1
|
Jyoti Barman D, Lohmiller T, Katz S, Haumann M, Hildebrandt P, Nam W, Ray K. An Oxoiron(IV) Complex Supported by an N-Alkylated Cyclam Ligand System Containing a Pendant Alcohol Moiety. Chemistry 2025; 31:e202404468. [PMID: 40028930 DOI: 10.1002/chem.202404468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/14/2025] [Accepted: 02/25/2025] [Indexed: 03/05/2025]
Abstract
The effect of a pendant neutral alcohol moiety in the N-alkylated cyclam (1,4,8,11-tetraazacyclotetradecane) ligand backbone is examined for the non-heme mononuclear oxoiron(IV) unit in [FeIV(Osyn)(TMC-HOR)(NCCH3)]2+ (1-syn) (TMC-HOR=2-(4,8,11-trimethyl-1,4,8,11-tetraazacyclotetradecan1-yl)ethan-1-ol). Unlike in the related [FeIV(Oanti)(TMC-SR)]+ (3-anti) (TMC-SR=1-mercaptoethyl-4,8,11-trimethyl-1,4,8,11-tetraazacyclotetradecane) complex, bearing an axial mono-anionic thiolate ligand trans to the oxo unit, the alcohol moiety in 1-syn stays protonated and does not axially coordinate to iron. The protonation of the alcohol moiety is a prerequisite for the stabilization of the oxoiron(IV) core; it presumably serves as a hydrogen bonding donor to the oxoiron(IV) unit, which is positioned syn to the three methyl groups. Comparative reactivity studies reveal 1-syn to be a stronger hydrogen atom abstraction but weaker oxygen atom transfer agent relative to the [FeIV(Osyn)(TMC)(NCCH3)]2+ (2-syn) complex, bearing the N-tetramethylated cyclam (TMC) ligand.
Collapse
Affiliation(s)
- Dibya Jyoti Barman
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Thomas Lohmiller
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
- EPR4Energy Joint Lab, Department Spins in Energy Conversion and Quantum Information Science, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 16, 12489, Berlin, Germany
| | - Sagie Katz
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Michael Haumann
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Peter Hildebrandt
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| | - Kallol Ray
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| |
Collapse
|
2
|
Robinson AL, Bannerman E, Di Berto Mancini M, Browne WR, Guillot R, Herrero C, Inceoglu T, Maisonneuve H, Banse F, Rebilly JN. Influence of a 2 nd Sphere Hydrogen-Bond Donor on the Reactivity of Non-heme Fe(II) Complexes in Alkane, Alkene and Aromatic Oxidation with H 2O 2. Chemistry 2025; 31:e202404668. [PMID: 40067778 DOI: 10.1002/chem.202404668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/11/2025] [Indexed: 03/25/2025]
Abstract
Two iron(II) complexes of the pentadentate aminopyridine ligand L5 2(OH), bearing a 2nd sphere OH group in ortho position of one pyridine, were studied in the oxidation of various substrates using H2O2. While the addition of the OH group lowers the yields of alkane and aromatic oxidation, it improves the yield in alkene epoxidation. Spectroscopic analyses suggest that the pyridine-OH group stabilizes an Fe(III)OOH intermediate by hydrogen-bonding with the proximal O atom of hydroperoxo, but also eventually drives the system towards a dimeric structure, which competes with the oxidation process. The improvement in epoxidation yields is proposed to result from the fast reaction of cyclooctene with the active species, together with an enhanced oxidizing power induced by the hydrogen-bonding pattern.
