the substrate in proximity to the catalytic sites ("molarity effect") or spatial concentration of electron-acceptor units in spatial proximity to the photosensitizers, by aptamer-ligand complexes, leads to enhanced catalytic/photocatalytic efficacies of the hybrid nanostructures. This is exemplified by sets of "nucleoapzymes" composed of aptamers conjugated to the hemin/G-quadruplex DNAzymes or metal-ligand complexes as catalysts, catalyzing the oxidation of dopamine to aminochrome, oxygen-insertion into the Ar─H moiety of tyrosinamide and the subsequent oxidation of the catechol product into aminochrome, or the hydrolysis of esters or ATP. Also, aptananozymes consisting of aptamers conjugated to Cu2+ - or Ce4+ -ion-modified C-dots or polyadenine-stabilized Au nanoparticles acting as catalysts oxidizing dopamine or operating bioreactor biocatalytic cascades, are demonstrated. In addition, aptamers conjugated to the Ru(II)-tris-bipyridine photosensitizer or the Zn(II) protoporphyrin IX photosensitizer provide supramolecular photoaptazyme assemblies emulating native photosynthetic reaction centers. Effective photoinduced electron transfer followed by the catalyzed synthesis of NADPH or the evolution of H2 is demonstrated by the photosystems. Structure-function relationships dictate the catalytic and photocatalytic efficacies of the systems.
Collapse
Affiliation(s)
- Yu Ouyang
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Michael P O'Hagan
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Bilha Willner
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Itamar Willner
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
9
|
Agostini M, Traldi P, Hamdan M. Mass Spectrometry Investigation of Some ATP-Binding Cassette (ABC) Proteins. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:200. [PMID: 38399488 PMCID: PMC10890348 DOI: 10.3390/medicina60020200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024]
Abstract
Drug resistance remains one of the main causes of poor outcome in cancer therapy. It is also becoming evident that drug resistance to both chemotherapy and to antibiotics is driven by more than one mechanism. So far, there are at least eight recognized mechanisms behind such resistance. In this review, we choose to discuss one of these mechanisms, which is known to be partially driven by a class of transmembrane proteins known as ATP-binding cassette (ABC) transporters. In normal tissues, ABC transporters protect the cells from the toxic effects of xenobiotics, whereas in tumor cells, they reduce the intracellular concentrations of anticancer drugs, which ultimately leads to the emergence of multidrug resistance (MDR). A deeper understanding of the structures and the biology of these proteins is central to current efforts to circumvent resistance to both chemotherapy, targeted therapy, and antibiotics. Understanding the biology and the function of these proteins requires detailed structural and conformational information for this class of membrane proteins. For many years, such structural information has been mainly provided by X-ray crystallography and cryo-electron microscopy. More recently, mass spectrometry-based methods assumed an important role in the area of structural and conformational characterization of this class of proteins. The contribution of this technique to structural biology has been enhanced by its combination with liquid chromatography and ion mobility, as well as more refined labelling protocols and the use of more efficient fragmentation methods, which allow the detection and localization of labile post-translational modifications. In this review, we discuss the contribution of mass spectrometry to efforts to characterize some members of the ATP-binding cassette (ABC) proteins and why such a contribution is relevant to efforts to clarify the link between the overexpression of these proteins and the most widespread mechanism of chemoresistance.
Collapse
Affiliation(s)
| | - Pietro Traldi
- Corso Stati Uniti 4, Istituto di Ricerca Pediatrica Città della Speranza, 35100 Padova, Italy; (M.A.)
| | | |
Collapse
|
10
|
Gupta P, Sharma A, Mittal V. Polymeric Vehicles for Nucleic Acid Delivery: Enhancing the Therapeutic Efficacy and Cellular Uptake. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2024; 18:276-293. [PMID: 39356099 DOI: 10.2174/0126673878324536240805060143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/19/2024] [Accepted: 07/02/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND Therapeutic gene delivery may be facilitated by the use of polymeric carriers. When combined with nucleic acids to form nanoparticles or polyplexes, a variety of polymers may shield the cargo from in vivo breakdown and clearance while also making it easier for it to enter intracellular compartments. AIM AND OBJECTIVES Polymer synthesis design choices result in a wide variety of compounds and vehicle compositions. Depending on the application, these characteristics may be changed to provide enhanced endosomal escape, longer-lasting distribution, or stronger connection with nucleic acid cargo and cells. Here, we outline current methods for delivering genes in preclinical and clinical settings using polymers. METHODOLOGY Significant therapeutic outcomes have previously been attained using genetic material- delivering polymer vehicles in both in-vitro and animal models. When combined with nucleic acids to form nanoparticles or polyplexes, a variety of polymers may shield the cargo from in vivo breakdown and clearance while also making it easier for it to enter intracellular compartments. Many innovative diagnoses for nucleic acids have been investigated and put through clinical assessment in the past 20 years. RESULTS Polymer-based carriers have additional delivery issues due to their changes in method and place of biological action, as well as variances in biophysical characteristics. We cover recent custom polymeric carrier architectures that were tuned for nucleic acid payloads such genomemodifying nucleic acids, siRNA, microRNA, and plasmid DNA. CONCLUSION In conclusion, the development of polymeric carriers for gene delivery holds promise for therapeutic applications. Through careful design and optimization, these carriers can overcome various challenges associated with nucleic acid delivery, offering new avenues for treating a wide range of diseases.
Collapse
Affiliation(s)
- Parul Gupta
- Department of Pharmaceutics, Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, 135001, India
| | - Anjali Sharma
- Department of Pharmaceutics, Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, 135001, India
| | - Vishnu Mittal
- Department of Pharmaceutics, Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, 135001, India
| |
Collapse
|
11
|
Qin Y, Ouyang Y, Willner I. Nucleic acid-functionalized nanozymes and their applications. NANOSCALE 2023; 15:14301-14318. [PMID: 37646290 DOI: 10.1039/d3nr02345a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Nanozymes are inorganic, organic and metal-organic framework nanoparticles that reveal catalytic functions by emulating native enzyme activities. Recently, these nanozymes have attracted growing scientific interest, finding diverse analytical and medical applications. However, the catalytic activities and functions of nanozymes are limited, due to the lack of substrate binding sites that concentrate on the substrate at the catalytic site (molarity effect), introduce substrate specificity and allow functional complexity of the catalysts (cascaded, switchable and cooperative catalysis). The modification of nanozymes with functional nucleic acids provides means to overcome these limitations and engineer nucleic acid/nanozyme hybrids for diverse applications. This is exemplified with the synthesis of aptananozymes, which are supramolecular aptamer-modified nanozymes. Aptananozymes exhibit combined specific binding and catalytic properties that drive diverse chemical transformations, revealing enhanced catalytic activities, as compared to the separated nanozyme/aptamer constituents. Relationships of structure-catalytic functions in the aptananozyme constructs are demonstrated. In addition, modification of nanozymes exhibiting multimodal catalytic functions with aptamers allows the engineering of nanozyme-based bioreactors for cascaded catalysis. Also, the functionalization of reactive oxygen species (ROS)-generating nanozymes with cancer cell-recognizing aptamers yields aptananozymes for targeted chemodynamic treatment of cancer cells and cancer tumors elicited in mice. Finally, nucleic acid-modified enzyme (glucose oxidase)-loaded metal-organic framework nanoparticles yield switchable biocatalytic nanozymes that drive the ON/OFF biocatalyzed oxidation of Amplex Red, dopamine or the generation of chemiluminescence. Herein, future challenges of the topic are addressed.
Collapse
Affiliation(s)
- Yunlong Qin
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Yu Ouyang
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Itamar Willner
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
12
|
Wang F, Gu Z, Yin Z, Zhang W, Bai L, Su J. Cell unit-inspired natural nano-based biomaterials as versatile building blocks for bone/cartilage regeneration. J Nanobiotechnology 2023; 21:293. [PMID: 37620914 PMCID: PMC10463900 DOI: 10.1186/s12951-023-02003-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/13/2023] [Indexed: 08/26/2023] Open
Abstract
The regeneration of weight-bearing bone defects and critical-sized cartilage defects remains a significant challenge. A wide range of nano-biomaterials are available for the treatment of bone/cartilage defects. However, their poor compatibility and biodegradability pose challenges to the practical applications of these nano-based biomaterials. Natural biomaterials inspired by the cell units (e.g., nucleic acids and proteins), have gained increasing attention in recent decades due to their versatile functionality, compatibility, biodegradability, and great potential for modification, combination, and hybridization. In the field of bone/cartilage regeneration, natural nano-based biomaterials have presented an unparalleled role in providing optimal cues and microenvironments for cell growth and differentiation. In this review, we systematically summarize the versatile building blocks inspired by the cell unit used as natural nano-based biomaterials in bone/cartilage regeneration, including nucleic acids, proteins, carbohydrates, lipids, and membranes. In addition, the opportunities and challenges of natural nano-based biomaterials for the future use of bone/cartilage regeneration are discussed.
