1
|
Tan L, Scott HL, Smith MD, Pingali SV, Cheng X, O’Neill HM, Katsaras J, Smith JC, Elkins JG, Davison BH, Nickels JD. Toxic Effects of Butanol in the Plane of the Cell Membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:1281-1296. [PMID: 39772768 PMCID: PMC11756534 DOI: 10.1021/acs.langmuir.4c03677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025]
Abstract
Solvent toxicity limits n-butanol fermentation titer, increasing the cost and energy consumption for subsequent separation processes and making biobased production more expensive and energy-intensive than petrochemical approaches. Amphiphilic solvents such as n-butanol partition into the cell membrane of fermenting microorganisms, thinning the transverse structure, and eventually causing a loss of membrane potential and cell death. In this work, we demonstrate the deleterious effects of n-butanol partitioning upon the lateral dimension of the membrane structure, called membrane domains or lipid rafts. Lipid rafts are regions of the cell membrane enriched with certain lipids, providing a reservoir of high melting temperature lipids and a platform for membrane protein partitioning and oligomerization. Neutron scattering experiments and molecular dynamics simulations revealed that n-butanol increased the size of the lipid domains in a model membrane system. The data showed that n-butanol partitions more into the disordered lipid regions than into the raft-like phase, leading to a differential thinning of these coexisting phases in the plane of the membrane and increasing the hydrophobic mismatch. The resulting increase in line tension at the interface favors domain coalescence to minimize the ratio of the interfacial length to domain area. A detailed computational investigation of the lipid domain interface identifies the boundary as a site of membrane disorder and thinning due to an accumulation of n-butanol. Solvent-induced changes to domain morphology and membrane instability at the domain interface are unrecognized modes of solvent-induced stress to fermenting microbes, representing targets for new solvent tolerance strategies to increase the n-butanol titer.
Collapse
Affiliation(s)
- Luoxi Tan
- Department
of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45220, United States
| | - Haden L. Scott
- Neutron
Scattering Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Micholas Dean Smith
- Department
of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Center
for Molecular Biophysics, University of Tennessee/Oak Ridge National
Laboratory, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Sai Venkatesh Pingali
- Neutron
Scattering Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Xiaolin Cheng
- Department
of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Hugh M. O’Neill
- Neutron
Scattering Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37830, United States
| | - John Katsaras
- Neutron
Scattering Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Jeremy C. Smith
- Department
of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Center
for Molecular Biophysics, University of Tennessee/Oak Ridge National
Laboratory, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - James G. Elkins
- Biosciences
Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Brian H. Davison
- Biosciences
Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Jonathan D. Nickels
- Department
of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45220, United States
| |
Collapse
|
2
|
Garg A, Debnath A. Light Harvesting Complex II Resists Non-bilayer Lipid-Induced Polymorphism in Plant Thylakoid Membranes via Lipid Redistribution. J Phys Chem Lett 2025; 16:95-102. [PMID: 39700347 DOI: 10.1021/acs.jpclett.4c03300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
The plant thylakoid membrane hosting the light-harvesting complex (LHCII) is the site of oxygenic photosynthesis. Contrary to the earlier consensus of a protein-driven single lamellar phase of the thylakoid, despite containing 40% non-bilayer-forming lipids, recent experiments confirm the polymorphic state of the functional thylakoid. What, then, is the origin of this polymorphism and what factors control it? The current Letter addresses the question using a total of 617.8 μs long coarse-grained simulations of thylakoids with and without LHCII and varying concentrations of non-bilayer lipids using Martini-2.2 and -3.0 at 323 K. The LHCII redistributes the non-bilayer lipids into its annular region, increases the bending modulus and the stalk formation free energy, reduces the nonzero mean curvature propensity, and resists the polymorphism these lipids promote. The thermodynamic trade-off between non-bilayer lipids and LHCII dictates the degree of nanoscopic curvature leading to the polymorphism crucial for non-photochemical quenching under excess light conditions.
Collapse
Affiliation(s)
- Avinash Garg
- Department of Chemistry, IIT Jodhpur, Jodhpur, Rajasthan 342037, India
| | - Ananya Debnath
- Department of Chemistry, IIT Jodhpur, Jodhpur, Rajasthan 342037, India
| |
Collapse
|
3
|
Sahrmann P, Voth GA. Enhancing the Assembly Properties of Bottom-Up Coarse-Grained Phospholipids. J Chem Theory Comput 2024; 20:10235-10246. [PMID: 39535391 PMCID: PMC11604101 DOI: 10.1021/acs.jctc.4c00905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
A plethora of key biological events occur at the cellular membrane where the large spatiotemporal scales necessitate dimensionality reduction or coarse-graining approaches over conventional all-atom molecular dynamics simulation. Constructing coarse-grained descriptions of membranes systematically from statistical mechanical principles has largely remained challenging due to the necessity of capturing amphipathic self-assembling behavior in coarse-grained models. We show that bottom-up coarse-grained lipid models can possess metastable morphological behavior and that this potential metastability has ramifications for accurate development and training. We in turn develop a training algorithm which evades metastability issues by linking model training to self-assembling behavior, and demonstrate its robustness via construction of solvent-free coarse-grained models of various phospholipid membranes, including lipid species such as phosphatidylcholines, phosphatidylserines, sphingolipids, and cholesterol. The resulting coarse-grained lipid models are orders of magnitude faster than their atomistic counterparts while retaining structural fidelity and constitute a promising direction for the development of coarse-grained models of realistic cell membranes.
Collapse
Affiliation(s)
- Patrick
G. Sahrmann
- Department of Chemistry,
Chicago Center for Theoretical Chemistry, James Franck Institute,
and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Gregory A. Voth
- Department of Chemistry,
Chicago Center for Theoretical Chemistry, James Franck Institute,
and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
4
|
Choe S. Insights into Translocation of Arginine-Rich Cell-Penetrating Peptides across a Model Membrane. J Phys Chem B 2024; 128:10894-10903. [PMID: 39445646 DOI: 10.1021/acs.jpcb.4c04266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
It is well-known that membrane deformation and water pores contribute to the spontaneous translocation of arginine-rich cell-penetrating peptides (CPPs). We confirm this through the observation of the spontaneous translocation of single R9 (nona-arginine) and Tat (48-60) peptides across a model membrane using the weighted ensemble (WE) method within all-atom molecular dynamics (MD) simulations. Furthermore, we demonstrate that membrane deformation and the presence of a water pore reduce the effective charge of the CPP and the bending rigidity of the model membrane during translocation. We find that R9 disturbs the model membrane more than Tat (48-60), leading to more efficient translocation of R9 across the model membrane.
Collapse
Affiliation(s)
- Seungho Choe
- Department of Energy Science & Engineering, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Korea
- Energy Science & Engineering Research Center, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Korea
| |
Collapse
|
5
|
Poruthoor AJ, Stallone JJ, Miaro M, Sharma A, Grossfield A. System size effects on the free energy landscapes from molecular dynamics of phase-separating bilayers. J Chem Phys 2024; 161:145101. [PMID: 39382132 PMCID: PMC11829248 DOI: 10.1063/5.0225753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024] Open
Abstract
The "lipid raft" hypothesis proposes that cell membranes contain distinct domains of varying lipid compositions, where "rafts" of ordered lipids and cholesterol coexist with disordered lipid regions. Experimental and theoretical phase diagrams of model membranes have revealed multiple coexisting phases. Molecular dynamics (MD) simulations can also capture spontaneous phase separation of bilayers. However, these methods merely determine the sign of the free energy change upon phase separation-whether or not it is favorable-but not the amplitude. Recently, we developed a workflow to compute the free energy of phase separation from MD simulations using the weighted ensemble method. However, while theoretical treatments generally focus on infinite systems and experimental measurements on mesoscopic to macroscopic systems, MD simulations are comparatively small. Therefore, if we are to put the results of these calculations into the appropriate context, we need to understand the effects the finite size of the simulation has on the computed free energy landscapes. In this study, we investigate this phenomenon by computing free energy profiles for a model phase-separating system as a function of system size, ranging from 324 to 10 110 lipids. The results suggest that, within the limits of statistical uncertainty, bulk-like behavior emerges once the systems contain roughly 4000 lipids.
Collapse
Affiliation(s)
- Ashlin J. Poruthoor
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Jack J. Stallone
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Megan Miaro
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Akshara Sharma
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Alan Grossfield
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA
| |
Collapse
|
6
|
Allolio C, Fábián B, Dostalík M. OrganL: Dynamic triangulation of biomembranes using curved elements. Biophys J 2024; 123:1553-1562. [PMID: 38704638 PMCID: PMC11213972 DOI: 10.1016/j.bpj.2024.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/25/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024] Open
Abstract
We describe a method for simulating biomembranes of arbitrary shape. In contrast to other dynamically triangulated surface (DTS) algorithms, our method provides a rich, quasi-tangent-continuous, yet local description of the surface. We use curved Nagata triangles, which we generalize to cubic order to achieve the requisite flexibility. The resulting interpolation can be constructed locally without iterations, at the cost of having only approximate tangent continuity away from the vertices. This allows us to provide a parallelized and fine-tuned Monte Carlo implementation. As a first example of the potential benefits of the enhanced description, our method supports inhomogeneous lipid distributions as well as lipid mixing. It also supports restraints and constraints of various types and is constructed to be as easily extensible as possible. We validate the approach by testing its numerical accuracy, followed by reproducing the known Helfrich solutions for shapes with rotational symmetry. Finally, we present some example applications, including curvature-driven demixing and stylized effects of proteins. Input files for these examples, as well as the implementation itself, are freely available for researchers under the name OrganL (https://zenodo.org/doi/10.5281/zenodo.11204709).
Collapse
Affiliation(s)
- Christoph Allolio
- Charles University, Faculty of Mathematics and Physics, Mathematical Institute, Prague, Czech Republic.
| | - Balázs Fábián
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Mark Dostalík
- Charles University, Faculty of Mathematics and Physics, Mathematical Institute, Prague, Czech Republic
| |
Collapse
|
7
|
Pöhnl M, Trollmann MFW, Böckmann RA. Nonuniversal impact of cholesterol on membranes mobility, curvature sensing and elasticity. Nat Commun 2023; 14:8038. [PMID: 38081812 PMCID: PMC10713574 DOI: 10.1038/s41467-023-43892-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Biological membranes, composed mainly of phospholipids and cholesterol, play a vital role as cellular barriers. They undergo localized reshaping in response to environmental cues and protein interactions, with the energetics of deformations crucial for exerting biological functions. This study investigates the non-universal role of cholesterol on the structure and elasticity of saturated and unsaturated lipid membranes. Our study uncovers a highly cooperative relationship between thermal membrane bending and local cholesterol redistribution, with cholesterol showing a strong preference for the compressed membrane leaflet. Remarkably, in unsaturated membranes, increased cholesterol mobility enhances cooperativity, resulting in membrane softening despite membrane thickening and lipid compression caused by cholesterol. These findings elucidate the intricate interplay between thermodynamic forces and local molecular interactions that govern collective properties of membranes.