Collapse
Affiliation(s)
- Amanda Lyn Robinson
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, Université Paris-Saclay, CNRS, 19 avenue des sciences, 91400, Orsay, France
| | - Eva Bannerman
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, Université Paris-Saclay, CNRS, 19 avenue des sciences, 91400, Orsay, France
| | - Marika Di Berto Mancini
- Inorganic Chemistry, Stratingh institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The, Netherlands
| | - Wesley R Browne
- Inorganic Chemistry, Stratingh institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The, Netherlands
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, Université Paris-Saclay, CNRS, 19 avenue des sciences, 91400, Orsay, France
| | - Christian Herrero
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, Université Paris-Saclay, CNRS, 19 avenue des sciences, 91400, Orsay, France
| | - Tanya Inceoglu
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, Université Paris-Saclay, CNRS, 19 avenue des sciences, 91400, Orsay, France
| | - Hélène Maisonneuve
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, Université Paris-Saclay, CNRS, 19 avenue des sciences, 91400, Orsay, France
| | - Frédéric Banse
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, Université Paris-Saclay, CNRS, 19 avenue des sciences, 91400, Orsay, France
| | - Jean-Noël Rebilly
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, Université Paris-Saclay, CNRS, 19 avenue des sciences, 91400, Orsay, France
| |
Collapse
|
3
|
Moore J, Park YJ, Fout AR. Flash Communication: Flexibility of a Biologically Inspired Ligand Framework for Intramolecular C-H Activation. Organometallics 2025; 44:472-476. [PMID: 39949504 PMCID: PMC11816012 DOI: 10.1021/acs.organomet.4c00454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 02/16/2025]
Abstract
High-valent iron complexes play a crucial role in the oxidation of organic substrates, especially in C-H bond functionalization reactions in biology. This paper investigates the reactivity of nonporphyrin tripodal ligands featuring a secondary coordination sphere, focusing on their prospective ability to stabilize high-valent iron-oxo species. Using NMR spectroscopy and X-ray crystallography, we detail the formation of an Fe(III)-alkoxide complex through intramolecular C-H bond activation, providing insight into the potential transient formation of a high-valent iron-oxo intermediate. While attempts to observe an Fe(IV)-oxo complex were unsuccessful, our findings underscore the significance of the ligand electronic environment in stabilizing reactive iron species for C-H bond activation.
Collapse
Affiliation(s)
- Jewelianna
M. Moore
- Department
of Chemistry, Texas A&M University, 580 Ross St. College Station, Texas 77843, United States
| | - Yun Ji Park
- School
of Chemical Sciences, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Alison R. Fout
- Department
of Chemistry, Texas A&M University, 580 Ross St. College Station, Texas 77843, United States
| |
Collapse
|
4
|
Ye D, Wu T, Puri A, Hebert DD, Siegler MA, Hendrich MP, Swart M, Garcia-Bosch I. Enhanced Proton-Coupled Electron-Transfer Reactivity by a Mononuclear Nickel(II) Hydroxide Radical Complex. Inorg Chem 2024; 63:24453-24465. [PMID: 39680075 PMCID: PMC11688665 DOI: 10.1021/acs.inorgchem.4c03370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/03/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024]
Abstract
The synthesis, characterization, and reactivity of a NiOH core bearing a tridentate redox-active ligand capable of reaching three molecular oxidation states is presented in this paper. The reduced complex [LNiOH]2- was characterized by single-crystal X-ray diffraction analysis, depicting a square-planar NiOH core stabilized by intramolecular H-bonding interactions. Cyclic voltammetry measurements indicated that [LNiOH]2- can be reversibly oxidized to [LNiOH]- and [LNiOH] at very negative reduction potentials (-1.13 and -0.39 V vs ferrocene, respectively). The oxidation of [LNiOH]2- to [LNiOH]- and [LNiOH] was accomplished using 1 and 2 equiv of ferrocenium, respectively. Spectroscopic and computational characterization suggest that [LNiOH]2-, [LNiOH]-, and [LNiOH] are all NiII species in which the redox-active ligand adopts different oxidation states (catecholate-like, semiquinone-like, and quinone-like, respectively). The NiOH species were found to promote H-atom abstraction from organic substrates, with [LNiOH]- acting as a 1H+/1e- oxidant and [LNiOH] as a 2H+/2e- oxidant. Thermochemical analysis indicated that [LNiOH] was capable of abstracting H atoms from stronger O-H bonds than [LNiOH]-. However, the greater thermochemical tendency of [LNiOH] reactivity toward H atoms did not align with the kinetics of the PCET reaction, where [LNiOH]- reacted with H-atom donors much faster than [LNiOH]. The unique stereoelectronic structure of [LNiOH]- (radical character combined with a basic NiOH core) might account for its enhanced PCET reactivity.