Collapse
Affiliation(s)
- Fuxiao Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Zhengrong Gu
- Department of Orthopedics, Shanghai Baoshan Luodian Hospital, Baoshan District, Shanghai, China
| | - Zhifeng Yin
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, China
| | - Wencai Zhang
- Department of Orthopedics, The Third Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine (TCM), Guangzhou, China.
| | - Long Bai
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
13
|
Yang K, Mitchell NM, Banerjee S, Cheng Z, Taylor S, Kostic AM, Wong I, Sajjath S, Zhang Y, Stevens J, Mohan S, Landry DW, Worgall TS, Andrews AM, Stojanovic MN. A functional group-guided approach to aptamers for small molecules. Science 2023; 380:942-948. [PMID: 37262137 PMCID: PMC10686217 DOI: 10.1126/science.abn9859] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/03/2023] [Indexed: 06/03/2023]
Abstract
Aptameric receptors are important biosensor components, yet our ability to identify them depends on the target structures. We analyzed the contributions of individual functional groups on small molecules to binding within 27 target-aptamer pairs, identifying potential hindrances to receptor isolation-for example, negative cooperativity between sterically hindered functional groups. To increase the probability of aptamer isolation for important targets, such as leucine and voriconazole, for which multiple previous selection attempts failed, we designed tailored strategies focused on overcoming individual structural barriers to successful selections. This approach enables us to move beyond standardized protocols into functional group-guided searches, relying on sequences common to receptors for targets and their analogs to serve as anchors in regions of vast oligonucleotide spaces wherein useful reagents are likely to be found.
Collapse
Affiliation(s)
- Kyungae Yang
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Noelle M. Mitchell
- Department of Chemistry & Biochemistry and California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Saswata Banerjee
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Zhenzhuang Cheng
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Steven Taylor
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Aleksandra M. Kostic
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Isabel Wong
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sairaj Sajjath
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yameng Zhang
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jacob Stevens
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sumit Mohan
- Department of Epidemiology, Mailman School of Public Health, New York, NY 10032, USA
| | - Donald W. Landry
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Tilla S. Worgall
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Anne M. Andrews
- Department of Chemistry & Biochemistry and California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Psychiatry & Biobehavioral Sciences and Hatos Center for Neuropharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Milan N. Stojanovic
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- Departments of Biomedical Engineering, Fu Foundation School of Engineering and Applied Science, and Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
14
|
O’Hagan M, Duan Z, Huang F, Laps S, Dong J, Xia F, Willner I. Photocleavable Ortho-Nitrobenzyl-Protected DNA Architectures and Their Applications. Chem Rev 2023; 123:6839-6887. [PMID: 37078690 PMCID: PMC10214457 DOI: 10.1021/acs.chemrev.3c00016] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Indexed: 04/21/2023]
Abstract
This review article introduces mechanistic aspects and applications of photochemically deprotected ortho-nitrobenzyl (ONB)-functionalized nucleic acids and their impact on diverse research fields including DNA nanotechnology and materials chemistry, biological chemistry, and systems chemistry. Specific topics addressed include the synthesis of the ONB-modified nucleic acids, the mechanisms involved in the photochemical deprotection of the ONB units, and the photophysical and chemical means to tune the irradiation wavelength required for the photodeprotection process. Principles to activate ONB-caged nanostructures, ONB-protected DNAzymes and aptamer frameworks are introduced. Specifically, the use of ONB-protected nucleic acids for the phototriggered spatiotemporal amplified sensing and imaging of intracellular mRNAs at the single-cell level are addressed, and control over transcription machineries, protein translation and spatiotemporal silencing of gene expression by ONB-deprotected nucleic acids are demonstrated. In addition, photodeprotection of ONB-modified nucleic acids finds important applications in controlling material properties and functions. These are introduced by the phototriggered fusion of ONB nucleic acid functionalized liposomes as models for cell-cell fusion, the light-stimulated fusion of ONB nucleic acid functionalized drug-loaded liposomes with cells for therapeutic applications, and the photolithographic patterning of ONB nucleic acid-modified interfaces. Particularly, the photolithographic control of the stiffness of membrane-like interfaces for the guided patterned growth of cells is realized. Moreover, ONB-functionalized microcapsules act as light-responsive carriers for the controlled release of drugs, and ONB-modified DNA origami frameworks act as mechanical devices or stimuli-responsive containments for the operation of DNA machineries such as the CRISPR-Cas9 system. The future challenges and potential applications of photoprotected DNA structures are discussed.
Collapse
Affiliation(s)
- Michael
P. O’Hagan
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Zhijuan Duan
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Fujian Huang
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Shay Laps
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Jiantong Dong
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Fan Xia
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Itamar Willner
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
15
|
Gray BP, Kelly L, Steen-Burrell KA, Layzer JM, Rempel RE, Nimjee SM, Cooley BC, Tarantal AF, Sullenger BA. Rapid molecular imaging of active thrombi in vivo using aptamer-antidote probes. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:440-451. [PMID: 36817726 PMCID: PMC9930157 DOI: 10.1016/j.omtn.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Pathological blood clotting, or thrombosis, limits vital blood flow to organs; such deprivation can lead to catastrophic events including myocardial infarction, pulmonary embolism, and ischemic stroke. Prompt restoration of blood flow greatly improves outcomes. We explored whether aptamers could serve as molecular imaging probes to rapidly detect thrombi. An aptamer targeting thrombin, Tog25t, was found to rapidly localize to and visualize pre-existing clots in the femoral and jugular veins of mice using fluorescence imaging and, when circulating, was able to image clots as they form. Since free aptamer is quickly cleared from circulation, contrast is rapidly developed, allowing clot visualization within minutes. Moreover, administration of an antidote oligonucleotide further enhanced contrast development, causing the unbound aptamer to clear within 5min while impacting the clot-bound aptamer more slowly. These findings suggest that aptamers can serve as imaging agents for rapid detection of thrombi in acute care and perioperative settings.
Collapse
Affiliation(s)
- Bethany Powell Gray
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Linsley Kelly
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Juliana M. Layzer
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Rachel E. Rempel
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Shahid M. Nimjee
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Brian C. Cooley
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7525, USA
| | - Alice F. Tarantal
- Departments of Pediatrics and Cell Biology and Human Anatomy, School of Medicine, and California National Primate Research Center, University of California Davis, Davis, CA 95616-8542, USA
| | - Bruce A. Sullenger
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
- Departments of Pharmacology & Cancer Biology and Biomedical Engineering, Duke University, Durham, NC 27710, USA
| |
Collapse
|
16
|
Li Z, Wang J, Willner B, Willner I. Topologically Triggered Dynamic DNA Frameworks. Isr J Chem 2023. [DOI: 10.1002/ijch.202300013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Zhenzhen Li
- The Institute of Chemistry The Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Jianbang Wang
- The Institute of Chemistry The Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Bilha Willner
- The Institute of Chemistry The Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Itamar Willner
- The Institute of Chemistry The Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| |
Collapse
|
17
|
Zhang XJ, Zhao Z, Wang X, Su MH, Ai L, Li Y, Yuan Q, Wang XQ, Tan W. A versatile strategy for convenient circular bivalent functional nucleic acids construction. Natl Sci Rev 2023; 10:nwac107. [PMID: 36960313 PMCID: PMC10029841 DOI: 10.1093/nsr/nwac107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Functional nucleic acids (FNAs), such as aptamers, nucleic acid enzymes and riboswitches play essential roles in various fields of life sciences. Tailoring of ingenious chemical moieties toward FNAs can enhance their biomedical properties and/or confer them with exogenic biological functions that, in turn, can considerably expand their biomedical applications, or even improve their clinical translations. Herein, we report the first example of a general chemical tailoring strategy that enables the divergent ligation of DNA sequences. By applying this technology, different types of aptamers and single-stranded nucleic acids of various lengths could be efficiently tailored to deliver the designed circular bivalent aptamers (CBApts) and cyclized DNA sequences with high yields. It is worth noting that CBApts exhibited significantly enhanced nuclease resistance, as well as considerably improved binding, targeting and tumor tissue enrichment abilities, which may pave the way for different investigations for biomedical purposes.