Collapse
Affiliation(s)
- Matthias Pöhnl
- Computational Biology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Marius F W Trollmann
- Computational Biology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Erlangen National High Perfomance Computing Center (NHR@FAU), Erlangen, Germany
| | - Rainer A Böckmann
- Computational Biology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
- Erlangen National High Perfomance Computing Center (NHR@FAU), Erlangen, Germany.
| |
Collapse
|
8
|
Konar S, Arif H, Allolio C. Mitochondrial membrane model: Lipids, elastic properties, and the changing curvature of cardiolipin. Biophys J 2023; 122:4274-4287. [PMID: 37798880 PMCID: PMC10645570 DOI: 10.1016/j.bpj.2023.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/12/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023] Open
Abstract
Mammalian and Drosophila melanogaster model mitochondrial membrane compositions are constructed from experimental data. Simplified compositions for inner and outer mitochondrial membranes are provided, including an asymmetric inner mitochondrial membrane. We performed atomistic molecular dynamics simulations of these membranes and computed their material properties. When comparing these properties to those obtained by extrapolation from their constituting lipids, we find good overall agreement. Finally, we analyzed the curvature effect of cardiolipin, considering ion concentration effects, oxidation, and pH. We draw the conclusion that cardiolipin-negative curvature is most likely due to counterion effects, such as cation adsorption, in particular of H3O+. This oft-neglected effect might account for the puzzling behavior of this lipid.
Collapse
Affiliation(s)
- Sukanya Konar
- Faculty of Mathematics and Physics, Mathematical Institute, Charles University, Prague, Czech Republic
| | - Hina Arif
- Faculty of Mathematics and Physics, Mathematical Institute, Charles University, Prague, Czech Republic
| | - Christoph Allolio
- Faculty of Mathematics and Physics, Mathematical Institute, Charles University, Prague, Czech Republic.
| |
Collapse
|
9
|
Zhu X, Huang C, Li N, Ma X, Li Z, Fan J. Distinct roles of graphene and graphene oxide nanosheets in regulating phospholipid flip-flop. J Colloid Interface Sci 2023; 637:112-122. [PMID: 36689797 DOI: 10.1016/j.jcis.2023.01.080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 12/30/2022] [Accepted: 01/15/2023] [Indexed: 01/19/2023]
Abstract
Two-dimensional (2D) nanomaterials, such as graphene nanosheets (GNs) and graphene oxide nanosheets (GOs), could adhere onto or insert into a biological membrane, leading to a change in membrane properties and biological activities. Consequently, GN and GO become potential candidates for mediating interleaflet phospholipid transfer. In this work, molecular dynamics (MD) simulations were employed to investigate the effects of GN and GO on lipid flip-flop behavior and the underlying molecular mechanisms. Of great interest is that GN and GO work in opposite directions. The inserted GN can induce the formation of an ordered nanodomain, which dramatically elevates the free energy barrier of flipping phospholipids from one leaflet to the other, thus leading to a decreased lipid flip-flop rate. In contrast, the embedded GO can catalyze the transport of phospholipids between membrane leaflets by facilitating the formation of water pores. These results suggest that GN may work as an inhibitor of the interleaflet lipid translocation, while GO may play the role of scramblases. These findings are expected to expand promising biomedical applications of 2D nanomaterials.
Collapse
Affiliation(s)
- Xiaohong Zhu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Changxiong Huang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Na Li
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Xinyao Ma
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhen Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Jun Fan
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China; Center for Advanced Nuclear Safety and Sustainable Development, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
10
|
Qi Z, Wan M, Zhang J, Li Z. Influence of Cholesterol on the Membrane Binding and Conformation of α-Synuclein. J Phys Chem B 2023; 127:1956-1964. [PMID: 36812386 DOI: 10.1021/acs.jpcb.2c08077] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The α-Synuclein (α-Syn) plays an important role in the pathology of Parkinson's disease (PD), and its oligomers and fibrils are toxic to the nervous system. As organisms age, the cholesterol content in biological membranes increases, which is a potential cause of PD. Cholesterol may affect the membrane binding of α-Syn and its abnormal aggregation, but the mechanism remains unclear. Here, we present our molecular dynamics simulation studies on the interaction between α-Syn and lipid membranes, with or without cholesterol. It is demonstrated that cholesterol provides additional hydrogen bond interaction with α-Syn; however, the coulomb interaction and hydrophobic interaction between α-Syn and lipid membranes could be weakened by cholesterol. In addition, cholesterol leads to the shrinking of lipid packing defects and the decrease of lipid fluidity, thereby shortening the membrane binding region of α-Syn. Under these multifaceted effects of cholesterol, membrane-bound α-Syn shows signs of forming a β-sheet structure, which may further induce the formation of abnormal α-Syn fibrils. These results provide important information for the understanding of membrane binding of α-Syn, and they are expected to promote the bridging between cholesterol and the pathological aggregation of α-Syn.
Collapse
Affiliation(s)
- Ziqiang Qi
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Menglin Wan
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Jun Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Zhen Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
11
|
Kalutskii MA, Galimzyanov TR, Pinigin KV. Determination of elastic parameters of lipid membranes from simulation under varied external pressure. Phys Rev E 2023; 107:024414. [PMID: 36932616 DOI: 10.1103/physreve.107.024414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Many cellular processes such as endocytosis, exocytosis, and vesicle trafficking involve membrane deformations, which can be analyzed in the framework of the elastic theories of lipid membranes. These models operate with phenomenological elastic parameters. A connection between these parameters and the internal structure of lipid membranes can be provided by three-dimensional (3D) elastic theories. Considering a membrane as a 3D layer, Campelo et al. [F. Campelo et al., Adv. Colloid Interface Sci. 208, 25 (2014)10.1016/j.cis.2014.01.018] developed a theoretical basis for the calculation of elastic parameters. In this work we generalize and improve this approach by considering a more general condition of global incompressibility instead of local incompressibility. Crucially, we find an important correction to the theory of Campelo et al., which if not taken into account leads to a significant miscalculation of elastic parameters. With the total volume conservation taken into account, we derive an expression for the local Poisson's ratio, which determines how the local volume changes upon stretching and permits a more precise determination of elastic parameters. Also, we substantially simplify the procedure by calculating the derivatives of the moments of the local tension with respect to stretching instead of calculating the local stretching modulus. We obtain a relation between the Gaussian curvature modulus as a function of stretching and the bending modulus, showing that these two elastic parameters are not independent, as was previously assumed. The proposed algorithm is applied to membranes composed of pure dipalmitoylphosphatidylcholine (DPPC), dioleoylphosphatidylcholine (DOPC), and their mixture. The following elastic parameters of these systems are obtained: the monolayer bending and stretching moduli, spontaneous curvature, neutral surface position, and local Poisson's ratio. It is shown that the bending modulus of the DPPC/DOPC mixture follows a more complex trend than predicted by the classical Reuss averaging, which is often employed in theoretical frameworks.
Collapse
Affiliation(s)
- Maksim A Kalutskii
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, Moscow 119071, Russia
- Department of Theoretical Physics and Quantum Technologies, National University of Science and Technology "MISiS," 4 Leninskiy Prospekt, 119049 Moscow, Russia
| | - Timur R Galimzyanov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, Moscow 119071, Russia
- Department of Theoretical Physics and Quantum Technologies, National University of Science and Technology "MISiS," 4 Leninskiy Prospekt, 119049 Moscow, Russia
| | - Konstantin V Pinigin
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, Moscow 119071, Russia
| |
Collapse
|
12
|
Schachter I, Harries D. Capturing Lipid Nanodisc Shape and Properties Using a Continuum Elastic Theory. J Chem Theory Comput 2023; 19:1360-1369. [PMID: 36724052 PMCID: PMC9979604 DOI: 10.1021/acs.jctc.2c01054] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Lipid nanodiscs are nanometric bilayer patches enveloped by confining structures, commonly composed of membrane scaffolding proteins (MSPs). To resolve the interplay between MSP geometry, lipid confinement, and membrane material properties on the nanodisc shape, we apply a continuum elastic theory accounting for lipid bending, tilting, and area deformations. The equilibrium nanodisc shape is then determined by minimizing the elastic free energy functional. Analytic expressions derived under simplifying assumptions demonstrate that the nanodisc shape is sensitive to its size, lipid density, and the lipid tilt and thickness imposed at the contact with the MSP. Under matching physical parameters, these expressions quantitatively reproduce the shape of nanodiscs seen in molecular dynamics simulations, but only if lipid tilt is explicitly considered. We further demonstrate how the bending rigidity can be extracted from the membrane shape profile by fitting the numerically minimized full elastic functional to the membrane shape found in simulations. This fitting procedure faithfully informs on the bending rigidity of nanodiscs larger than ca. 5 nm in radius. The fitted profiles accurately reproduce the increase in bending modulus found using real-space fluctuation analysis of simulated nanodiscs and, for large nanodiscs, also accurately resolve its spatial variations. Our study shows how deformations in lipid patches confined in nanodiscs can be well described by a continuum elastic theory and how this fit can be used to determine local material properties from shape analysis of nanodiscs in simulations. This methodology could potentially allow direct determination of lipid properties from experiments, for example cryo-electron microscopy images of lipid nanodiscs, thereby allowing to guide the development of future nanodisc formulations with desired properties.