Collapse
Affiliation(s)
- Daniel Ye
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Tong Wu
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Ankita Puri
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - David D. Hebert
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | | | - Michael P. Hendrich
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Marcel Swart
- University
of Girona, Campus Montilivi (Ciències), IQCC, 17004 Girona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Isaac Garcia-Bosch
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
5
|
Singh P, Lomax MJA, Opalade AA, Nguyen BB, Srnec M, Jackson TA. Basicity of Mn III-Hydroxo Complexes Controls the Thermodynamics of Proton-Coupled Electron Transfer Reactions. Inorg Chem 2024; 63:21941-21953. [PMID: 39498631 DOI: 10.1021/acs.inorgchem.4c03254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Several manganese-dependent enzymes utilize MnIII-hydroxo units in concerted proton-electron transfer (CPET) reactions. We recently demonstrated that hydrogen bonding to the hydroxo ligand in the synthetic [MnIII(OH)(PaPy2N)]+ complex increased rates of CPET reactions compared to the [MnIII(OH)(PaPy2Q)]+ complex that lacks a hydrogen bond. In this work, we determine the effect of hydrogen bonding on the basicity of the hydroxo ligand and evaluate the corresponding effect on CPET reactions. Both [MnIII(OH)(PaPy2Q)]+ and [MnIII(OH)(PaPy2N)]+ react with strong acids to yield MnIII-aqua complexes [MnIII(OH2)(PaPy2Q)]2+ and [MnIII(OH2)(PaPy2N)]2+, for which we determined pKa values of 7.6 and 13.1, respectively. Reactions of the MnIII-aqua complexes with one-electron reductants yielded estimates of reduction potentials, which were combined with pKa values to give O-H bond dissociation free energies (BDFEs) of 77 and 85 kcal mol-1 for the MnII-aqua complexes [MnII(OH2)(PaPy2Q)]+ and [MnII(OH2)(PaPy2N)]+. Using these BDFEs, we performed an analysis of the thermodynamic driving force for phenol oxidation by these complexes and observed the unexpected result that slower rates are associated with more asynchronous CPET. In addition, reactions of acidic phenols with the MnIII-hydroxo complexes show rates that deviate from the thermodynamic trends, consistent with a change in mechanism from CPET to proton transfer.
Collapse
Affiliation(s)
- Priya Singh
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Markell J A Lomax
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Adedamola A Opalade
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Brandon B Nguyen
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Martin Srnec
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 3, Prague 8 18223, Czech Republic
| | - Timothy A Jackson
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| |
Collapse
|
6
|
Jesse KA, Anderson JS. Leveraging ligand-based proton and electron transfer for aerobic reactivity and catalysis. Chem Sci 2024; 15:d4sc03896g. [PMID: 39386904 PMCID: PMC11460188 DOI: 10.1039/d4sc03896g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/08/2024] [Indexed: 10/12/2024] Open
Abstract
While O2 is an abundant, benign, and thermodynamically potent oxidant, it is also kinetically inert. This frequently limits its use in synthetic transformations. Correspondingly, direct aerobic reactivity with O2 often requires comparatively harsh or forcing conditions to overcome this kinetic barrier. Forcing conditions limit product selectivity and can lead to over oxidation. Alternatively, O2 can be activated by a catalyst to facilitate oxidative reactivity, and there are a variety of sophisticated examples where transition metal catalysts facilitate aerobic reactivity. Many efforts have focused on using metal-ligand cooperativity to facilitate the movement of protons and electrons for O2 activation. This approach is inspired by enzyme active sites, which frequently use the secondary sphere to facilitate both the activation of O2 and the oxidation of substrates. However, there has only recently been a focus on harnessing metal-ligand cooperativity for aerobic reactivity and, especially, catalysis. This perspective will discuss recent efforts to channel metal-ligand cooperativity for the activation of O2, the generation and stabilization of reactive metal-oxygen intermediates, and oxidative reactivity and catalysis. While significant progress has been made in this area, there are still challenges to overcome and opportunities for the development of efficient catalysts which leverage this biomimetic strategy.