Collapse
Affiliation(s)
- Xiao-Jing Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Zhuo Zhao
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Xia Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Min-Hui Su
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Lili Ai
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Yingying Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | | | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| |
Collapse
|
18
|
Kavita K, Breaker RR. Discovering riboswitches: the past and the future. Trends Biochem Sci 2023; 48:119-141. [PMID: 36150954 PMCID: PMC10043782 DOI: 10.1016/j.tibs.2022.08.009] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 01/25/2023]
Abstract
Riboswitches are structured noncoding RNA domains used by many bacteria to monitor the concentrations of target ligands and regulate gene expression accordingly. In the past 20 years over 55 distinct classes of natural riboswitches have been discovered that selectively sense small molecules or elemental ions, and thousands more are predicted to exist. Evidence suggests that some riboswitches might be direct descendants of the RNA-based sensors and switches that were likely present in ancient organisms before the evolutionary emergence of proteins. We provide an overview of the current state of riboswitch research, focusing primarily on the discovery of riboswitches, and speculate on the major challenges facing researchers in the field.
Collapse
Affiliation(s)
- Kumari Kavita
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
| | - Ronald R Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520-8103, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8103, USA.
| |
Collapse
|
19
|
Cao X, Chen C, Zhu Q. Biosensors based on functional nucleic acids and isothermal amplification techniques. Talanta 2023; 253:123977. [PMID: 36201957 DOI: 10.1016/j.talanta.2022.123977] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 12/13/2022]
Abstract
In the past few years, with the in-depth research of functional nucleic acids and isothermal amplification techniques, their applications in the field of biosensing have attracted great interest. Since functional nucleic acids have excellent flexibility and convenience in their structural design, they have significant advantages as recognition elements in biosensing. At the same time, isothermal amplification techniques have higher amplification efficiency, so the combination of functional nucleic acids and isothermal amplification techniques can greatly promote the widespread application of biosensors. For the purpose of further improving the performance of biosensors, this review introduces several widely used functional nucleic acids and isothermal amplification techniques, as well as their classification, basic principles, application characteristics, and summarizes their important applications in the field of biosensing. We hope to provide some references for the design and construction of new tactics to enhance the detection sensitivity and detection range of biosensing.
Collapse
Affiliation(s)
- Xiuen Cao
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, 410013, Hunan, China.
| | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, 410013, Hunan, China.
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
20
|
Manfrevola F, Potenza N, Chioccarelli T, Di Palo A, Siniscalchi C, Porreca V, Scialla A, Mele VG, Petito G, Russo A, Lanni A, Senese R, Ricci G, Pierantoni R, Chianese R, Cobellis G. Actin remodeling driven by circLIMA1: sperm cell as an intriguing cellular model. Int J Biol Sci 2022; 18:5136-5153. [PMID: 35982890 PMCID: PMC9379403 DOI: 10.7150/ijbs.76261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/16/2022] [Indexed: 11/23/2022] Open
Abstract
CircRNA cargo in spermatozoa (SPZ) participates in setting cell quality, in terms of morphology and motility. Cannabinoid receptor CB1 activity is correlated with a proper spermatogenesis and epididymal sperm maturation. Despite CB1 promotes endogenous skill to circularize mRNAs in SPZ, few notions are reported regarding the functional link between endocannabinoids and spermatic circRNA cargo. In CB1 knock-out male mice, we performed a complete dataset of spermatic circRNA content by microarray strategy. Differentially expressed (DE)-circRNAs, as a function of genotype, were identified. Within DE-circRNAs, we focused the attention on circLIMA1, as putative actin-cytoskeleton architecture regulator. The validation of circLIMA1 dependent-competitive endogenous RNA (ceRNA) network (ceRNET) in in vitro cell line confirmed its activity in the regulation of the cytoskeletal actin. Interestingly, a dynamic actin regulation in SPZ nuclei was found during their epididymal maturation. In this scenario, we showed for the first time an intriguing sperm nuclear actin remodeling, regulated via a ceRNET-independent pathway, consisting in the nuclear shuttling of circLIMA1-QKI interactome and downstream in Gelsolin regulation. In particular, the increased levels of circLIMA1 in CB1 knock-out SPZ, associated with an inefficient depolymerization of nuclear actin, specifically illustrate how endocannabinoids, by regulating circRNA cargo, may contribute to sperm morpho-cellular maturation.
Collapse
Affiliation(s)
- Francesco Manfrevola
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Nicoletta Potenza
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Teresa Chioccarelli
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Armando Di Palo
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Chiara Siniscalchi
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Veronica Porreca
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Arcangelo Scialla
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Vincenza Grazia Mele
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Giuseppe Petito
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Aniello Russo
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Antonia Lanni
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Rosalba Senese
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Giulia Ricci
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Riccardo Pierantoni
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Rosanna Chianese
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Gilda Cobellis
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| |
Collapse
|
21
|
Douaki A, Garoli D, Inam AKMS, Angeli MAC, Cantarella G, Rocchia W, Wang J, Petti L, Lugli P. Smart Approach for the Design of Highly Selective Aptamer-Based Biosensors. BIOSENSORS 2022; 12:bios12080574. [PMID: 36004970 PMCID: PMC9405846 DOI: 10.3390/bios12080574] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022]
Abstract
Aptamers are chemically synthesized single-stranded DNA or RNA oligonucleotides widely used nowadays in sensors and nanoscale devices as highly sensitive biorecognition elements. With proper design, aptamers are able to bind to a specific target molecule with high selectivity. To date, the systematic evolution of ligands by exponential enrichment (SELEX) process is employed to isolate aptamers. Nevertheless, this method requires complex and time-consuming procedures. In silico methods comprising machine learning models have been recently proposed to reduce the time and cost of aptamer design. In this work, we present a new in silico approach allowing the generation of highly sensitive and selective RNA aptamers towards a specific target, here represented by ammonium dissolved in water. By using machine learning and bioinformatics tools, a rational design of aptamers is demonstrated. This “smart” SELEX method is experimentally proved by choosing the best five aptamer candidates obtained from the design process and applying them as functional elements in an electrochemical sensor to detect, as the target molecule, ammonium at different concentrations. We observed that the use of five different aptamers leads to a significant difference in the sensor’s response. This can be explained by considering the aptamers’ conformational change due to their interaction with the target molecule. We studied these conformational changes using a molecular dynamics simulation and suggested a possible explanation of the experimental observations. Finally, electrochemical measurements exposing the same sensors to different molecules were used to confirm the high selectivity of the designed aptamers. The proposed in silico SELEX approach can potentially reduce the cost and the time needed to identify the aptamers and potentially be applied to any target molecule.
Collapse
Affiliation(s)
- Ali Douaki
- Faculty of Science and Technology, Libera Università di Bolzano, Piazza Università 1, 39100 Bolzano, Italy; (A.K.M.S.I.); (M.A.C.A.); (G.C.); (L.P.)
- Correspondence: (A.D.); (P.L.)
| | - Denis Garoli
- Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genova, Italy;
| | - A. K. M. Sarwar Inam
- Faculty of Science and Technology, Libera Università di Bolzano, Piazza Università 1, 39100 Bolzano, Italy; (A.K.M.S.I.); (M.A.C.A.); (G.C.); (L.P.)
| | - Martina Aurora Costa Angeli
- Faculty of Science and Technology, Libera Università di Bolzano, Piazza Università 1, 39100 Bolzano, Italy; (A.K.M.S.I.); (M.A.C.A.); (G.C.); (L.P.)
| | - Giuseppe Cantarella
- Faculty of Science and Technology, Libera Università di Bolzano, Piazza Università 1, 39100 Bolzano, Italy; (A.K.M.S.I.); (M.A.C.A.); (G.C.); (L.P.)
| | - Walter Rocchia
- CONCEPT Lab, Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16152 Genova, Italy;
| | - Jiahai Wang
- School of Mechanical and Electrical Engineering, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China;
| | - Luisa Petti
- Faculty of Science and Technology, Libera Università di Bolzano, Piazza Università 1, 39100 Bolzano, Italy; (A.K.M.S.I.); (M.A.C.A.); (G.C.); (L.P.)
| | - Paolo Lugli
- Faculty of Science and Technology, Libera Università di Bolzano, Piazza Università 1, 39100 Bolzano, Italy; (A.K.M.S.I.); (M.A.C.A.); (G.C.); (L.P.)