Collapse
Affiliation(s)
- Itay Schachter
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 542/2, CZ-16000Prague 6, Czech Republic,Institute
of Chemistry, the Fritz Haber Research Center, and the Harvey M. Kruger
Center for Nanoscience & Nanotechnology, The Hebrew University, Jerusalem9190401, Israel
| | - Daniel Harries
- Institute
of Chemistry, the Fritz Haber Research Center, and the Harvey M. Kruger
Center for Nanoscience & Nanotechnology, The Hebrew University, Jerusalem9190401, Israel,E-mail:
| |
Collapse
|
13
|
Doole FT, Gupta S, Kumarage T, Ashkar R, Brown MF. Biophysics of Membrane Stiffening by Cholesterol and Phosphatidylinositol 4,5-bisphosphate (PIP2). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:61-85. [PMID: 36988877 DOI: 10.1007/978-3-031-21547-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Cell membranes regulate a wide range of phenomena that are implicated in key cellular functions. Cholesterol, a critical component of eukaryotic cell membranes, is responsible for cellular organization, membrane elasticity, and other critical physicochemical parameters. Besides cholesterol, other lipid components such as phosphatidylinositol 4,5-bisphosphate (PIP2) are found in minor concentrations in cell membranes yet can also play a major regulatory role in various cell functions. In this chapter, we describe how solid-state deuterium nuclear magnetic resonance (2H NMR) spectroscopy together with neutron spin-echo (NSE) spectroscopy can inform synergetic changes to lipid molecular packing due to cholesterol and PIP2 that modulate the bending rigidity of lipid membranes. Fundamental structure-property relations of molecular self-assembly are illuminated and point toward a length and time-scale dependence of cell membrane mechanics, with significant implications for biological activity and membrane lipid-protein interactions.
Collapse
Affiliation(s)
- Fathima T Doole
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Sudipta Gupta
- Department of Physics and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, USA
| | - Teshani Kumarage
- Department of Physics and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, USA
| | - Rana Ashkar
- Department of Physics and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, USA.
| | - Michael F Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA.
- Department of Physics, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
14
|
Pinigin KV. Determination of Elastic Parameters of Lipid Membranes with Molecular Dynamics: A Review of Approaches and Theoretical Aspects. MEMBRANES 2022; 12:membranes12111149. [PMID: 36422141 PMCID: PMC9692374 DOI: 10.3390/membranes12111149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 05/12/2023]
Abstract
Lipid membranes are abundant in living organisms, where they constitute a surrounding shell for cells and their organelles. There are many circumstances in which the deformations of lipid membranes are involved in living cells: fusion and fission, membrane-mediated interaction between membrane inclusions, lipid-protein interaction, formation of pores, etc. In all of these cases, elastic parameters of lipid membranes are important for the description of membrane deformations, as these parameters determine energy barriers and characteristic times of membrane-involved phenomena. Since the development of molecular dynamics (MD), a variety of in silico methods have been proposed for the determination of elastic parameters of simulated lipid membranes. These MD methods allow for the consideration of details unattainable in experimental techniques and represent a distinct scientific field, which is rapidly developing. This work provides a review of these MD approaches with a focus on theoretical aspects. Two main challenges are identified: (i) the ambiguity in the transition from the continuum description of elastic theories to the discrete representation of MD simulations, and (ii) the determination of intrinsic elastic parameters of lipid mixtures, which is complicated due to the composition-curvature coupling effect.
Collapse
Affiliation(s)
- Konstantin V Pinigin
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia
| |
Collapse
|
15
|
Doole FT, Kumarage T, Ashkar R, Brown MF. Cholesterol Stiffening of Lipid Membranes. J Membr Biol 2022; 255:385-405. [PMID: 36219221 PMCID: PMC9552730 DOI: 10.1007/s00232-022-00263-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022]
Abstract
Biomembrane order, dynamics, and other essential physicochemical parameters are controlled by cholesterol, a major component of mammalian cell membranes. Although cholesterol is well known to exhibit a condensing effect on fluid lipid membranes, the extent of stiffening that occurs with different degrees of lipid acyl chain unsaturation remains an enigma. In this review, we show that cholesterol locally increases the bending rigidity of both unsaturated and saturated lipid membranes, suggesting there may be a length-scale dependence of the bending modulus. We review our published data that address the origin of the mechanical effects of cholesterol on unsaturated and polyunsaturated lipid membranes and their role in biomembrane functions. Through a combination of solid-state deuterium NMR spectroscopy and neutron spin-echo spectroscopy, we show that changes in molecular packing cause the universal effects of cholesterol on the membrane bending rigidity. Our findings have broad implications for the role of cholesterol in lipid–protein interactions as well as raft-like mixtures, drug delivery applications, and the effects of antimicrobial peptides on lipid membranes.
Collapse
Affiliation(s)
- Fathima T Doole
- Deaprtment of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85712, USA
| | - Teshani Kumarage
- Department of Physics, Virginia Tech, Blacksburg, VA, 24061, USA.,Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Rana Ashkar
- Department of Physics, Virginia Tech, Blacksburg, VA, 24061, USA. .,Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Michael F Brown
- Deaprtment of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85712, USA. .,Department of Physics, University of Arizona, Tucson, AZ, 85712, USA.
| |
Collapse
|
16
|
Yang R, Wu S, Wang S, Rubino G, Nickels JD, Cheng X. Refinement of SARS-CoV-2 envelope protein structure in a native-like environment by molecular dynamics simulations. Front Mol Biosci 2022; 9:1027223. [PMID: 36299297 PMCID: PMC9589232 DOI: 10.3389/fmolb.2022.1027223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
COVID-19 has become an unprecedented threat to human health. The SARS-CoV-2 envelope (E) protein plays a critical role in the viral maturation process and pathogenesis. Despite intensive investigation, its structure in physiological conditions remains mysterious: no high-resolution full-length structure is available and only an NMR structure of the transmembrane (TM) region has been determined. Here, we present a refined E protein structure, using molecular dynamics (MD) simulations to investigate its structure and dynamics in a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer system. Our initial homology model based upon the SARS-CoV E protein structure is shown to be unstable in the lipid bilayer, and the H3 helices tend to move away from the membrane center to the membrane-water interface. A more stable model was developed by replacing all H3 helices with the fully equilibrated H3 structure sampled in the MD simulations. This refined model exhibited more favorable contacts with lipids and water than the original homology model and induced local membrane curvature, decreasing local lipid order. Interestingly, the pore radius profiles showed that the channel in both homology and refined models remained in a closed state throughout the simulations. We also demonstrated the utility of this structure to develop anti-SARS-CoV-2 drugs by docking a library of FDA-approved, investigational, and experimental drugs to the refined E protein structure, identifying 20 potential channel blockers. This highlights the power of MD simulations to refine low-resolution structures of membrane proteins in a native-like membrane environment, shedding light on the structural features of the E protein and providing a platform for the development of novel antiviral treatments.
Collapse
Affiliation(s)
- Rui Yang
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Sijin Wu
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, United States
- *Correspondence: Sijin Wu, ; Jonathan D. Nickels, ; Xiaolin Cheng,
| | - Shen Wang
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Grace Rubino
- Department of Chemical and Biomolecular Engineering, College of Engineering, The Ohio State University, Columbus, OH, United States
| | - Jonathan D. Nickels
- Department of Chemical and Environmental Engineering, The University of Cincinnati, Cincinnati, OH, United States
- *Correspondence: Sijin Wu, ; Jonathan D. Nickels, ; Xiaolin Cheng,
| | - Xiaolin Cheng
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, United States
- Translational Data Analytics Institute (TDAI), The Ohio State University, Columbus, OH, United States
- *Correspondence: Sijin Wu, ; Jonathan D. Nickels, ; Xiaolin Cheng,
| |
Collapse
|
17
|
Nguyen HL, Linh HQ, Krupa P, La Penna G, Li MS. Amyloid β Dodecamer Disrupts the Neuronal Membrane More Strongly than the Mature Fibril: Understanding the Role of Oligomers in Neurotoxicity. J Phys Chem B 2022; 126:3659-3672. [PMID: 35580354 PMCID: PMC9150093 DOI: 10.1021/acs.jpcb.2c01769] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
The amyloid cascade
hypothesis states that senile plaques, composed
of amyloid β (Aβ) fibrils, play a key role in Alzheimer’s
disease (AD). However, recent experiments have shown that Aβ
oligomers are more toxic to neurons than highly ordered fibrils. The
molecular mechanism underlying this observation remains largely unknown.
One of the possible scenarios for neurotoxicity is that Aβ peptides
create pores in the lipid membrane that allow Ca2+ ions
to enter cells, resulting in a signal of cell apoptosis. Hence, one
might think that oligomers are more toxic due to their higher ability
to create ion channels than fibrils. In this work, we study the effect
of Aβ42 dodecamer and fibrils on a neuronal membrane, which
is similar to that observed in AD patients, using all-atom molecular
dynamics simulations. Due to short simulation times, we cannot observe
the formation of pores, but useful insight on the early events of
this process has been obtained. Namely, we showed that dodecamer distorts
the lipid membrane to a greater extent than fibrils, which may indicate
that ion channels can be more easily formed in the presence of oligomers.
Based on this result, we anticipate that oligomers are more toxic
than mature fibrils, as observed experimentally. Moreover, the Aβ–membrane
interaction was found to be governed by the repulsive electrostatic
interaction between Aβ and the ganglioside GM1 lipid. We calculated
the bending and compressibility modulus of the membrane in the absence
of Aβ and obtained good agreement with the experiment. We predict
that the dodecamer will increase the compressibility modulus but has
little effect on the bending modulus. Due to the weak interaction
with the membrane, fibrils insignificantly change the membrane elastic
properties.
Collapse
Affiliation(s)
- Hoang Linh Nguyen
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 729110, Vietnam.,Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 740500, Vietnam.,Vietnam National University, Ho Chi Minh City 71300, Vietnam
| | - Huynh Quang Linh
- Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 740500, Vietnam.,Vietnam National University, Ho Chi Minh City 71300, Vietnam
| | - Pawel Krupa
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, Warsaw 02-668, Poland
| | - Giovanni La Penna
- National Research Council of Italy (CNR), Institute for Chemistry of Organometallic Compounds (ICCOM), Florence 50019, Italy.,National Institute for Nuclear Physics (INFN), Section of Roma-Tor Vergata, Rome 00815, Italy
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, Warsaw 02-668, Poland
| |
Collapse
|
18
|
Zizzi EA, Cavaglià M, Tuszynski JA, Deriu MA. Alteration of lipid bilayer mechanics by volatile anesthetics: Insights from μs-long molecular dynamics simulations. iScience 2022; 25:103946. [PMID: 35265816 PMCID: PMC8898909 DOI: 10.1016/j.isci.2022.103946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/25/2022] [Accepted: 02/15/2022] [Indexed: 11/24/2022] Open
Abstract
Very few drugs in clinical practice feature the chemical diversity, narrow therapeutic window, unique route of administration, and reversible cognitive effects of volatile anesthetics. The correlation between their hydrophobicity and their potency and the increasing amount of evidence suggesting that anesthetics exert their action on transmembrane proteins, justifies the investigation of their effects on phospholipid bilayers at the molecular level, given the strong functional and structural link between transmembrane proteins and the surrounding lipid matrix. Molecular dynamics simulations of a model lipid bilayer in the presence of ethylene, desflurane, methoxyflurane, and the nonimmobilizer 1,2-dichlorohexafluorocyclobutane (also called F6 or 2N) at different concentrations highlight the structural consequences of VA partitioning in the lipid phase, with a decrease of lipid order and bilayer thickness, an increase in overall lipid lateral mobility and area-per-lipid, and a marked reduction in the mechanical stiffness of the membrane, that strongly correlates with the compounds' hydrophobicity.