Collapse
Affiliation(s)
- Kate A Jesse
- Los Alamos National Laboratory Los Alamos NM 87545 USA
| | - John S Anderson
- Department of Chemistry, The University of Chicago Chicago Illinois 60637 USA
| |
Collapse
|
7
|
Lee Y, Moon D, Cho J. Controlling Redox Potential of a Manganese(III)-Bis(hydroxo) Complex through Protonation and the Hydrogen-Atom Transfer Reactivity. J Am Chem Soc 2024; 146:15796-15805. [PMID: 38829358 DOI: 10.1021/jacs.4c01927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
A series of mononuclear manganese(III)-hydroxo and -aqua complexes, [MnIII(TBDAP)(OH)2]+ (1), [MnIII(TBDAP)(OH)(OH2)]2+ (2) and [MnIII(TBDAP)(OH2)2]3+ (3), were prepared from a manganese(II) precursor and confirmed using various methods including X-ray crystallography. Thermodynamic analysis showed that protonation from hydroxo to aqua species resulted in increased redox potentials (E1/2) in the order of 1 (-0.15 V) < 2 (0.56 V) < 3 (1.11 V), while pKa values exhibited a reverse trend in the order of 3 (3.87) < 2 (11.84). Employing the Bordwell Equation, the O-H bond dissociation free energies (BDFE) of [MnII(TBDAP)(OH)(OH2)]+ and [MnII(TBDAP)(OH2)2]2+, related to the driving force of 1 and 2 in hydrogen atom transfer (HAT), were determined as 75.3 and 77.3 kcal mol-1, respectively. It was found that the thermodynamic driving force of 2 in HAT becomes greater than that of 1 as the redox potential of 2 increases through protonation from 1 to 2. Kinetic studies on electrophilic reactions using a variety of substrates revealed that 1 is only weakly reactive with O-H bonds, whereas 2 can activate aliphatic C-H bonds in addition to O-H bonds. The reaction rates increased by 1.4 × 104-fold for the O-H bonds by 2 over 1, which was explained by the difference in BDFE and the tunneling effect. Furthermore, 3, possessing the highest redox potential value, was found to undergo an aromatic C-H bond activation reaction under mild conditions. These results provide valuable insights into enhancing electrophilic reactivity by modulating the redox potential of manganese(III)-hydroxo and -aqua complexes through protonation.
Collapse
Affiliation(s)
- Yuri Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dohyun Moon
- Beamline Department, Pohang Accelerator Laboratory, Pohang 37673, Republic of Korea
| | - Jaeheung Cho
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
8
|
Ansari M, Bhattacharjee S, Pantazis DA. Correlating Structure with Spectroscopy in Ascorbate Peroxidase Compound II. J Am Chem Soc 2024; 146:9640-9656. [PMID: 38530124 PMCID: PMC11009960 DOI: 10.1021/jacs.3c13169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/27/2024]
Abstract
Structural and spectroscopic investigations of compound II in ascorbate peroxidase (APX) have yielded conflicting conclusions regarding the protonation state of the crucial Fe(IV) intermediate. Neutron diffraction and crystallographic data support an iron(IV)-hydroxo formulation, whereas Mössbauer, X-ray absorption (XAS), and nuclear resonance vibrational spectroscopy (NRVS) studies appear consistent with an iron(IV)-oxo species. Here we examine APX with spectroscopy-oriented QM/MM calculations and extensive exploration of the conformational space for both possible formulations of compound II. We establish that irrespective of variations in the orientation of a vicinal arginine residue and potential reorganization of proximal water molecules and hydrogen bonding, the Fe-O distances for the oxo and hydroxo forms consistently fall within distinct, narrow, and nonoverlapping ranges. The accuracy of geometric parameters is validated by coupled-cluster calculations with the domain-based local pair natural orbital approach, DLPNO-CCSD(T). QM/MM calculations of spectroscopic properties are conducted for all structural variants, encompassing Mössbauer, optical, X-ray absorption, and X-ray emission spectroscopies and NRVS. All spectroscopic observations can be assigned uniquely to an Fe(IV)═O form. A terminal hydroxy group cannot be reconciled with the spectroscopic data. Under no conditions can the Fe(IV)═O distance be sufficiently elongated to approach the crystallographically reported Fe-O distance. The latter is consistent only with a hydroxo species, either Fe(IV) or Fe(III). Our findings strongly support the Fe(IV)═O formulation of APX-II and highlight unresolved discrepancies in the nature of samples used across different experimental studies.