- Correspondence: (A.D.); (P.L.)
| |
Collapse
|
22
|
Abualigah L, Elaziz MA, Sumari P, Geem ZW, Gandomi AH. Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer. EXPERT SYSTEMS WITH APPLICATIONS 2022; 191:116158. [DOI: 10.1016/j.eswa.2021.116158] [Citation(s) in RCA: 206] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
23
|
Abstract
Stimuli-responsive DNA-based hydrogels are attracting growing interest because of their smart responsiveness, excellent biocompatibility, regulated biodegradability, and programmable design properties. Integration of reconfigurable DNA architectures and switchable supramolecular moieties (as cross-linkers) in hydrogels by responding to external stimuli provides an ideal approach for the reversible tuning structural and mechanical properties of the hydrogels, which can be exploited in the development of intelligent DNA-based materials. This review highlights recent advances in the design of responsive pure DNA hydrogels, DNA-polymer hybrid hydrogels, and autonomous DNA-based hydrogels with transient behaviors. A variety of chemically and physically triggered DNA-based stimuli-responsive hydrogels and their versatile applications in biosensing, biocatalysis, cell culture and separation, drug delivery, shape memory, self-healing, and robotic actuators are summarized. Finally, we address the key challenges that the field will face in the coming years, and future prospects are identified.
Collapse
Affiliation(s)
- Chen Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Junji Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, No. 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
24
|
Zahra QUA, Fang X, Luo Z, Ullah S, Fatima S, Batool S, Qiu B, Shahzad F. Graphene Based Nanohybrid Aptasensors in Environmental Monitoring: Concepts, Design and Future Outlook. Crit Rev Anal Chem 2022; 53:1433-1454. [PMID: 35085047 DOI: 10.1080/10408347.2022.2025758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
In view of ever-increasing environmental pollution, there is an immediate requirement to promote cheap, multiplexed, sensitive and fast biosensing systems to monitor these pollutants or contaminants. Aptamers have shown numerous advantages in being used as molecular recognition elements in various biosensing devices. Graphene and graphene-based materials/nanohybrids combined with several detection methods exhibit great potential owing to their exceptional optical, electronic and physicochemical properties which can be employed extensively to monitor environmental contaminants. For environmental monitoring applications, aptamers have been successfully combined with graphene-based nanohybrids to produce a wide range of innovative methodologies. Aptamers are immobilized at the surface of graphene based nanohybrids via covalent and non-covalent strategies. This review highlights the design, working principle, recent developmental advances and applications of graphene based nanohybrid aptasensors (GNH-Apts) (since January 2014 to September 2021) with a special emphasis on two major signal-transduction methods, i.e., optical and electrochemical for the monitoring of pesticides, heavy metals, bacteria, antibiotics, and organic compounds from different environmental samples (e.g., water, soil and related). Lastly, the challenges confronted by scientists and the possible future outlook have also been addressed. It is expected that high-performance graphene-based nanohybrid aptasensors would find broad applications in the field of environmental monitoring.
Collapse
Affiliation(s)
- Qurat Ul Ain Zahra
- Biomedical Imaging Center, University of Science and Technology of China, Hefei, Anhui, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Xiaona Fang
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Zhaofeng Luo
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Salim Ullah
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Shazia Fatima
- Nuclear Medicine, Oncology & Radiotherapy Institute (NORI), Islamabad, Pakistan
| | - Sadaf Batool
- Nuclear Medicine, Oncology & Radiotherapy Institute (NORI), Islamabad, Pakistan
| | - Bensheng Qiu
- Biomedical Imaging Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Faisal Shahzad
- Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| |
Collapse
|
25
|
Wang C, O'Hagan MP, Li Z, Zhang J, Ma X, Tian H, Willner I. Photoresponsive DNA materials and their applications. Chem Soc Rev 2022; 51:720-760. [PMID: 34985085 DOI: 10.1039/d1cs00688f] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Photoresponsive nucleic acids attract growing interest as functional constituents in materials science. Integration of photoisomerizable units into DNA strands provides an ideal handle for the reversible reconfiguration of nucleic acid architectures by light irradiation, triggering changes in the chemical and structural properties of the nanostructures that can be exploited in the development of photoresponsive functional devices such as machines, origami structures and ion channels, as well as environmentally adaptable 'smart' materials including nanoparticle aggregates and hydrogels. Moreover, photoresponsive DNA components allow control over the composition of dynamic supramolecular ensembles that mimic native networks. Beyond this, the modification of nucleic acids with photosensitizer functionality enables these biopolymers to act as scaffolds for spatial organization of electron transfer reactions mimicking natural photosynthesis. This review provides a comprehensive overview of these exciting developments in the design of photoresponsive DNA materials, and showcases a range of applications in catalysis, sensing and drug delivery/release. The key challenges facing the development of the field in the coming years are addressed, and exciting emergent research directions are identified.
Collapse
Affiliation(s)
- Chen Wang
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Michael P O'Hagan
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Ziyuan Li
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Junji Zhang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiang Ma
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Itamar Willner
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
26
|
Krissanaprasit A, Key CM, Pontula S, LaBean TH. Self-Assembling Nucleic Acid Nanostructures Functionalized with Aptamers. Chem Rev 2021; 121:13797-13868. [PMID: 34157230 DOI: 10.1021/acs.chemrev.0c01332] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Researchers have worked for many decades to master the rules of biomolecular design that would allow artificial biopolymer complexes to self-assemble and function similarly to the diverse biochemical constructs displayed in natural biological systems. The rules of nucleic acid assembly (dominated by Watson-Crick base-pairing) have been less difficult to understand and manipulate than the more complicated rules of protein folding. Therefore, nucleic acid nanotechnology has advanced more quickly than de novo protein design, and recent years have seen amazing progress in DNA and RNA design. By combining structural motifs with aptamers that act as affinity handles and add powerful molecular recognition capabilities, nucleic acid-based self-assemblies represent a diverse toolbox for use by bioengineers to create molecules with potentially revolutionary biological activities. In this review, we focus on the development of self-assembling nucleic acid nanostructures that are functionalized with nucleic acid aptamers and their great potential in wide ranging application areas.
Collapse
Affiliation(s)
- Abhichart Krissanaprasit
- Department of Materials Science and Engineering, College of Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Carson M Key
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Sahil Pontula
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Thomas H LaBean
- Department of Materials Science and Engineering, College of Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
27
|
Pe KBA, Yatsuzuka K, Hakariya H, Kida T, Katsuda Y, Fukuda M, Sato SI. RNA-based cooperative protein labeling that permits direct monitoring of the intracellular concentration change of an endogenous protein. Nucleic Acids Res 2021; 49:e132. [PMID: 34581825 PMCID: PMC8682759 DOI: 10.1093/nar/gkab839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 08/24/2021] [Accepted: 09/09/2021] [Indexed: 11/13/2022] Open
Abstract
Imaging the dynamics of proteins in living cells is a powerful means for understanding cellular functions at a deeper level. Here, we report a versatile method for spatiotemporal imaging of specific endogenous proteins in living mammalian cells. The method employs a bifunctional aptamer capable of selective protein recognition and fluorescent probe-binding, which is induced only when the aptamer specifically binds to its target protein. An aptamer for β-actin protein preferentially recognizes its monomer forms over filamentous forms, resulting in selective G-actin staining in both fixed and living cells. Through actin-drug treatment, the method permitted direct monitoring of the intracellular concentration change of endogenous G-actin. This protein-labeling method, which is highly selective and non-covalent, provides rich insights into the study of spatiotemporal protein dynamics in living cells.