Collapse
Affiliation(s)
- Eric A. Zizzi
- PolitoMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy
| | - Marco Cavaglià
- PolitoMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy
| | - Jack A. Tuszynski
- PolitoMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy
- Department of Physics, University of Alberta, Edmonton, AB, Canada
| | - Marco A. Deriu
- PolitoMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy
| |
Collapse
|
19
|
Nguyen HL, Man VH, Li MS, Derreumaux P, Wang J, Nguyen PH. Elastic moduli of normal and cancer cell membranes revealed by molecular dynamics simulations. Phys Chem Chem Phys 2022; 24:6225-6237. [PMID: 35229839 DOI: 10.1039/d1cp04836h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Recent studies indicate that there are mechanical differences between normal cells and cancer cells. Because the cell membrane takes part in a variety of vital processes, we test the hypothesis of whether or not two fundamental alterations in the cell membrane, i.e., the overexpression of phosphatidylserine lipids in the outer leaflet and a reduction in cholesterol concentration, could cause the softening in cancer cells. Adopting ten models of normal and cancer cell membranes, we carry out 1 μs all-atom molecular dynamics simulations to compare the structural properties and elasticity properties of two membrane types. We find that the overexpression of the phosphatidylserine lipids in the outer leaflet does not significantly alter the area per lipid, the membrane thickness, the lipid order parameters and the elasticity moduli of the cancer membranes. However, a reduction in the cholesterol concentration leads to clear changes in those quantities, especially decreases in the bending, tilt and twist moduli. This implies that the reduction of cholesterol concentration in the cancer membranes could contribute to the softening of cancer cells.
Collapse
Affiliation(s)
- Hoang Linh Nguyen
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
| | - Viet Hoang Man
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Mai Suan Li
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam.,Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Philippe Derreumaux
- CNRS, Université de Paris, UPR9080, Laboratoire de Biochimie Théorique, Paris, France
| | - Junmei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Phuong H Nguyen
- CNRS, Université de Paris, UPR9080, Laboratoire de Biochimie Théorique, Paris, France.,Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, Paris, France.
| |
Collapse
|
20
|
Kordyukova LV, Konarev PV, Fedorova NV, Shtykova EV, Ksenofontov AL, Loshkarev NA, Dadinova LA, Timofeeva TA, Abramchuk SS, Moiseenko AV, Baratova LA, Svergun DI, Batishchev OV. The Cytoplasmic Tail of Influenza A Virus Hemagglutinin and Membrane Lipid Composition Change the Mode of M1 Protein Association with the Lipid Bilayer. MEMBRANES 2021; 11:772. [PMID: 34677538 PMCID: PMC8541430 DOI: 10.3390/membranes11100772] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/27/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022]
Abstract
Influenza A virus envelope contains lipid molecules of the host cell and three integral viral proteins: major hemagglutinin, neuraminidase, and minor M2 protein. Membrane-associated M1 matrix protein is thought to interact with the lipid bilayer and cytoplasmic domains of integral viral proteins to form infectious virus progeny. We used small-angle X-ray scattering (SAXS) and complementary techniques to analyze the interactions of different components of the viral envelope with M1 matrix protein. Small unilamellar liposomes composed of various mixtures of synthetic or "native" lipids extracted from Influenza A/Puerto Rico/8/34 (H1N1) virions as well as proteoliposomes built from the viral lipids and anchored peptides of integral viral proteins (mainly, hemagglutinin) were incubated with isolated M1 and measured using SAXS. The results imply that M1 interaction with phosphatidylserine leads to condensation of the lipid in the protein-contacting monolayer, thus resulting in formation of lipid tubules. This effect vanishes in the presence of the liquid-ordered (raft-forming) constituents (sphingomyelin and cholesterol) regardless of their proportion in the lipid bilayer. We also detected a specific role of the hemagglutinin anchoring peptides in ordering of viral lipid membrane into the raft-like one. These peptides stimulate the oligomerization of M1 on the membrane to form a viral scaffold for subsequent budding of the virion from the plasma membrane of the infected cell.
Collapse
Affiliation(s)
- Larisa V. Kordyukova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.V.K.); (N.V.F.); (A.L.K.); (L.A.B.)
| | - Petr V. Konarev
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (P.V.K.); (E.V.S.); (L.A.D.)
| | - Nataliya V. Fedorova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.V.K.); (N.V.F.); (A.L.K.); (L.A.B.)
| | - Eleonora V. Shtykova
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (P.V.K.); (E.V.S.); (L.A.D.)
| | - Alexander L. Ksenofontov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.V.K.); (N.V.F.); (A.L.K.); (L.A.B.)
| | - Nikita A. Loshkarev
- Laboratory of Bioelectrochemistry, Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Lubov A. Dadinova
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (P.V.K.); (E.V.S.); (L.A.D.)
| | - Tatyana A. Timofeeva
- Laboratory of Physiology of Viruses, D. I. Ivanovsky Institute of Virology, FSBI N. F. Gamaleya NRCEM, Ministry of Health of Russian Federation, 123098 Moscow, Russia;
| | - Sergei S. Abramchuk
- Department of Chemistry, Lomonosov Moscow State University, 119234 Moscow, Russia;
- Laboratory of Physical Chemistry of Polymers, A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Andrei V. Moiseenko
- Laboratory of Electron Microscopy, Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Lyudmila A. Baratova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.V.K.); (N.V.F.); (A.L.K.); (L.A.B.)
| | | | - Oleg V. Batishchev
- Laboratory of Bioelectrochemistry, Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119991 Moscow, Russia;
| |
Collapse
|
21
|
Cholesterol plays a decisive role in tetraspanin assemblies during bilayer deformations. Biosystems 2021; 209:104505. [PMID: 34403719 DOI: 10.1016/j.biosystems.2021.104505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/30/2021] [Accepted: 08/07/2021] [Indexed: 11/22/2022]
Abstract
The tetraspanin family plays key roles in many physiological processes, such as, tumour invasion, cell motility, virus infection, cell attachment and entry. Tetraspanins function as molecular scaffolds organized in microdomains with interesting downstream cellular consequences. However, despite their relevance in human physiology, the precise mechanisms of their various functions remain elusive. In particular, the full-length CD81 tetraspanin has interesting cholesterol-related properties that modulate its activity in cells. In this work, we study the opening transition of CD81 under different conditions. We propose that such conformational change is a collaborative process enhanced by simultaneous interactions between multiple identical CD81 tetraspanins. With molecular dynamics simulations we describe the crucial role of a ternary lipid bilayer with cholesterol in CD81 conformational dynamics, observing two emergent properties: first, clusters of CD81 collectively segregate one tetraspanin while favouring one opening transition, second, cumulative cholesterol sequestering by CD81 tetraspanins inhibits large membrane deformations due to local density variations.
Collapse
|
22
|
Das S, Meinel MK, Wu Z, Müller-Plathe F. The role of the envelope protein in the stability of a coronavirus model membrane against an ethanolic disinfectant. J Chem Phys 2021; 154:245101. [PMID: 34241335 DOI: 10.1063/5.0055331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ethanol is highly effective against various enveloped viruses and can disable the virus by disintegrating the protective envelope surrounding it. The interactions between the coronavirus envelope (E) protein and its membrane environment play key roles in the stability and function of the viral envelope. By using molecular dynamics simulation, we explore the underlying mechanism of ethanol-induced disruption of a model coronavirus membrane and, in detail, interactions of the E-protein and lipids. We model the membrane bilayer as N-palmitoyl-sphingomyelin and 1-palmitoyl-2-oleoylphosphatidylcholine lipids and the coronavirus E-protein. The study reveals that ethanol causes an increase in the lateral area of the bilayer along with thinning of the bilayer membrane and orientational disordering of lipid tails. Ethanol resides at the head-tail region of the membrane and enhances bilayer permeability. We found an envelope-protein-mediated increase in the ordering of lipid tails. Our simulations also provide important insights into the orientation of the envelope protein in a model membrane environment. At ∼25 mol. % of ethanol in the surrounding ethanol-water phase, we observe disintegration of the lipid bilayer and dislocation of the E-protein from the membrane environment.
Collapse
Affiliation(s)
- Shubhadip Das
- Technische Universität Darmstadt, Eduard-Zintl-Institute für Anorganische und Physikalische Chemie, Alarich-Weiss-Strasse 8, 64287 Darmstadt, Germany
| | - Melissa K Meinel
- Technische Universität Darmstadt, Eduard-Zintl-Institute für Anorganische und Physikalische Chemie, Alarich-Weiss-Strasse 8, 64287 Darmstadt, Germany
| | - Zhenghao Wu
- Technische Universität Darmstadt, Eduard-Zintl-Institute für Anorganische und Physikalische Chemie, Alarich-Weiss-Strasse 8, 64287 Darmstadt, Germany
| | - Florian Müller-Plathe
- Technische Universität Darmstadt, Eduard-Zintl-Institute für Anorganische und Physikalische Chemie, Alarich-Weiss-Strasse 8, 64287 Darmstadt, Germany
| |
Collapse
|
23
|
Wu Z, Dharan N, McDargh ZA, Thiyagarajan S, O'Shaughnessy B, Karatekin E. The neuronal calcium sensor Synaptotagmin-1 and SNARE proteins cooperate to dilate fusion pores. eLife 2021; 10:68215. [PMID: 34190041 PMCID: PMC8294851 DOI: 10.7554/elife.68215] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023] Open
Abstract
All membrane fusion reactions proceed through an initial fusion pore, including calcium-triggered release of neurotransmitters and hormones. Expansion of this small pore to release cargo is energetically costly and regulated by cells, but the mechanisms are poorly understood. Here, we show that the neuronal/exocytic calcium sensor Synaptotagmin-1 (Syt1) promotes expansion of fusion pores induced by SNARE proteins. Pore dilation relied on calcium-induced insertion of the tandem C2 domain hydrophobic loops of Syt1 into the membrane, previously shown to reorient the C2 domain. Mathematical modelling suggests that C2B reorientation rotates a bound SNARE complex so that it exerts force on the membranes in a mechanical lever action that increases the height of the fusion pore, provoking pore dilation to offset the bending energy penalty. We conclude that Syt1 exerts novel non-local calcium-dependent mechanical forces on fusion pores that dilate pores and assist neurotransmitter and hormone release.