Collapse
Affiliation(s)
- Mursaleem Ansari
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz
1, Mülheim an der Ruhr 45470, Germany
| | - Sinjini Bhattacharjee
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz
1, Mülheim an der Ruhr 45470, Germany
| | - Dimitrios A. Pantazis
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz
1, Mülheim an der Ruhr 45470, Germany
| |
Collapse
|
9
|
Keshari K, Santra A, Velasco L, Sauvan M, Kaur S, Ugale AD, Munshi S, Marco JF, Moonshiram D, Paria S. Functional Model of Compound II of Cytochrome P450: Spectroscopic Characterization and Reactivity Studies of a Fe IV-OH Complex. JACS AU 2024; 4:1142-1154. [PMID: 38559734 PMCID: PMC10976569 DOI: 10.1021/jacsau.3c00844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/12/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024]
Abstract
Herein, we show that the reaction of a mononuclear FeIII(OH) complex (1) with N-tosyliminobenzyliodinane (PhINTs) resulted in the formation of a FeIV(OH) species (3). The obtained complex 3 was characterized by an array of spectroscopic techniques and represented a rare example of a synthetic FeIV(OH) complex. The reaction of 1 with the one-electron oxidizing agent was reported to form a ligand-oxidized FeIII(OH) complex (2). 3 revealed a one-electron reduction potential of -0.22 V vs Fc+/Fc at -15 °C, which was 150 mV anodically shifted than 2 (Ered = -0.37 V vs Fc+/Fc at -15 °C), inferring 3 to be more oxidizing than 2. 3 reacted spontaneously with (4-OMe-C6H4)3C• to form (4-OMe-C6H4)3C(OH) through rebound of the OH group and displayed significantly faster reactivity than 2. Further, activation of the hydrocarbon C-H and the phenolic O-H bond by 2 and 3 was compared and showed that 3 is a stronger oxidant than 2. A detailed kinetic study established the occurrence of a concerted proton-electron transfer/hydrogen atom transfer reaction of 3. Studying one-electron reduction of 2 and 3 using decamethylferrocene (Fc*) revealed a higher ket of 3 than 2. The study established that the primary coordination sphere around Fe and the redox state of the metal center is very crucial in controlling the reactivity of high-valent Fe-OH complexes. Further, a FeIII(OMe) complex (4) was synthesized and thoroughly characterized, including X-ray structure determination. The reaction of 4 with PhINTs resulted in the formation of a FeIV(OMe) species (5), revealing the presence of two FeIV species with isomer shifts of -0.11 mm/s and = 0.17 mm/s in the Mössbauer spectrum and showed FeIV/FeIII potential at -0.36 V vs Fc+/Fc couple in acetonitrile at -15 °C. The reactivity studies of 5 were investigated and compared with the FeIV(OH) complex (3).
Collapse
Affiliation(s)
- Kritika Keshari
- Department
of Chemistry, Indian Institute of Technology
Delhi, Hauz Khas, New Delhi 110016, India
| | - Aakash Santra
- Department
of Chemistry, Indian Institute of Technology
Delhi, Hauz Khas, New Delhi 110016, India
| | - Lucía Velasco
- Instituto
de Ciencia de Materiales de Madrid, Consejo
Superior de Investigaciones Científicas, Sor Juana Inés de la Cruz, 3, Madrid 28049, Spain
| | - Maxime Sauvan
- Instituto
de Ciencia de Materiales de Madrid, Consejo
Superior de Investigaciones Científicas, Sor Juana Inés de la Cruz, 3, Madrid 28049, Spain
| | - Simarjeet Kaur
- Department
of Chemistry, Indian Institute of Technology
Delhi, Hauz Khas, New Delhi 110016, India
| | - Ashok D. Ugale
- Instituto
de Ciencia de Materiales de Madrid, Consejo
Superior de Investigaciones Científicas, Sor Juana Inés de la Cruz, 3, Madrid 28049, Spain
| | - Sandip Munshi
- School
of Chemical Science, Indian Association
for the Cultivation of Science, Raja S C Mulliick Road, Kolkata 700032, India
| | - J. F. Marco
- Instituto
de Quimica Fisica Blas Cabrera, Consejo
Superior de Investigaciones Científicas, C. de Serrano, 119, Serrano, Madrid 28006, Spain
| | - Dooshaye Moonshiram
- Instituto
de Ciencia de Materiales de Madrid, Consejo
Superior de Investigaciones Científicas, Sor Juana Inés de la Cruz, 3, Madrid 28049, Spain
| | - Sayantan Paria
- Department
of Chemistry, Indian Institute of Technology
Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
10
|