Collapse
Affiliation(s)
| | - Kenji Yatsuzuka
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hayase Hakariya
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Tomoki Kida
- Division of Materials Science and Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Yousuke Katsuda
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan.,Division of Materials Science and Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Masatora Fukuda
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Shin-Ichi Sato
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
28
|
Protein design-scapes generated by microfluidic DNA assembly elucidate domain coupling in the bacterial histidine kinase CpxA. Proc Natl Acad Sci U S A 2021; 118:2017719118. [PMID: 33723045 PMCID: PMC8000134 DOI: 10.1073/pnas.2017719118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The randomization and screening of combinatorial DNA libraries is a powerful technique for understanding sequence-function relationships and optimizing biosynthetic pathways. Although it can be difficult to predict a priori which sequence combinations encode functional units, it is often possible to omit undesired combinations that inflate library size and screening effort. However, defined library generation is difficult when a complex scan through sequence space is needed. To overcome this challenge, we designed a hybrid valve- and droplet-based microfluidic system that deterministically assembles DNA parts in picoliter droplets, reducing reagent consumption and bias. Using this system, we built a combinatorial library encoding an engineered histidine kinase (HK) based on bacterial CpxA. Our library encodes designed transmembrane (TM) domains that modulate the activity of the cytoplasmic domain of CpxA and variants of the structurally distant "S helix" located near the catalytic domain. We find that the S helix sets a basal activity further modulated by the TM domain. Surprisingly, we also find that a given TM motif can elicit opposing effects on the catalytic activity of different S-helix variants. We conclude that the intervening HAMP domain passively transmits signals and shapes the signaling response depending on subtle changes in neighboring domains. This flexibility engenders a richness in functional outputs as HKs vary in response to changing evolutionary pressures.
Collapse
|
29
|
Mukherjee A, Ghosh S, Ghosh S, Mahato S, Pal M, Sen SK, Majee A, Singh B. Molecular recognition of synthesized halogenated chalcone by calf thymus DNA through multispectroscopic studies and analysis the anti-cancer, anti-bacterial activity of the compounds. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
30
|
Zhao X, Li X, Liang S, Dong X, Zhang Z. 3-Hydroxyflavone derivatives: promising scaffolds for fluorescent imaging in cells. RSC Adv 2021; 11:28851-28862. [PMID: 35478549 PMCID: PMC9038104 DOI: 10.1039/d1ra04767a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/21/2021] [Indexed: 11/21/2022] Open
Abstract
As a typical class of excited-state intramolecular proton transfer (ESIPT) molecules, 3-hydroxyflavone derivatives (3HF, also known as flavonols) have received much attention recently. Thereinto, the role of hydrophobic microenvironment is significant importance in promoting the process and effects of ESIPT, which can be regulated by the solvents, the existence of metal ions and proteins rich with α-helix structures or the advanced DNA structures. Considering that plenty of biological macromolecules offer cellular hydrophobic microenvironment, enhancing the ESIPT effects and resulting in dual emission, 3HF could be a promising scaffold for the development of fluorescent imaging in cells. Furthermore, as the widespread occurance of compounds with biological activity in plants, 3HF derivatives are much more secure to be cellular diagnosis and treatment integrated fluorescent probes. In this review, multiple regulatory strategies for the fluorescence emission of 3HF derivatives have been collectively and comprehensively analyzed, including the solvent effects, metal chelation, interaction with proteins or DNAs, which would be beneficial for ESIPT-promoting or ESIPT-blocking processes and then enhance or control the fluorescence emission of 3HF effectively. We expect that this review would provide a new perspective to develop novel 3HF-based fluorescent sensors for imaging in cells and plants.
Collapse
Affiliation(s)
- Xueke Zhao
- National Local Joint Engineering Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University Wuhan Hubei 430073 P. R. China
| | - Xiang Li
- College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
- School of Chemistry, Central China Normal University Wuhan Hubei 430079 P. R. China
| | - Shuyu Liang
- College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| | - Xiongwei Dong
- National Local Joint Engineering Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University Wuhan Hubei 430073 P. R. China
| | - Zhe Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou 510006 China
| |
Collapse
|
31
|
Automatic selection of heavy-tailed distributions-based synergy Henry gas solubility and Harris hawk optimizer for feature selection: case study drug design and discovery. Artif Intell Rev 2021. [DOI: 10.1007/s10462-021-10009-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Predicting aptamer sequences that interact with target proteins using an aptamer-protein interaction classifier and a Monte Carlo tree search approach. PLoS One 2021; 16:e0253760. [PMID: 34170922 PMCID: PMC8232527 DOI: 10.1371/journal.pone.0253760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 06/14/2021] [Indexed: 11/19/2022] Open
Abstract
Oligonucleotide-based aptamers, which have a three-dimensional structure with a single-stranded fragment, feature various characteristics with respect to size, toxicity, and permeability. Accordingly, aptamers are advantageous in terms of diagnosis and treatment and are materials that can be produced through relatively simple experiments. Systematic evolution of ligands by exponential enrichment (SELEX) is one of the most widely used experimental methods for generating aptamers; however, it is highly expensive and time-consuming. To reduce the related costs, recent studies have used in silico approaches, such as aptamer-protein interaction (API) classifiers that use sequence patterns to determine the binding affinity between RNA aptamers and proteins. Some of these methods generate candidate RNA aptamer sequences that bind to a target protein, but they are limited to producing candidates of a specific size. In this study, we present a machine learning approach for selecting candidate sequences of various sizes that have a high binding affinity for a specific sequence of a target protein. We applied the Monte Carlo tree search (MCTS) algorithm for generating the candidate sequences using a score function based on an API classifier. The tree structure that we designed with MCTS enables nucleotide sequence sampling, and the obtained sequences are potential aptamer candidates. We performed a quality assessment using the scores of docking simulations. Our validation datasets revealed that our model showed similar or better docking scores in ZDOCK docking simulations than the known aptamers. We expect that our method, which is size-independent and easy to use, can provide insights into searching for an appropriate aptamer sequence for a target protein during the simulation step of SELEX.
Collapse
|
33
|
Abbasi AD, Hussain Z, Liaqat U, Arif D, Yang KL. Liquid Crystal Based Binding Assay for Detecting HIV-1 Surface Glycoprotein. Front Chem 2021; 9:668870. [PMID: 33981675 PMCID: PMC8107394 DOI: 10.3389/fchem.2021.668870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/01/2021] [Indexed: 11/13/2022] Open
Abstract
Surface protein gp-120 of HIV-1 virus plays an important role in the infection of HIV-1, but detection of gp-120 during the early stage of infection is very difficult. Herein, we report a binding bioassay based on an RNA aptamer B40t77, which binds specifically to gp-120. The bioassay is built upon a hydrophobic glass slide with surface immobilized gp-120. When the glass surface is incubated in a solution containing B40t77, the aptamer is able to bind to gp-120 specifically and remove it from the surface after a short incubation time of 30 min. The result of the binding event can be amplified by using liquid crystal (LC) into optical signals in the final step. By using this bioassay, we are able to detect as low as 1 μg/ml of gp-120 with high specificity within 30 min. No response is obtained when gp-120 is replaced by other protein such as bovine serum albumin (BSA). This is the first qualitative bioassay which provides a simple way for the detection of gp-120 with the naked eye. The assay is robust, low-cost and does not require additional labeling. Thus, the bioassay is potentially useful for the early detection of HIV-1 in resources-limited regions.
Collapse
Affiliation(s)
- Amna Didar Abbasi
- Department of Materials Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Zakir Hussain
- Department of Materials Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Usman Liaqat
- Department of Materials Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Dooa Arif
- Department of Materials Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Kun-Lin Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
34
|
Vázquez-González M, Zhou Z, Biniuri Y, Willner B, Willner I. Mimicking Functions of Native Enzymes or Photosynthetic Reaction Centers by Nucleoapzymes and Photonucleoapzymes. Biochemistry 2021; 60:956-965. [PMID: 32613829 PMCID: PMC8028052 DOI: 10.1021/acs.biochem.0c00421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/02/2020] [Indexed: 11/29/2022]
Abstract
The covalent linkage of catalytic units to aptamer sequence-specific nucleic acids exhibiting selective binding affinities for substrates leads to functional scaffolds mimicking native enzymes, nucleoapzymes. The binding of the substrates to the aptamer and their structural orientation with respect to the catalytic units duplicate the functions of the active center of enzymes. The possibility of linking the catalytic sites directly, or through spacer units, to the 5'-end, 3'-end, and middle positions of the aptamers allows the design of nucleoapzyme libraries, revealing structure-functions diversities, and these can be modeled by molecular dynamics simulations. Catalytic sites integrated into nucleoapzymes include DNAzymes, transition metal complexes, and organic ligands. Catalytic transformations driven by nucleoapzymes are exemplified by the oxidation of dopamine or l-arginine, hydroxylation of tyrosine to l-DOPA, hydrolysis of ATP, and cholic acid-modified esters. The covalent linkage of photosensitizers to the tyrosinamide aptamer leads to a photonucleoapzyme scaffold that binds the N-methyl-N'-(3-aminopropane)-4,4'-bipyridinium-functionalized tyrosinamide to the aptamer. By linking the photosensitizer directly, or through a spacer bridge to the 5'-end or 3'-end of the aptamer, we demonstrate a library of supramolecular photosensitizer/electron acceptor photonucleoapzymes mimicking the functions of photosystem I in the photosynthetic apparatus. The photonucleoapzymes catalyze the photoinduced generation of NADPH, in the presence of ferredoxin-NADP+-reductase (FNR), or the photoinduced H2 evolution catalyzed by Pt nanoparticles. The future prospects of nucleoapzymes and photonucleoapzymes are discussed.