Collapse
Affiliation(s)
- Zhenyong Wu
- Department of Cellular and Molecular Physiology, Yale University, New Haven, United States.,Nanobiology Institute, Yale University, West Haven, United States
| | - Nadiv Dharan
- Department of Chemical Engineering, Columbia University, New York, United States
| | - Zachary A McDargh
- Department of Chemical Engineering, Columbia University, New York, United States
| | - Sathish Thiyagarajan
- Department of Chemical Engineering, Columbia University, New York, United States
| | - Ben O'Shaughnessy
- Department of Chemical Engineering, Columbia University, New York, United States
| | - Erdem Karatekin
- Department of Cellular and Molecular Physiology, Yale University, New Haven, United States.,Nanobiology Institute, Yale University, West Haven, United States.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States.,Saints-Pères Paris Institute for the Neurosciences (SPPIN), Université de Paris, Centre National de la Recherche Scientifique (CNRS) UMR 8003, Paris, France
| |
Collapse
|
24
|
Jiang W, Lin YC, Luo YL. Mechanical properties of anionic asymmetric bilayers from atomistic simulations. J Chem Phys 2021; 154:224701. [PMID: 34241213 PMCID: PMC8189722 DOI: 10.1063/5.0048232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/12/2021] [Indexed: 11/14/2022] Open
Abstract
Mechanotransduction, the biological response to mechanical stress, is often initiated by activation of mechanosensitive (MS) proteins upon mechanically induced deformations of the cell membrane. A current challenge in fully understanding this process is in predicting how lipid bilayers deform upon the application of mechanical stress. In this context, it is now well established that anionic lipids influence the function of many proteins. Here, we test the hypothesis that anionic lipids could indirectly modulate MS proteins by alteration of the lipid bilayer mechanical properties. Using all-atom molecular dynamics simulations, we computed the bilayer bending rigidity (KC), the area compressibility (KA), and the surface shear viscosity (ηm) of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (PC) lipid bilayers with and without phosphatidylserine (PS) or phosphatidylinositol bisphosphate (PIP2) at physiological concentrations in the lower leaflet. Tensionless leaflets were first checked for each asymmetric bilayer model, and a formula for embedding an asymmetric channel in an asymmetric bilayer is proposed. Results from two different sized bilayers show consistently that the addition of 20% surface charge in the lower leaflet of the PC bilayer with PIP2 has minimal impact on its mechanical properties, while PS reduced the bilayer bending rigidity by 22%. As a comparison, supplementing the PIP2-enriched PC membrane with 30% cholesterol, a known rigidifying steroid lipid, produces a significant increase in all three mechanical constants. Analysis of pairwise splay moduli suggests that the effect of anionic lipids on bilayer bending rigidity largely depends on the number of anionic lipid pairs formed during simulations. The potential implication of bilayer bending rigidity is discussed in the framework of MS piezo channels.
Collapse
Affiliation(s)
- Wenjuan Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California 91766, USA
| | - Yi-Chun Lin
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California 91766, USA
| | - Yun Lyna Luo
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California 91766, USA
| |
Collapse
|
25
|
Rasouli A, Jamali Y, Tajkhorshid E, Bavi O, Pishkenari HN. Mechanical properties of ester- and ether-DPhPC bilayers: A molecular dynamics study. J Mech Behav Biomed Mater 2021; 117:104386. [PMID: 33588213 PMCID: PMC8009841 DOI: 10.1016/j.jmbbm.2021.104386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 01/03/2021] [Accepted: 02/04/2021] [Indexed: 10/22/2022]
Abstract
In addition to its biological importance, DPhPC lipid bilayers are widely used in droplet bilayers, study of integral membrane proteins, drug delivery systems as well as patch-clamp electrophysiology of ion channels, yet their mechanical properties are not fully measured. Herein, we examined the effect of the ether linkage on the mechanical properties of ester- and ether-DPhPC lipid bilayers using all-atom molecular dynamics simulation. The values of area per lipid, thickness, intrinsic lateral pressure profile, order parameter, and elasticity moduli were estimated using various computational frameworks and were compared with available experimental values. Overall, a good agreement was observed between the two. The global properties of the two lipid bilayers are vastly different, with ether bilayer being stiffer, less ordered, and thicker than ester bilayer. Moreover, ether linkage decreased the area per lipid in the ether lipid bilayer. Our computational framework and output demonstrate how ether modification changes the mechano-chemical properties of DPhPC bilayers.
Collapse
Affiliation(s)
- Ali Rasouli
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, And Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yousef Jamali
- School of Mathematical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, And Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Omid Bavi
- Department of Mechanical and Aerospace Engineering, Shiraz University of Technology, Shiraz, Iran.
| | | |
Collapse
|
26
|
Ma X, Zhu X, Huang C, Li Z, Fan J. Molecular mechanisms underlying the role of the puckered surface in the biocompatibility of black phosphorus. NANOSCALE 2021; 13:3790-3799. [PMID: 33565554 DOI: 10.1039/d0nr08480h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As a newly emerging two-dimensional material, black phosphorus (BP) has received broad attention in the field of biomedical applications. Prior to its clinical application, its cytotoxicity to cells should be carefully evaluated; however, this field is still in its infancy. Motivated by this, we performed molecular dynamics (MD) simulations to systematically investigate the potential mechanisms of the cytotoxicity of BP to the lipid membrane, including lipid extraction, penetration into the membrane, and the impacts of BP on the physical properties of the membrane. Surprisingly, we observed that BP could not extract lipid molecules from the membrane. The thermodynamic analyses suggested that the puckered surface structure could weaken the interactions between BP and lipid molecules, thus inhibiting the lipid extraction. Additionally, through simulating the spontaneous interaction modes between BP and the lipid membrane, we found that the "passivated" edges of BP prohibited it from penetrating into the membrane. As a result, BP could only spontaneously lie parallel on the surface of the membrane, in which manner BP exerted little influence on the properties of the lipid membrane. To comprehensively appraise the cytotoxicity, we even artificially inserted BP into the membrane and compared the effects of BP and graphene on the properties of the membrane. Simulation results showed that the influences of the inserted BP on the lipid properties were much milder than those of graphene. Overall, the present work suggests that BP possesses distinctive biocompatibility benefiting from its puckered surface structure. This work provides a better understanding of the interactions between BP and the membrane, which may offer some useful suggestions for exploring strategies to improve the biocompatibility of nanomaterials.
Collapse
Affiliation(s)
- Xinyao Ma
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China.
| | - Xiaohong Zhu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China.
| | - Changxiong Huang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China.
| | - Zhen Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jun Fan
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China. and Center for Advanced Nuclear Safety and Sustainable Development, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
27
|
Kamble S, Patil S, Kulkarni M, Appala VRM. Interleaflet Decoupling in a Lipid Bilayer at Excess Cholesterol Probed by Spectroscopic Ellipsometry and Simulations. J Membr Biol 2020; 253:647-659. [PMID: 33221946 DOI: 10.1007/s00232-020-00156-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/11/2020] [Indexed: 11/26/2022]
Abstract
Artificial lipid membranes are often investigated as a replica of the cell membrane in the form of supported lipid bilayers (SLBs). In SLBs, the phase state of a lipid bilayer strongly depends on the presence of molecules such as cholesterol, ceramide, and physical parameters such as temperature. Cholesterol is a key molecule of biological membranes and it exerts condensing effect on lipid bilayers. In this paper, we demonstrate the influence of excess cholesterol content on a supported lipid bilayer of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) (fluid-phase) using spectroscopic ellipsometry (SE) and coarse-grained (CG) molecular dynamics (MD) simulations. The results show the condensation effect due to cholesterol addition up to 30% and interleaflet decoupling at excess cholesterol beyond 30%. SE results show the separation of individual leaflets of the bilayer and influence of cholesterol on the biophysical properties such as thickness and optical index. CG simulations were performed at different ratios of DOPC:cholesterol mixtures to explore cholesterol-driven bilayer properties and stability. The simulations displayed the accumulation of cholesterol molecules at the interface of the lower and upper leaflets of the bilayer, thus leading to undulations in the bilayer. This work reports the successful application of SE technique to study lipid-cholesterol interactions for the first time.
Collapse
Affiliation(s)
- Sagar Kamble
- Department of Applied Physics, Defence Institute of Advanced Technology (DIAT) DU, Girinagar, Pune, India
| | - Snehal Patil
- Department of Applied Physics, Defence Institute of Advanced Technology (DIAT) DU, Girinagar, Pune, India
| | - Mandar Kulkarni
- Division of Biophysical Chemistry, Chemical Center, Lund University, 22100, Lund, Sweden.
| | | |
Collapse
|
28
|
Errico S, Lucchesi G, Odino D, Muscat S, Capitini C, Bugelli C, Canale C, Ferrando R, Grasso G, Barbut D, Calamai M, Danani A, Zasloff M, Relini A, Caminati G, Vendruscolo M, Chiti F. Making biological membrane resistant to the toxicity of misfolded protein oligomers: a lesson from trodusquemine. NANOSCALE 2020; 12:22596-22614. [PMID: 33150350 DOI: 10.1039/d0nr05285j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Trodusquemine is an aminosterol known to prevent the binding of misfolded protein oligomers to cell membranes and to reduce their toxicity in a wide range of neurodegenerative diseases. Its precise mechanism of action, however, remains unclear. To investigate this mechanism, we performed confocal microscopy, fluorescence resonance energy transfer (FRET) and nuclear magnetic resonance (NMR) measurements, which revealed a strong binding of trodusquemine to large unilamellar vesicles (LUVs) and neuroblastoma cell membranes. Then, by combining quartz crystal microbalance (QCM), fluorescence quenching and anisotropy, and molecular dynamics (MD) simulations, we found that trodusquemine localises within, and penetrates, the polar region of lipid bilayer. This binding behaviour causes a decrease of the negative charge of the bilayer, as observed through ζ potential measurements, an increment in the mechanical resistance of the bilayer, as revealed by measurements of the breakthrough force applied with AFM and ζ potential measurements at high temperature, and a rearrangement of the spatial distances between ganglioside and cholesterol molecules in the LUVs, as determined by FRET measurements. These physicochemical changes are all known to impair the interaction of misfolded oligomers with cell membranes, protecting them from their toxicity. Taken together, our results illustrate how the incorporation in cell membranes of sterol molecules modified by the addition of polyamine tails leads to the modulation of physicochemical properties of the cell membranes themselves, making them more resistant to protein aggregates associated with neurodegeneration. More generally, they suggest that therapeutic strategies can be developed to reinforce cell membranes against protein misfolded assemblies.