Hou K, Börgel J, Jiang HZH, SantaLucia DJ, Kwon H, Zhuang H, Chakarawet K, Rohde RC, Taylor JW, Dun C, Paley MV, Turkiewicz AB, Park JG, Mao H, Zhu Z, Alp EE, Zhao J, Hu MY, Lavina B, Peredkov S, Lv X, Oktawiec J, Meihaus KR, Pantazis DA, Vandone M, Colombo V, Bill E, Urban JJ, Britt RD, Grandjean F, Long GJ, DeBeer S, Neese F, Reimer JA, Long JR. Reactive high-spin iron(IV)-oxo sites through dioxygen activation in a metal-organic framework. Science 2023; 382:547-553. [PMID: 37917685 DOI: 10.1126/science.add7417] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/24/2023] [Indexed: 11/04/2023]
Abstract
In nature, nonheme iron enzymes use dioxygen to generate high-spin iron(IV)=O species for a variety of oxygenation reactions. Although synthetic chemists have long sought to mimic this reactivity, the enzyme-like activation of O2 to form high-spin iron(IV) = O species remains an unrealized goal. Here, we report a metal-organic framework featuring iron(II) sites with a local structure similar to that in α-ketoglutarate-dependent dioxygenases. The framework reacts with O2 at low temperatures to form high-spin iron(IV) = O species that are characterized using in situ diffuse reflectance infrared Fourier transform, in situ and variable-field Mössbauer, Fe Kβ x-ray emission, and nuclear resonance vibrational spectroscopies. In the presence of O2, the framework is competent for catalytic oxygenation of cyclohexane and the stoichiometric conversion of ethane to ethanol.
Collapse
Affiliation(s)
- Kaipeng Hou
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jonas Börgel
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Henry Z H Jiang
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Daniel J SantaLucia
- Max Planck Institute for Chemical Energy Conversion, D-45470 Mülheim an der Ruhr, Germany
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim an der Ruhr, Germany
| | - Hyunchul Kwon
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Hao Zhuang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA
| | | | - Rachel C Rohde
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Jordan W Taylor
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Chaochao Dun
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Maria V Paley
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ari B Turkiewicz
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Jesse G Park
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Haiyan Mao
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Ziting Zhu
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA
| | - E Ercan Alp
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Jiyong Zhao
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Michael Y Hu
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Barbara Lavina
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL 60637, USA
| | - Sergey Peredkov
- Max Planck Institute for Chemical Energy Conversion, D-45470 Mülheim an der Ruhr, Germany
| | - Xudong Lv
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Julia Oktawiec
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Katie R Meihaus
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | | | - Marco Vandone
- Department of Chemistry, University of Milan, 20133 Milan, Italy
| | - Valentina Colombo
- Department of Chemistry, University of Milan, 20133 Milan, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), UdR Milano, Via Golgi 19, 20133 Milano, Italy
| | - Eckhard Bill
- Max Planck Institute for Chemical Energy Conversion, D-45470 Mülheim an der Ruhr, Germany
| | - Jeffrey J Urban
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - R David Britt
- Department of Chemistry, University of California, Davis, CA 95616, USA
- Miller Institute for Basic Research in Science, University of California, Berkeley CA 94720, USA
| | - Fernande Grandjean
- Department of Chemistry, Missouri University of Science and Technology, University of Missouri, Rolla, MO 65409, USA
| | - Gary J Long
- Department of Chemistry, Missouri University of Science and Technology, University of Missouri, Rolla, MO 65409, USA
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, D-45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim an der Ruhr, Germany
| | - Jeffrey A Reimer
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Jeffrey R Long
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
11
|