Collapse
Affiliation(s)
- Margarita Vázquez-González
- Institute of Chemistry, The Minerva
Center of Biohybrid Complex Systems, The
Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Zhixin Zhou
- Institute of Chemistry, The Minerva
Center of Biohybrid Complex Systems, The
Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yonatan Biniuri
- Institute of Chemistry, The Minerva
Center of Biohybrid Complex Systems, The
Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Bilha Willner
- Institute of Chemistry, The Minerva
Center of Biohybrid Complex Systems, The
Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Itamar Willner
- Institute of Chemistry, The Minerva
Center of Biohybrid Complex Systems, The
Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
35
|
Zhou Z, Vázquez-González M, Willner I. Stimuli-responsive metal-organic framework nanoparticles for controlled drug delivery and medical applications. Chem Soc Rev 2021; 50:4541-4563. [PMID: 33625421 DOI: 10.1039/d0cs01030h] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stimuli-responsive metal-organic framework nanoparticles, NMOFs, provide a versatile platform for the controlled release of drugs and biomedical applications. The porous structure of NMOFs, their biocompatibility, low toxicity, and efficient permeability turn the NMOFs into ideal carriers for therapeutic applications. Two general methods to gate the drug-loaded NMOFs and to release the loads were developed: by one method, the loaded NMOFs are coated or surface-modified with stimuli-responsive gates being unlocked in the presence of appropriate chemical (e.g., ions or reducing agents), physical (e.g., light or heat), or biomarker (e.g., miRNA or ATP) triggers. By a second approach, the drug-loaded NMOFs include encoded structural information or co-added agents to induce the structural distortion or stimulate the degradation of the NMOFs. Different chemical triggers such as pH changes, ions, ATP, or redox agents, and physical stimuli such as light or heat are applied to degrade the NMOFs, resulting in the release of the loads. In addition, enzymes, DNAzymes, and disease-specific biomarkers are used to unlock the gated NMOFs. The triggered release of drugs for cancer therapy, anti-blood clotting, and the design of autonomous insulin-delivery systems ("artificial pancreas") are discussed. Specifically, multi-drug carrier systems and functional NMOFs exhibiting dual and cooperative therapeutic functions are introduced. The future perspectives and applications of stimuli-responsive particles are addressed.
Collapse
Affiliation(s)
- Zhixin Zhou
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | | | | |
Collapse
|
36
|
Wang H, Zhang Z, Chen C, Liang A, Jiang Z. Fullerene carbon dot catalytic amplification-aptamer assay platform for ultratrace As +3 utilizing SERS/RRS/Abs trifunctional Au nanoprobes. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123633. [PMID: 32827860 DOI: 10.1016/j.jhazmat.2020.123633] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/05/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
Under microwave conditions, Au-doped carbon dots (CDAu) were prepared using fullerene as a precursor, and characterized in details. It is found that CDAu can strongly catalyze the reaction of HAuCl4-fructose to generate gold nanoparticles (AuNPs). The new nanocatalytic reaction was studied by surface-enhanced Raman scattering (SERS), resonance Rayleigh scattering (RRS) and absorption (Abs) spectrometry. Based on the specific aptamer (AptAs)-As+3 reaction mediated the CDAu-HAuCl4-fructose nanoreaction, and the products of AuNPs as SERS/RRS/Abs trifunctional indicator nanoprobes, a new trimode Apt assay strategy was developed for detection of ultratrace As+3. A 0.07-0.70, 0.10-0.60 and 0.20-0.70 μg L-1 were determined by SERS, RRS and Abs, with detection limits (DL) of 0.04, 0.06, 0.10 μg L-1 respectively. The aptamer-regulation CDAu catalytic amplification platform can be also used to assay 1.7-13.3 nmol L-1 Pb2+ and 2.0-12 μmol L-1 Hg2+, with DL of 0.80 nmol L-1 and 0.90 μmol L-1 respectively.
Collapse
Affiliation(s)
- Haolin Wang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China
| | - Zhihao Zhang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China
| | - Chunqiang Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China
| | - Aihui Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China.
| | - Zhiliang Jiang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China.
| |
Collapse
|
37
|
Ravina, Manjeet, Mohan H, Narang J, Pundir S, Pundir CS. A changing trend in diagnostic methods of Influenza A (H3N2) virus in human: a review. 3 Biotech 2021; 11:87. [PMID: 33495723 PMCID: PMC7816835 DOI: 10.1007/s13205-021-02642-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/03/2021] [Indexed: 12/11/2022] Open
Abstract
The influenza virus is classified into four types A, B, C, and D, but type A and B are responsible for major illnesses in people with influenza A being the only virus responsible for flu pandemics due to the presence of two surface proteins called hemagglutinin (H) and neuraminidase (N) on the virus. The two subtypes of influenza A virus, H1N1 and H3N2, have been known to cause many flu pandemics. Both subtypes change genetically and antigenically to produce variants (clades and subclades, also know as groups and subgroups). H3N2 tends to change rapidly, both genetically and antigenically whereas that of H1N1 generally tends to have smaller changes. Influenza A (H3N2) viruses have evolved to form many separate, genetically different clades that continue to co-circulate. Influenza A(H3N2) viruses have caused significant deaths as per WHO report. The review describes methods for detection of influenza A(H3N2) viruses by conventional serological methods as well as the advanced methods of molecular biology and biosensors. All these methods are based on different parameters and have different targets but the goal is to improve specificity and increase sensitivity. Amongst the molecular methods, real-time polymerase chain reaction (RT-PCR) is considered a gold standard test due to its many advantages whereas a number of other molecular methods are time-consuming, complex to perform or lack specificity. The review also considers bio-sensing methods for simple, rapid, highly sensitive, and specific detection of H3N2. The classification and principle of various H3N2 biosensors are also discussed.
Collapse
Affiliation(s)
- Ravina
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Manjeet
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Hari Mohan
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Jagriti Narang
- Department of Biotechnology, Jamia Hamdard, New Delhi, India
| | - Shikha Pundir
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
38
|
Zhang XH, Wang W, Chen X. Selection and identification of an ssDNA aptamer to NB4 cell. J Clin Lab Anal 2021; 35:e23718. [PMID: 33522630 PMCID: PMC8059720 DOI: 10.1002/jcla.23718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 01/09/2021] [Accepted: 01/15/2021] [Indexed: 11/17/2022] Open
Abstract
This study was to find the aptamers with high affinity and specificity binding to acute promyelocytic leukemia (APL) NB4 cell line. These aptamers targeted NB4 cells were selected from a random single‐stranded DNA (ssDNA) library of systematic evolution of ligands by exponential enrichment (CELL‐SELEX). The binding rate of FITC‐ssDNA library and NB4 cells was monitored using flow cytometry and fluorescence microscope. After cloned and sequenced, the structure, specificity, and affinity of these candidate aptamers were further analyzed. After a total of 19 rounds of selection, the ssDNA library was enriched and the BR (19.9%) of the 16th round was 12 times of the first round (1.6%). Three enriched aptamers were obtained from 21 positive clones of the 16th round, and the predicted secondary structures of these aptamers were mainly stem‐loop. The aptamer CX9 had the highest affinity, and the equilibrium dissociation constant (Kd) was 16.2 nM. The fluorescence intensity of CX9 binding to NB4 cells was stronger than HL60 and K562 cells under fluorescence microscopy. The study indicates that aptamer CX9 exhibits high affinity and specificity with NB4 cells and lay a foundation for the rapid diagnostic method to detect APL with fluorescence‐labeled aptamer.