Collapse
Affiliation(s)
- Silvia Errico
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Smith MD, Smith JC. Effects of sodium and calcium chloride ionic stresses on model yeast membranes revealed by molecular dynamics simulation. Chem Phys Lipids 2020; 233:104980. [PMID: 33038307 DOI: 10.1016/j.chemphyslip.2020.104980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 11/25/2022]
Abstract
As efforts to move a renewable economy grow, it will be necessary to make use of microbial conversion strategies for the production of novel materials or the upgrading of waste to high-value products. One critical technical challenge currently limiting waste upgrading remains the difficulty in obtaining single-pot conversion techniques where physical, chemical, and biological conversion are performed in a single step. To overcome this challenge, a detailed understanding of how different stresses impact microbial membrane stability will be necessary. Using all-atom molecular dynamics simulations, we examine the impacts of moderate concentrations of NaCl and CaCl2on a model yeast plasma membrane. Weak, though statistically significant, changes in membrane morphology and dynamics functions are observed that are consistent with swelling and stiffening. Additionally, an examination of the ion-lipid contacts and the behavior of water at the water-membrane interface suggests that the impacts of these common salts may, in part, be mediated through changes to water-membrane hydrogen-bonding and hydration water dynamics.
Collapse
Affiliation(s)
- Micholas Dean Smith
- Department of Biochemistry, Molecular & Cellular Biology, The University of Tennessee, Knoxville, Knoxville, TN, United States; UT/ORNL Center for Molecular Biophysics, Oak Ridge, TN, United States.
| | - Jeremy C Smith
- Department of Biochemistry, Molecular & Cellular Biology, The University of Tennessee, Knoxville, Knoxville, TN, United States; UT/ORNL Center for Molecular Biophysics, Oak Ridge, TN, United States
| |
Collapse
|
30
|
Schachter I, Allolio C, Khelashvili G, Harries D. Confinement in Nanodiscs Anisotropically Modifies Lipid Bilayer Elastic Properties. J Phys Chem B 2020; 124:7166-7175. [PMID: 32697588 PMCID: PMC7526989 DOI: 10.1021/acs.jpcb.0c03374] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
![]()
Lipid
nanodiscs are small synthetic lipid bilayer structures that
are stabilized in solution by special circumscribing (or scaffolding)
proteins or polymers. Because they create native-like environments
for transmembrane proteins, lipid nanodiscs have become a powerful
tool for structural determination of this class of systems when combined
with cryo-electron microscopy or nuclear magnetic resonance. The elastic
properties of lipid bilayers determine how the lipid environment responds
to membrane protein perturbations, and how the lipid in turn modifies
the conformational state of the embedded protein. However, despite
the abundant use of nanodiscs in determining membrane protein structure,
the elastic material properties of even pure lipid nanodiscs (i.e.,
without embedded proteins) have not yet been quantitatively investigated.
A major hurdle is due to the inherently nonlocal treatment of the
elastic properties of lipid systems implemented by most existing methods,
both experimental and computational. In addition, these methods are
best suited for very large “infinite” size lipidic assemblies,
or ones that contain periodicity, in the case of simulations. We have
previously described a computational analysis of molecular dynamics
simulations designed to overcome these limitations, so it allows quantification
of the bending rigidity (KC) and tilt
modulus (κt) on a local scale even for finite, nonperiodic
systems, such as lipid nanodiscs. Here we use this computational approach
to extract values of KC and κt for a set of lipid nanodisc systems that vary in size and
lipid composition. We find that the material properties of lipid nanodiscs
are different from those of infinite bilayers of corresponding lipid
composition, highlighting the effect of nanodisc confinement. Nanodiscs
tend to show higher stiffness than their corresponding macroscopic
bilayers, and moreover, their material properties vary spatially within
them. For small-size MSP1 nanodiscs, the stiffness decreases radially,
from a value that is larger in their center than the moduli of the
corresponding bilayers by a factor of ∼2–3. The larger
nanodiscs (MSP1E3D1 and MSP2N2) show milder spatial changes of moduli
that are composition dependent and can be maximal in the center or
at some distance from it. These trends in moduli correlate with spatially
varying structural properties, including the area per lipid and the
nanodisc thickness. Finally, as has previously been reported, nanodiscs
tend to show deformations from perfectly flat circular geometries
to varying degrees, depending on size and lipid composition. The modulations
of lipid elastic properties that we find should be carefully considered
when making structural and functional inferences concerning embedded
proteins.
Collapse
Affiliation(s)
- Itay Schachter
- Institute of Chemistry, the Fritz Haber Research Center, and the Harvey M. Kruger center for Nanoscience & Nanotechnology, The Hebrew University, Jerusalem 9190401, Israel
| | - Christoph Allolio
- Institute of Mathematics, Faculty of Mathematics and Physics, Charles University, Prague 18674, Czech Republic
| | - George Khelashvili
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York 10065, United States.,Institute for Computational Biomedicine, Weill Cornell Medical College of Cornell University, New York, New York 10065, United States
| | - Daniel Harries
- Institute of Chemistry, the Fritz Haber Research Center, and the Harvey M. Kruger center for Nanoscience & Nanotechnology, The Hebrew University, Jerusalem 9190401, Israel
| |
Collapse
|
31
|
Benedetti F, Fu L, Thalmann F, Charitat T, Rubin A, Loison C. Coarse-Grain Simulations of Solid Supported Lipid Bilayers with Varying Hydration Levels. J Phys Chem B 2020; 124:8287-8298. [DOI: 10.1021/acs.jpcb.0c03913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Florian Benedetti
- Institut Lumière Matière, University of Lyon, Université Claude Bernard Lyon 1, CNRS, F-69622, Villeurbanne, France
| | - Li Fu
- Institut Charles Sadron, Université de Strasbourg, CNRS, 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2, France
| | - Fabrice Thalmann
- Institut Charles Sadron, Université de Strasbourg, CNRS, 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2, France
| | - Thierry Charitat
- Institut Charles Sadron, Université de Strasbourg, CNRS, 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2, France
| | - Anne Rubin
- Institut Charles Sadron, Université de Strasbourg, CNRS, 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2, France
| | - Claire Loison
- Institut Lumière Matière, University of Lyon, Université Claude Bernard Lyon 1, CNRS, F-69622, Villeurbanne, France
| |
Collapse
|
32
|
Gironi B, Kahveci Z, McGill B, Lechner BD, Pagliara S, Metz J, Morresi A, Palombo F, Sassi P, Petrov PG. Effect of DMSO on the Mechanical and Structural Properties of Model and Biological Membranes. Biophys J 2020; 119:274-286. [PMID: 32610089 PMCID: PMC7376087 DOI: 10.1016/j.bpj.2020.05.037] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/08/2020] [Accepted: 05/22/2020] [Indexed: 12/23/2022] Open
Abstract
Dimethyl sulfoxide (DMSO) is widely used in a number of biological and biotechnological applications, mainly because of its effects on the cell plasma membrane, but the molecular origins of this action are yet to be fully clarified. In this work, we used two- and three-component synthetic membranes (liposomes) and the plasma membrane of human erythrocytes to investigate the effect of DMSO when added to the membrane-solvating environment. Fourier transform infrared spectroscopy and thermal fluctuation spectroscopy revealed significant differences in the response of the two types of liposome systems to DMSO in terms of the bilayer thermotropic behavior, available free volume of the bilayer, its excess surface area, and bending elasticity. DMSO also alters the mechanical properties of the erythrocyte membrane in a concentration-dependent manner and is capable of increasing membrane permeability to ATP at even relatively low concentrations (3% v/v and above). Taken in its entirety, these results show that DMSO is likely to have a differential effect on heterogeneous biological membranes, depending on their local composition and structure, and could affect membrane-hosted biological functions.
Collapse
Affiliation(s)
- Beatrice Gironi
- Dipartimento di Chimica Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
| | - Zehra Kahveci
- Living Systems Institute and School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Beth McGill
- Department of Physics and Astronomy, University of Exeter, Exeter, United Kingdom
| | - Bob-Dan Lechner
- Department of Physics and Astronomy, University of Exeter, Exeter, United Kingdom
| | - Stefano Pagliara
- Living Systems Institute and School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Jeremy Metz
- Living Systems Institute and School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Assunta Morresi
- Dipartimento di Chimica Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
| | - Francesca Palombo
- Department of Physics and Astronomy, University of Exeter, Exeter, United Kingdom
| | - Paola Sassi
- Dipartimento di Chimica Biologia e Biotecnologie, Università di Perugia, Perugia, Italy.
| | - Peter G Petrov
- Department of Physics and Astronomy, University of Exeter, Exeter, United Kingdom.
| |
Collapse
|
33
|
Highlighting the effect of amyloid beta assemblies on the mechanical properties and conformational stability of cell membrane. J Mol Graph Model 2020; 100:107670. [PMID: 32711259 DOI: 10.1016/j.jmgm.2020.107670] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 01/05/2023]
Abstract
Alzheimer disease (AD) is the most common cause of dementia, characterized by a progressive decline in cognitive function due to the abnormal aggregation and deposition of Amyloid beta (Aβ) fibrils in the brain of patients. In this context, the molecular mechanisms of protein misfolding and aggregation that are known to induce significant biophysical alterations in cells, including destabilization of plasma membranes, remain partially unclear. Physical interaction between the Aβ assemblies and the membrane leads to the disruption of the cell membrane in multiple ways including, surface carpeting, generation of transmembrane channels and detergent-like membrane dissolution. Understanding the impact of amyloidogenic protein in different stages of aggregation with the plasma membrane, plays a crucial role to fully elucidate the pathological mechanisms of AD. Within this framework, computer simulations represent a powerful tool able to shed lights on the interactions governing the structural influence of Aβ proteins on biological membrane. In this study, molecular dynamics (MD) simulations have been performed in order to characterize how POPC bilayer conformational and mechanical properties are affected by the interaction with Aβ11-42 peptide, oligomer and fibril.