Sen A, Ansari A, Swain A, Pandey B, Rajaraman G. Probing the Origins of Puzzling Reactivity in Fe/Mn-Oxo/Hydroxo Species toward C-H Bonds: A DFT and Ab Initio Perspective. Inorg Chem 2023; 62:14931-14941. [PMID: 37650771 DOI: 10.1021/acs.inorgchem.3c01632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Activation of C-H bonds using an earth-abundant metal catalyst is one of the top challenges of chemistry, where high-valent Mn/Fe-oxo(hydroxo) biomimic species play an important role. There are several open questions related to the comparative oxidative abilities of these species, and a unifying concept that could accommodate various factors influencing reactivity is lacking. To shed light on these open questions, here, we have used a combination of density functional theory (DFT) (B3LYP-D3/def2-TZVP) and ab initio (CASSCF/NEVPT2) calculations to study a series of high-valent metal-oxo species [Mn+H3buea(O/OH)] (M = Mn and Fe, n = II to V; H3buea = tris[(N'-tert-butylureaylato)-N-ethylene)]aminato towards the activation of dihydroanthracene (DHA). The H-bonding network in the ligand architecture influences the ground state-excited state gap and brings several excited states of the same spin multiplicity closer in energy, which triggers reactivity via one of those excited states, reducing the kinetic barriers for the C-H bond activation and rationalizing several puzzling reactivity trends observed in various high-valent Mn/Fe-oxo(hydroxo) species.
Collapse
Affiliation(s)
- Asmita Sen
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai400076, India
| | - Azaj Ansari
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai400076, India
| | - Abinash Swain
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai400076, India
| | - Bhawana Pandey
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai400076, India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai400076, India
| |
Collapse
|
12
|
Follmer AH, Borovik AS. The role of basicity in selective C-H bond activation by transition metal-oxidos. Dalton Trans 2023; 52:11005-11016. [PMID: 37497779 PMCID: PMC10619463 DOI: 10.1039/d3dt01781h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The development of (bio)catalysts capable of selectively activating strong C-H bonds is a continuing challenge in modern chemistry. In both metalloenzymes and synthetic systems capable of activating C-H bonds, transition metal-oxido intermediates serve as the active species for reactivity whose thermodynamic properties influence the bond strengths they are capable of activating. In this Frontier article, we present current ideas of how the basicity of transition metal-oxidos impacts their reactivity with C-H bonds and present new opportunities within this field. We highlight recent insights into the role basicity plays in the activation process and its influence on mechanism, as well as the important role that secondary coordination sphere effects, such as hydrogen bonds, in tuning the basicity of the metal-oxido species is discussed.
Collapse
Affiliation(s)
- Alec H Follmer
- Department of Chemistry, University of California-Irvine, Irvine, CA 92697-3900, USA.
| | - A S Borovik
- Department of Chemistry, University of California-Irvine, Irvine, CA 92697-3900, USA.
| |
Collapse
|
13
|
Nandy A, Adamji H, Kastner DW, Vennelakanti V, Nazemi A, Liu M, Kulik HJ. Using Computational Chemistry To Reveal Nature’s Blueprints for Single-Site Catalysis of C–H Activation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Aditya Nandy
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Husain Adamji
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - David W. Kastner
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Vyshnavi Vennelakanti
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Azadeh Nazemi
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mingjie Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J. Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
14
|
Gupta G, Bera M, Paul S, Paria S. Electrochemical Properties and Reactivity Study of [Mn V(O)(μ-OR-Lewis Acid)] Cores. Inorg Chem 2021; 60:18006-18016. [PMID: 34813300 DOI: 10.1021/acs.inorgchem.1c02601] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A mononuclear manganese(V) oxo complex of a bis(amidate)bis(alkoxide) ligand, (NMe4)[MnV(HMPAB)(O)] [2; H4HMPAB = 1,2-bis(2-hydroxy-2-methylpropanamido)benzene], was synthesized and structurally characterized. A Mn-Oterm distance of 1.566(4) Å was observed in the solid-state structure of 2, consistent with the Mn≡O formulation. The reaction of redox-inactive metal ions (Mn+ = Li+, Ca2+, Mg2+, Y3+, and Sc3+) with 2 resulted in the formation of 2-Mn+ species, which were characterized by UV-vis, 1H NMR, cyclic voltammetry, and in situ IR spectroscopy. Theoretical calculations suggested that the alkoxide oxygen atoms of the ligand scaffold are