Collapse
Affiliation(s)
- Xian-Hui Zhang
- Department of Laboratory Medicine, Children's Hospital of Shanxi Province, Taiyuan, China
| | - Wei Wang
- Department of Laboratory Medicine, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Xin Chen
- Department of Laboratory Medicine, The 908th Hospital of Chinese PLA Joint Logistics Support Force, Nanchang, China
| |
Collapse
|
39
|
Rath T, Neurath MF, Atreya R. Molecular Endoscopic Imaging in Cancer. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
40
|
Ning Y, Hu J, Lu F. Aptamers used for biosensors and targeted therapy. Biomed Pharmacother 2020; 132:110902. [PMID: 33096353 PMCID: PMC7574901 DOI: 10.1016/j.biopha.2020.110902] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 01/07/2023] Open
Abstract
Aptamers are single-stranded nucleic acid sequences that can bind to target molecules with high selectivity and affinity. Most aptamers are screened in vitro by a combinatorial biology technique called systematic evolution of ligands by exponential enrichment (SELEX). Since aptamers were discovered in the 1990s, they have attracted considerable attention and have been widely used in many fields owing to their unique advantages. In this review, we present an overview of the advancements made in aptamers used for biosensors and targeted therapy. For the former, we will discuss multiple aptamer-based biosensors with different principles detected by various signaling methods. For the latter, we will focus on aptamer-based targeted therapy using aptamers as both biotechnological tools for targeted drug delivery and as targeted therapeutic agents. Finally, challenges and new perspectives associated with these two regions were further discussed. We hope that this review will help researchers interested in aptamer-related biosensing and targeted therapy research.
Collapse
Affiliation(s)
- Yi Ning
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Jue Hu
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Fangguo Lu
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| |
Collapse
|
41
|
Mao Y, Gu J, Chang D, Wang L, Yao L, Ma Q, Luo Z, Qu H, Li Y, Zheng L. Evolution of a highly functional circular DNA aptamer in serum. Nucleic Acids Res 2020; 48:10680-10690. [PMID: 33021630 PMCID: PMC7641760 DOI: 10.1093/nar/gkaa800] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/26/2020] [Accepted: 09/15/2020] [Indexed: 01/05/2023] Open
Abstract
Circular DNA aptamers are powerful candidates for therapeutic applications given their dramatically enhanced biostability. Herein we report the first effort to evolve circular DNA aptamers that bind a human protein directly in serum, a complex biofluid. Targeting human thrombin, this strategy has led to the discovery of a circular aptamer, named CTBA4T-B1, that exhibits very high binding affinity (with a dissociation constant of 19 pM), excellent anticoagulation activity (with the half maximal inhibitory concentration of 90 pM) and high stability (with a half-life of 8 h) in human serum, highlighting the advantage of performing aptamer selection directly in the environment where the application is intended. CTBA4T-B1 is predicted to adopt a unique structural fold with a central two-tiered guanine quadruplex capped by two long stem–loops. This structural arrangement differs from all known thrombin binding linear DNA aptamers, demonstrating the added advantage of evolving aptamers from circular DNA libraries. The method described here permits the derivation of circular DNA aptamers directly in biological fluids and could potentially be adapted to generate other types of aptamers for therapeutic applications.
Collapse
Affiliation(s)
- Yu Mao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jimmy Gu
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton L8S4K1, Canada
| | - Dingran Chang
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton L8S4K1, Canada
| | - Lei Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Lili Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Qihui Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Zhaofeng Luo
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Hao Qu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton L8S4K1, Canada
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
42
|
An Aptamer for Broad Cancer Targeting and Therapy. Cancers (Basel) 2020; 12:cancers12113217. [PMID: 33142831 PMCID: PMC7694147 DOI: 10.3390/cancers12113217] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/24/2020] [Accepted: 10/29/2020] [Indexed: 01/09/2023] Open
Abstract
Simple Summary Recent efforts to improve chemotherapy’s antitumor effects have increasingly focused on targeted therapies, where the drug is modified with an agent able to specifically deliver it to the tumor while limiting its accumulation in normal tissue. Aptamers, comprised of short pieces of RNA or DNA, are ideal for this type of drug targeting due in part to their ease of chemical synthesis. The E3 aptamer was previously conjugated to highly toxic chemotherapeutics and shown to target and treat prostate tumors. Here, we show that E3 is not limited to prostate cancer targeting but appears to broadly target cancer cells. E3 highly toxic drug conjugates also efficiently kill a broad range of cancer types, and E3 targets tumors that closely model patient tumors. Thus, the E3 aptamer appears to be a general agent for specific delivery of chemotherapy to tumors and should improve antitumor treatment while reducing unwanted toxicities in other tissues. Abstract Recent advances in chemotherapy treatments are increasingly targeted therapies, with the drug conjugated to an antibody able to deliver it directly to the tumor. As high-affinity chemical ligands that are much smaller in size, aptamers are ideal for this type of drug targeting. Aptamer-highly toxic drug conjugates (ApTDCs) based on the E3 aptamer, selected on prostate cancer cells, target and inhibit prostate tumor growth in vivo. Here, we observe that E3 also broadly targets numerous other cancer types, apparently representing a universal aptamer for cancer targeting. Accordingly, ApTDCs formed by conjugation of E3 to the drugs monomethyl auristatin E (MMAE) or monomethyl auristatin F (MMAF) efficiently target and kill a range of different cancer cells. Notably, this targeting extends to both patient-derived explant (PDX) cancer cell lines and tumors, with the E3 MMAE and MMAF conjugates inhibiting PDX cell growth in vitro and with the E3 aptamer targeting PDX colorectal tumors in vivo.
Collapse
|
43
|
Lee W, Han K. Constructive Prediction of Potential RNA Aptamers for a Protein Target. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2020; 17:1476-1482. [PMID: 31689200 DOI: 10.1109/tcbb.2019.2951114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Aptamers are short single-stranded nucleic acids that bind to target molecules with high affinity and selectivity. Aptamers are generally identified in vitro by performing SELEX (systematic evolution of ligands by exponential enrichment). Complementing the SELEX process, several computational methods have been proposed in the search for aptamers. However, many of these methods cannot be applied for finding new aptamers, either because they are classifiers for determining whether an RNA and protein interact with each other, or because they are limited to a specific target only. Hence, we developed a new random forest (RF) model for finding potential RNA aptamers for a protein target. From an extensive analysis of protein-RNA complexes including RNA aptamers-protein complexes, we identified key features of interacting RNA and protein molecules, and structural constraints on RNA aptamers. The potential RNA aptamers predicted by our method reveal similar secondary and protein-binding structures as the actual RNA aptamers. The RF model showed a reliable performance in both cross validations and independent testing. The key features of interacting RNA and protein molecules and the structural constraints identified in our study were effective in finding potential aptamers for a protein target. Although preliminary, our results are promising, and we believe this approach will be useful in reducing time and money spent on in vitro experiments by substantially limiting the size of the initial pool of nucleic acid sequences.
Collapse
|
44
|
Doxorubicin-Conjugated Innovative 16-mer DNA Aptamer-Based Annexin A1 Targeted Anti-Cancer Drug Delivery. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:1074-1086. [PMID: 32854062 PMCID: PMC7452223 DOI: 10.1016/j.omtn.2020.07.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/17/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022]
Abstract
Aptamers are small, functional single-stranded DNA or RNA oligonucleotides that bind to their targets with high affinity and specificity. Experimentally, aptamers are selected by the systematic evolution of ligands by exponential enrichment (SELEX) method. Here, we have used rational drug designing and bioinformatics methods to design the aptamers, which involves three different steps. First, finding a probable aptamer-binding site, and second, designing the recognition and structural parts of the aptamers by generating a virtual library of sequences, selection of specific sequence via molecular docking, molecular dynamics (MD) simulation, binding energy calculations, and finally evaluating the experimental affinity. Following this strategy, a 16-mer DNA aptamer was designed for Annexin A1 (ANXA1). In a direct binding assay, DNA1 aptamer bound to the ANXA1 with dissociation constants value of 83 nM. Flow cytometry and fluorescence microscopy results also showed that DNA1 aptamer binds specifically to A549, HepG2, U-87 MG cancer cells that overexpress ANXA1 protein, but not to MCF7 and L-02, which are ANXA1 negative cells. We further developed a novel system by conjugating DNA1 aptamer with doxorubicin and its efficacy was studied by cellular uptake and cell viability assay. Also, anti-tumor analysis showed that conjugation of doxorubicin with aptamer significantly enhances targeted therapy against tumors while minimizing overall adverse effects on mice health.