Collapse
|
34
|
Mostofian B, Johnson QR, Smith JC, Cheng X. Carotenoids promote lateral packing and condensation of lipid membranes. Phys Chem Chem Phys 2020; 22:12281-12293. [PMID: 32432296 DOI: 10.1039/d0cp01031f] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Carotenoids are pigment molecules that protect biomembranes against degradation and may be involved in the formation of functional bacterial membrane microdomains. Little is known on whether different types of carotenoids have different effects on the membrane or if there is any concentration dependence of these effects. In this work, we present results from molecular dynamics simulations of phospholipid bilayers containing different amounts of either β-carotene or zeaxanthin. Both β-carotene and zeaxanthin show the ability to laterally condense the membrane lipids and reduce their inter-leaflet interactions. With increasing concentrations, both carotenoids increase the bilayer thickness and rigidity. The results reveal that carotenoids have similar effects to cholesterol on regulating the behavior of fluid-phase membranes, suggesting that they could function as sterol substitutes and confirming their potential role in the formation of functional membrane domains.
Collapse
Affiliation(s)
- Barmak Mostofian
- Center for Molecular Biophysics, Oak Ridge National Lab, Oak Ridge, TN 37830, USA.
| | | | | | | |
Collapse
|
35
|
Sarmento MJ, Hof M, Šachl R. Interleaflet Coupling of Lipid Nanodomains - Insights From in vitro Systems. Front Cell Dev Biol 2020; 8:284. [PMID: 32411705 PMCID: PMC7198703 DOI: 10.3389/fcell.2020.00284] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/02/2020] [Indexed: 01/09/2023] Open
Abstract
The plasma membrane is a complex system, consisting of two layers of lipids and proteins compartmentalized into small structures called nanodomains. Despite the asymmetric composition of both leaflets, coupling between the layers is surprisingly strong. This can be evidenced, for example, by recent experimental studies performed on phospholipid giant unilamellar vesicles showing that nanodomains formed in the outer layer are perfectly registered with those in the inner leaflet. Similarly, microscopic phase separation in one leaflet can induce phase separation in the opposing leaflet that would otherwise be homogeneous. In this review, we summarize the current theoretical and experimental knowledge that led to the current view that domains are – irrespective of their size – commonly registered across the bilayer. Mechanisms inducing registration of nanodomains suggested by theory and calculations are discussed. Furthermore, domain coupling is evidenced by experimental studies based on the sparse number of methods that can resolve registered from independent nanodomains. Finally, implications that those findings using model membrane studies might have for cellular membranes are discussed.
Collapse
Affiliation(s)
- Maria J Sarmento
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova, Prague, Czechia
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova, Prague, Czechia
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova, Prague, Czechia
| |
Collapse
|
36
|
Aranha MP, Mukherjee D, Petridis L, Khomami B. An Atomistic Molecular Dynamics Study of Titanium Dioxide Adhesion to Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1043-1052. [PMID: 31944772 DOI: 10.1021/acs.langmuir.9b03075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Titanium dioxide (TiO2) nanoparticles are found in an array of consumer and industrial products, and human exposure to these nanoparticles involves interaction with biological membranes. To understand the effect of the membrane lipid composition on bilayer perturbation by TiO2, we performed all-atom molecular dynamics simulations of nanosized TiO2 interacting with three single component bilayers differing only in their headgroup composition: the zwitterionic DOPC, which is overall neutral containing negatively charged phosphate and positively charged choline in its head, DOPG, which is overall anionic containing negatively charged phosphate and neutral glycerol, and the anionic DOPS, containing negatively charged phosphate attached to the hydroxyl side-chain of the amino acid, serine containing negatively charged carboxyl and positively charged ammonium. The nanoparticle adheres to all three bilayers causing a negative curvature on their top leaflet. However, the local deformation of DOPG was more pronounced than DOPC and DOPS. The anionic DOPG, which is the thinnest of the three bilayers, interacted most strongly with the TiO2. DOPS has the next strongest interaction; however, its high bending modulus enables it to resist deformation by the nanoparticle. DOPC has the weakest interaction with the nanoparticle of the three as it has the highest bending modulus and its zwitterionic head groups have strong cohesive interactions. We also observed a nonuniform response of the bilayers: the orientational order of the lipids near the nanoparticle decreases, while that of the lipids away from the nanoparticle increases. The overall thickness and bending modulus of DOPG increased upon contact with the nanoparticle owing to overall stiffening of the bilayer despite local softening, while the average structural and mechanical properties of DOPC and DOPS remain unchanged, which can be explained in part by the greater bilayer bending elasticicty of DOPC and DOPS. The above findings suggest that regions of biological membranes populated by anionic lipids with weaker bending elasticity will be more susceptible to perturbation by TiO2 nanoparticles than zwitterionic-rich regions.
Collapse
Affiliation(s)
- Michelle P Aranha
- Department of Biochemistry and Cellular and Molecular Biology , University of Tennessee 1311 Cumberland Ave , Knoxville , Tennessee 37916 , United States
- UT/ORNL Center for Molecular Biophysics , Oak Ridge National Laboratory , 1 Bethel Valley Road , Oak Ridge , Tennessee 37830 , United States
| | - Dibyendu Mukherjee
- Department of Chemical and Biomolecular Engineering , University of Tennessee , 1512 Middle Dr , Knoxville , Tennessee 37996 , United States
| | - Loukas Petridis
- Department of Biochemistry and Cellular and Molecular Biology , University of Tennessee 1311 Cumberland Ave , Knoxville , Tennessee 37916 , United States
- UT/ORNL Center for Molecular Biophysics , Oak Ridge National Laboratory , 1 Bethel Valley Road , Oak Ridge , Tennessee 37830 , United States
| | - Bamin Khomami
- Department of Chemical and Biomolecular Engineering , University of Tennessee , 1512 Middle Dr , Knoxville , Tennessee 37996 , United States
| |
Collapse
|
37
|
Caparotta M, Bustos DM, Masone D. Order–disorder skewness in alpha-synuclein: a key mechanism to recognize membrane curvature. Phys Chem Chem Phys 2020; 22:5255-5263. [DOI: 10.1039/c9cp04951g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Currently, membrane curvature is understood as an active mechanism to control cells spatial organization and activity.
Collapse
Affiliation(s)
- Marcelo Caparotta
- Facultad de Ciencias Exactas y Naturales
- Universidad Nacional de Cuyo (UNCuyo)
- Mendoza
- Argentina
| | - Diego M. Bustos
- Facultad de Ciencias Exactas y Naturales
- Universidad Nacional de Cuyo (UNCuyo)
- Mendoza
- Argentina
- Instituto de Histología y Embriología de Mendoza (IHEM) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
| | - Diego Masone
- Instituto de Histología y Embriología de Mendoza (IHEM) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
- Universidad Nacional de Cuyo (UNCuyo)
- Mendoza
- Argentina
- Facultad de Ingeniería
| |
Collapse
|
38
|
Zhou W, Fiorin G, Anselmi C, Karimi-Varzaneh HA, Poblete H, Forrest LR, Faraldo-Gómez JD. Large-scale state-dependent membrane remodeling by a transporter protein. eLife 2019; 8:50576. [PMID: 31855177 PMCID: PMC6957315 DOI: 10.7554/elife.50576] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/17/2019] [Indexed: 12/22/2022] Open
Abstract
That channels and transporters can influence the membrane morphology is increasingly recognized. Less appreciated is that the extent and free-energy cost of these deformations likely varies among different functional states of a protein, and thus, that they might contribute significantly to defining its mechanism. We consider the trimeric Na+-aspartate symporter GltPh, a homolog of an important class of neurotransmitter transporters, whose mechanism entails one of the most drastic structural changes known. Molecular simulations indicate that when the protomers become inward-facing, they cause deep, long-ranged, and yet mutually-independent membrane deformations. Using a novel simulation methodology, we estimate that the free-energy cost of this membrane perturbation is in the order of 6–7 kcal/mol per protomer. Compensating free-energy contributions within the protein or its environment must thus stabilize this inward-facing conformation for the transporter to function. We discuss these striking results in the context of existing experimental observations for this and other transporters.
Collapse
Affiliation(s)
- Wenchang Zhou
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Giacomo Fiorin
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Claudio Anselmi
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Hossein Ali Karimi-Varzaneh
- Computational Structural Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Horacio Poblete
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States.,Computational Structural Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Lucy R Forrest
- Computational Structural Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - José D Faraldo-Gómez
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| |
Collapse
|
39
|
Fiorin G, Marinelli F, Faraldo-Gómez JD. Direct Derivation of Free Energies of Membrane Deformation and Other Solvent Density Variations From Enhanced Sampling Molecular Dynamics. J Comput Chem 2019; 41:449-459. [PMID: 31602694 DOI: 10.1002/jcc.26075] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/04/2019] [Accepted: 08/28/2019] [Indexed: 12/20/2022]
Abstract
We report a methodology to calculate the free energy of a shape transformation in a lipid membrane directly from a molecular dynamics simulation. The bilayer need not be homogeneous or symmetric and can be atomically detailed or coarse grained. The method is based on a collective variable that quantifies the similarity between the membrane and a set of predefined density distributions. Enhanced sampling of this "Multi-Map" variable re-shapes the bilayer and permits the derivation of the corresponding potential of mean force. Calculated energies thus reflect the dynamic interplay of atoms and molecules, rather than postulated effects. Evaluation of deformations of different shape, amplitude, and range demonstrates that the macroscopic bending modulus assumed by the Helfrich-Canham model is increasingly unsuitable below the 100-Å scale. In this range of major biological significance, direct free-energy calculations reveal a much greater plasticity. We also quantify the stiffening effect of cholesterol on bilayers of different composition and compare with experiments. Lastly, we illustrate how this approach facilitates analysis of other solvent reorganization processes, such as hydrophobic hydration. Published 2019. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Giacomo Fiorin
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, Maryland, 20814
| | - Fabrizio Marinelli
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, Maryland, 20814
| | - José D Faraldo-Gómez
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, Maryland, 20814
| |
Collapse
|
40
|
Wu Z, Yang C, Chen L, Ma L, Wu X, Dai X, Qiao Y, Shi X. A Multiscale Study on the Effect of Sodium Cholate on the Deformation Ability of Elastic Liposomes. AAPS PharmSciTech 2019; 20:311. [PMID: 31520324 DOI: 10.1208/s12249-019-1485-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 07/17/2019] [Indexed: 11/30/2022] Open
Abstract
Elastic liposoxy1mes (ELs) are biocompatible bilayer vesicular systems commonly used in the transdermal delivery of drugs. Compared with conventional liposomes (CLs), the strong deformation ability conferred by edge activators (EAs) is one of the most critical properties of ELs. However, due to limited research methods, little is known about the effect of EAs on the deformation abilities of vesicles. In this study, taking sodium cholate as an example, a multiscale study was carried to study the effect of EAs on the deformability of ELs, including in vitro diffusion experiment at macroscale, "vesicle-pore" model experiment at the microscale and flat patch model experiment at the molecular scale. As a result, it was found that sodium cholate could decrease the kc of DPPC bilayer, which enabled it to remain morphologically intact during a strong deformation process. Such kind of differences on deformation ability made pogostone ELs (contain sodium cholate) present a better permeation effect compared with that of pogostone CLs. All of these provide a multiscale and thorough understanding of the effect of sodium cholate on the deformation ability of ELs.
Collapse
|
41
|
Löpez CA, Vesselinov VV, Gnanakaran S, Alexandrov BS. Unsupervised Machine Learning for Analysis of Phase Separation in Ternary Lipid Mixture. J Chem Theory Comput 2019; 15:6343-6357. [PMID: 31476122 DOI: 10.1021/acs.jctc.9b00074] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Mostofian B, Zhuang T, Cheng X, Nickels JD. Branched-Chain Fatty Acid Content Modulates Structure, Fluidity, and Phase in Model Microbial Cell Membranes. J Phys Chem B 2019; 123:5814-5821. [DOI: 10.1021/acs.jpcb.9b04326] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Barmak Mostofian
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Tony Zhuang
- College of Medicine, University of Tennessee, Memphis, Tennessee 38163, United States
| | - Xiaolin Cheng
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jonathan D. Nickels
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
43
|
Usery RD, Enoki TA, Wickramasinghe SP, Nguyen VP, Ackerman DG, Greathouse DV, Koeppe RE, Barrera FN, Feigenson GW. Membrane Bending Moduli of Coexisting Liquid Phases Containing Transmembrane Peptide. Biophys J 2019; 114:2152-2164. [PMID: 29742408 DOI: 10.1016/j.bpj.2018.03.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/19/2018] [Accepted: 03/22/2018] [Indexed: 11/25/2022] Open
Abstract
A number of highly curved membranes in vivo, such as epithelial cell microvilli, have the relatively high sphingolipid content associated with "raft-like" composition. Given the much lower bending energy measured for bilayers with "nonraft" low sphingomyelin and low cholesterol content, observing high curvature for presumably more rigid compositions seems counterintuitive. To understand this behavior, we measured membrane rigidity by fluctuation analysis of giant unilamellar vesicles. We found that including a transmembrane helical GWALP peptide increases the membrane bending modulus of the liquid-disordered (Ld) phase. We observed this increase at both low-cholesterol fraction and higher, more physiological cholesterol fraction. We find that simplified, commonly used Ld and liquid-ordered (Lo) phases are not representative of those that coexist. When Ld and Lo phases coexist, GWALP peptide favors the Ld phase with a partition coefficient of 3-10 depending on mixture composition. In model membranes at high cholesterol fractions, Ld phases with GWALP have greater bending moduli than the Lo phase that would coexist.
Collapse
Affiliation(s)
- Rebecca D Usery
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| | - Thais A Enoki
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| | - Sanjula P Wickramasinghe
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York; Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Vanessa P Nguyen
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee
| | - David G Ackerman
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York; Scientific Computing, Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia
| | - Denise V Greathouse
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas
| | - Roger E Koeppe
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas
| | - Francisco N Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee
| | - Gerald W Feigenson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York.
| |
Collapse
|
44
|
Zhang Y, Chan C, Li Z, Ma J, Meng Q, Zhi C, Sun H, Fan J. Nanotoxicity of Boron Nitride Nanosheet to Bacterial Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6179-6187. [PMID: 30955333 DOI: 10.1021/acs.langmuir.9b00025] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Boron nitride (BN) nanosheet is a novel material with great potential in biomedical applications. A deep understanding of the basic interaction mechanisms between biosystems and foreign BN nanosheets can help to better clarify the potential risks of these nanomaterials and provide guidance on their safe design. In this paper, we show that BN nanosheets can cause degradation of bacterial cell membranes via experimental and simulation-based approaches. Our extensive molecular dynamics simulations results reveal that BN nanosheets cause toxicity to both bacterial outer and inner membranes in which hydrophobic effect plays an important role. The spontaneous lipid extraction by BN nanosheets is in agreement with the free-energy calculations. A liquid-to-gel phase transition is induced by the BN nanosheet in the outer model membrane of bacteria, indicating that the BN nanosheet may cause higher toxicity to the outer membrane than to the inner membrane. Our findings may offer new insights into the molecular basis of BN's cytotoxicity and antibacterial activity.
Collapse
Affiliation(s)
- Yonghui Zhang
- School of Materials and Energy , Guangdong University of Technology , No. 100 Waihuan Xi Road , Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006 , China
| | | | | | | | | | | | - Hongyan Sun
- Key Laboratory of Biochip Technology, Biotech and Health Centre , Shenzhen Research Institute of City University of Hong Kong , Shenzhen 518057 , China
| | | |
Collapse
|
45
|
Affiliation(s)
- Xiaolin Cheng
- Division of Medicinal Chemistry and Pharmacognosy, Biophysics Graduate Program, Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jeremy C. Smith
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6309, United States
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
46
|
Sheavly JK, Pedersen JA, Van Lehn RC. Curvature-driven adsorption of cationic nanoparticles to phase boundaries in multicomponent lipid bilayers. NANOSCALE 2019; 11:2767-2778. [PMID: 30672546 DOI: 10.1039/c8nr07763k] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Understanding the interactions between surface-functionalized gold nanoparticles (NPs) and lipid bilayers is necessary to guide the design of NPs for biomedical applications. Recent experiments found that cationic NPs adsorb more strongly to phase-separated multicomponent lipid bilayers than single-component liquid-disordered bilayers, suggesting that phase separation affects NP-bilayer interactions. In this work, we use coarse-grained molecular dynamics simulations to investigate the effect of lipid phase behavior on the adsorption of small cationic NPs. We first determined the free energy change for adsorbing a NP to one-phase liquid-disordered and one-phase liquid-ordered bilayers. The simulations indicate that NP adsorption depends on a competition between favorable NP-lipid interactions and the unfavorable curvature deformation of the bilayer, resulting in stronger interactions with the liquid-disordered bilayer due to its lower bending modulus. We then measured the free energy change associated with moving a NP across the surface of a phase-separated bilayer and identified a free energy minimum at the phase boundary. The free energy minimum is attributed to the thickness gradient between the two phases that enables favorable NP-lipid interactions without necessitating large curvature deformations. The simulation results thus indicate that the intrinsic curvature present at phase boundaries drives preferential interactions with surface-adsorbed NPs, providing new insight into the forces that drive NP behavior at multicomponent, phase-separated lipid bilayers.
Collapse
Affiliation(s)
- Jonathan K Sheavly
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, USA.
| | | | | |
Collapse
|
47
|
Nickels JD, Smith MD, Alsop RJ, Himbert S, Yahya A, Cordner D, Zolnierczuk P, Stanley CB, Katsaras J, Cheng X, Rheinstädter MC. Lipid Rafts: Buffers of Cell Membrane Physical Properties. J Phys Chem B 2019; 123:2050-2056. [DOI: 10.1021/acs.jpcb.8b12126] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jonathan D. Nickels
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Micholas Dean Smith
- Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Richard J. Alsop
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, L8S 4M1, Canada
| | - Sebastian Himbert
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, L8S 4M1, Canada
| | - Ahmad Yahya
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Destini Cordner
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Piotr Zolnierczuk
- Jülich
Center for Neutron Science, Forschungszentrum Juelich GmbH, Outstation
at SNS, Oak Ridge, Tennessee 37830, United States
| | - Christopher B. Stanley
- Large-Scale Structure Group, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - John Katsaras
- Large-Scale Structure Group, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- Shull-Wollen Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Xiaolin Cheng
- College of Pharmacy, Medicinal Chemistry & Pharmacognosy Division, The Ohio State University, Columbus, Ohio 43210, United States
| | | |
Collapse
|
48
|
Angelescu DG. Coarse-grained simulation studies on the adsorption of polyelectrolyte complexes upon lipid membranes. Phys Chem Chem Phys 2019; 21:12446-12459. [DOI: 10.1039/c9cp01448a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Conformations of a polyelectrolyte complex irreversibly bound to a zwitterionic lipid bilayer.
Collapse
Affiliation(s)
- Daniel G. Angelescu
- Romanian Academy
- “Ilie Murgulescu” Institute of Physical Chemistry
- 060021 Bucharest
- Romania
| |
Collapse
|
49
|
Boyd KJ, May ER. BUMPy: A Model-Independent Tool for Constructing Lipid Bilayers of Varying Curvature and Composition. J Chem Theory Comput 2018; 14:6642-6652. [PMID: 30431272 DOI: 10.1021/acs.jctc.8b00765] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Molecular dynamics is a powerful tool to investigate atomistic and mesoscopic phenomena in lipid bilayer systems. These studies have progressed with the advent of increased computational power, and efforts are now increasingly being directed toward investigating the role of curvature and bilayer morphology, as these are critical features of biological processes. Computational studies of lipid bilayers benefit from tools that can create starting configurations for molecular dynamics simulations, but the majority of such tools are restricted to generating flat bilayers. Generating curved bilayer configurations comes with practical complications and potential ramifications on physical properties in the simulated system if the bilayer is initiated in a high-strain state. We present a new tool for creating curved lipid bilayers that combines flexibility of shape, force field, model resolution, and bilayer composition. A key aspect of our approach is the use of the monolayer pivotal plane location to accurately estimate interleaflet area differences in a curved bilayer. Our tool is named BUMPy (Building Unique Membranes in Python), is written in Python, is fast, and has a simple command line interface.
Collapse
Affiliation(s)
- Kevin J Boyd
- Department of Molecular and Cell Biology , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Eric R May
- Department of Molecular and Cell Biology , University of Connecticut , Storrs , Connecticut 06269 , United States
| |
Collapse
|
50
|
Allolio C, Haluts A, Harries D. A local instantaneous surface method for extracting membrane elastic moduli from simulation: Comparison with other strategies. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|