Collapse
|
45
|
LIU Z, LIU T, TAO CA, CHEN X, HUANG J, WANG F, WANG J. Amplified Analysis of DNA or Proteins by TdT-generated DNAzyme. ANAL SCI 2020; 36:835-840. [DOI: 10.2116/analsci.19p387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Zhuoliang LIU
- College of Liberal Arts and Sciences, National University of Defense Technology
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University
| | - Tianxiong LIU
- College of Liberal Arts and Sciences, National University of Defense Technology
| | - Cheng-an TAO
- College of Liberal Arts and Sciences, National University of Defense Technology
| | - Xianzhe CHEN
- College of Liberal Arts and Sciences, National University of Defense Technology
| | - Jian HUANG
- College of Liberal Arts and Sciences, National University of Defense Technology
| | - Fang WANG
- College of Liberal Arts and Sciences, National University of Defense Technology
| | - Jianfang WANG
- College of Liberal Arts and Sciences, National University of Defense Technology
| |
Collapse
|
46
|
Wani TA, Alsaif N, Bakheit AH, Zargar S, Al-Mehizia AA, Khan AA. Interaction of an abiraterone with calf thymus DNA: Investigation with spectroscopic technique and modelling studies. Bioorg Chem 2020; 100:103957. [DOI: 10.1016/j.bioorg.2020.103957] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 01/11/2023]
|
47
|
Photocatalytically renewable peptide-based electrochemical impedance method for sensing lipopolysaccharide. Mikrochim Acta 2020; 187:349. [PMID: 32462256 DOI: 10.1007/s00604-020-04321-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/14/2020] [Indexed: 10/24/2022]
Abstract
A peptide (Li5-025)-modified gold nanoparticle (AuNP)/(titania (TiO2) + 5,10,15,20-tetrakis(4-aminophenyl)-21H,23H-porphine (TAPP))/glassy carbon electrode (GCE) was developed for lipopolysaccharide (LPS) determination. This electrode not only performs well in the electrochemical impedance determination of LPS in serum but can also be easily regenerated under light irradiation. Using Fe(CN)63-/4- as a redox probe, LPS recognition can be indicated by the significantly increased electron-transfer resistance (Ret) as a result of the coaction of the increased steric hindrance from the peptide-LPS complex and the electrostatic repulsion between LPS and Fe(CN)63-/4-. The impedimetric signal was acquired in the frequency range 0.1 Hz ~ 100 kHz with an initial voltage of 174 mV and an amplitude of 10 mV. The resistance changes (ΔRet) are linearly related to the LPS concentrations in a broad range (0.1 pg mL-1 ~ 100 ng mL-1) with a low detection limit (0.08 pg mL-1). Importantly, the electrode shows high selectivity to LPS from Escherichia coli O55:B5 compared to other bacterial sources and considerable anti-interference to 0.1% fetal calf serum, demonstrating its potential application in clinically relevant samples. Another highlight is that the AuNP/(TiO2 + TAPP)/GCE surface can be photocatalytically regenerated under light irradiation (50 mW cm-2, 300-2500 nm) without any obvious damage to the electrode microstructure. After simple peptide re-immobilization, the regenerated electrode demonstrates LPS response similar to the peptide less one, and the deviation is only 2.89% after 5-cycle reuse. Graphical abstract A peptide (Li5-025)-modified AuNP/(TiO2 + TAPP porphine)/GCE was proposed, which not only has excellent electrochemical analytical performances for LPS assay in serum but also can be reused after light irradiation and subsequent peptide re-immobilization.
Collapse
|
48
|
Xu X, Ji J, Chen P, Wu J, Jin Y, Zhang L, Du S. Salt-induced gold nanoparticles aggregation lights up fluorescence of DNA-silver nanoclusters to monitor dual cancer markers carcinoembryonic antigen and carbohydrate antigen 125. Anal Chim Acta 2020; 1125:41-49. [PMID: 32674779 DOI: 10.1016/j.aca.2020.05.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/30/2020] [Accepted: 05/09/2020] [Indexed: 11/24/2022]
Abstract
In clinical diagnosis of cancer, the monitoring of single tumor marker may result in many false and missed results, while simultaneous detection of multiple tumor markers should be more accuracy and effective. Here, we report a new strategy that salt-induced gold nanoparticles (AuNPs) aggregation lights up fluorescence of dual-color DNA-silver nanoclusters-aptamer (DNA-AgNCs-apta) for the simultaneous monitoring of carcinoembryonic antigen (CEA) and carbohydrate antigen 125 (CA125). The dual-color aptasensor system is composed of green-emitting DNA-AgNCs with CEA aptamer (gDNA1-AgNCs-apta1) and red-emitting DNA-AgNCs with CA125 aptamer (rDNA2-AgNCs-apta2) in the ratio of 1:1 in volume. Upon addition of AuNPs, gDNA1-AgNCs-apta1 and/or rDNA2-AgNCs-apta2 are flexibly adsorbed onto the surface of AuNPs by terminal aptamer(s), which prevents salt-induced AuNPs aggregation under high salt condition and results in fluorescence quenching based on surface plasmon enhanced energy transfer (SPEET). With the addition of CEA and/or CA125, the target(s) and corresponding aptamer(s) coordinate to form the complex, keeping DNA-AgNCs-apta(s) far away from the surface of AuNPs and making AuNPs aggregated in high salt medium. The AuNPs aggregation leads to the recovery of fluorescence signals of DNA-AgNCs-apta(s) due to weakened SPEET. Utilizing the fluorescence aptasensor system, the limit of detection of CEA and CA125 are as low as 7.5 pg·mL-1 and 0.015 U·mL-1, respectively. The proposed method can be applied to the selective and simultaneous determination of CEA and CA125 in human serum.
Collapse
Affiliation(s)
- Xin Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jiangrong Ji
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Panpan Chen
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jiafeng Wu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yang Jin
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Liying Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Shuhu Du
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
49
|
Liu G, Petrosko SH, Zheng Z, Mirkin CA. Evolution of Dip-Pen Nanolithography (DPN): From Molecular Patterning to Materials Discovery. Chem Rev 2020; 120:6009-6047. [DOI: 10.1021/acs.chemrev.9b00725] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Guoqiang Liu
- Laboratory for Advanced Interfacial Materials and Devices, Research Centre for Smart Wearable Technology, Institute of Textile and Clothing, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Sarah Hurst Petrosko
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Zijian Zheng
- Laboratory for Advanced Interfacial Materials and Devices, Research Centre for Smart Wearable Technology, Institute of Textile and Clothing, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Chad A. Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
50
|
Manochehry S, Gu J, McConnell EM, Salena BJ, Li Y. In Vitro Selection of New DNA Aptamers for Human Vascular Endothelial Growth Factor 165. Chembiochem 2020; 21:2029-2036. [PMID: 32180322 DOI: 10.1002/cbic.202000024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/26/2020] [Indexed: 11/06/2022]
Abstract
Two DNA aptamers that bind the heparin-binding domain (HBD) of the human vascular endothelial growth factor 165 (VEGF-165) have been previously reported. Although VEGF-165 is a homodimeric protein and the two aptamers have different sequences and secondary structures, the aptamers appear to occupy the same binding site and cannot form a 2 : 1 aptamer/protein complex, thus making them unsuitable for creating a higher-affinity dimeric DNA aptamer. This has motivated us to conduct a new in vitro selection experiment to search for new VEGF-165-binding DNA aptamers with different properties. We undertook a multistream selection strategy in which the concentration of VEGF-165 was varied significantly. We carried out 11 rounds of selection, and next-generation sequencing was conducted for every round in each stream. From comprehensive sequence analysis, we identified four classes of DNA aptamers, of which two were reported before, but two are new DNA aptamers. One of the new aptamers exhibits a unique property that has never been observed before: it is capable of forming the 2 : 1 aptamer/protein complex with VEGF-165. This work has expanded the repertoire of VEGF-165-binding DNA aptamers and creates a possibility to engineer a higher affinity homodimeric aptamer for VEGF-165.
Collapse
Affiliation(s)
- Sepehr Manochehry
- M.G. DeGroote Institute for Infectious Disease Research Department of Biochemistry and Biomedical Sciences DeGroote School of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4 K1, Canada
| | - Jimmy Gu
- M.G. DeGroote Institute for Infectious Disease Research Department of Biochemistry and Biomedical Sciences DeGroote School of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4 K1, Canada
| | - Erin M McConnell
- M.G. DeGroote Institute for Infectious Disease Research Department of Biochemistry and Biomedical Sciences DeGroote School of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4 K1, Canada
| | - Bruno J Salena
- Department of Medicine DeGroote School of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4 K1, Canada
| | - Yingfu Li
- M.G. DeGroote Institute for Infectious Disease Research Department of Biochemistry and Biomedical Sciences DeGroote School of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4 K1, Canada
| |
Collapse
|