energetically most favorable for coordinating the Mn+ ions in 2. Complex 2 revealed one-electron-reduction potential at -0.01 V versus ferrocenium/ferrocene, which shifted anodically upon coordination of Mn+ ions to 2, and such a shift became more prominent with stronger Lewis acids. The oxygen-atom transfer (OAT) reactivities of 2 and 2-Mn+ species with triphenylphosphine were compared, which exhibited a systematic increase of the reaction rate with increasing Lewis acidity of Mn+ ions, and a plot of log k2 versus Lewis acidity of Mn+ ions (ΔE) followed a linear relationship. It was observed that 2-Sc3+ was ca. 3200 times more reactive toward the OAT reaction compared to 2. Hammett analysis of 2 exhibited a V-shaped plot, indicating a change of the reaction mechanism upon going from electron-rich to electron-deficient Ar3P substrates. In contrast, 2-Ca2+ and 2-Sc3+ showed an electrophilic nature toward the OAT reaction, thus demonstrating the role of the Lewis acid in controlling the OAT mechanism. The hydrogen-atom abstraction reaction of 2 and 2-Mn+ adducts with 1-benzyl-1,4-dihydronicotinamide was investigated, and it was observed that the rate of reaction did not vary considerably with the Lewis acidity of Mn+ ions. On the basis of Eyring analysis of 2 and 2-Mn+ adducts, we hypothesized an entropy-controlled hydrogen-atom-transfer reaction for 2-Sc3+, which is different from the reaction mechanism of 2 and 2-Ca2+.
Collapse
Affiliation(s)
- Geetika Gupta
- Department of Chemistry, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India
| | - Moumita Bera
- Department of Chemistry, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India
| | - Satadal Paul
- Department of Chemistry, Bangabasi Morning College, Kolkata 700009, India
| | - Sayantan Paria
- Department of Chemistry, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
15
|
Jesse KA, Anferov SW, Collins KA, Valdez-Moreira JA, Czaikowski ME, Filatov AS, Anderson JS. Direct Aerobic Generation of a Ferric Hydroperoxo Intermediate Via a Preorganized Secondary Coordination Sphere. J Am Chem Soc 2021; 143:18121-18130. [PMID: 34698493 PMCID: PMC8569801 DOI: 10.1021/jacs.1c06911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Indexed: 01/19/2023]
Abstract
Enzymes exert control over the reactivity of metal centers with precise tuning of the secondary coordination sphere of active sites. One particularly elegant illustration of this principle is in the controlled delivery of proton and electron equivalents in order to activate abundant but kinetically inert oxidants such as O2 for oxidative chemistry. Chemists have drawn inspiration from biology in designing molecular systems where the secondary coordination sphere can shuttle protons or electrons to substrates. However, a biomimetic activation of O2 requires the transfer of both protons and electrons, and molecular systems where ancillary ligands are designed to provide both of these equivalents are comparatively rare. Here, we report the use of a dihydrazonopyrrole (DHP) ligand complexed to Fe to perform exactly such a biomimetic activation of O2. In the presence of O2, this complex directly generates a high spin Fe(III)-hydroperoxo intermediate which features a DHP• ligand radical via ligand-based transfer of an H atom. This system displays oxidative reactivity and ultimately releases hydrogen peroxide, providing insight on how secondary coordination sphere interactions influence the evolution of oxidizing intermediates in Fe-mediated aerobic oxidations.
Collapse
Affiliation(s)
- Kate A. Jesse
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Sophie W. Anferov
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Kelsey A. Collins
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | | | - Maia E. Czaikowski
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Alexander S. Filatov
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - John S. Anderson
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
16
|
Ledray AP, Mittra K, Green MT. NRVS investigation of ascorbate peroxidase compound II: Observation of Iron(IV)oxo stretching. J Inorg Biochem 2021; 224:111548. [PMID: 34481347 PMCID: PMC11890179 DOI: 10.1016/j.jinorgbio.2021.111548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 11/18/2022]
Abstract
The protonation state of ascorbate peroxidase compound II (APX-II) has been a subject of debate. A combined X-ray/neutron crystallographic study reported that APX-II is best described as an iron(IV)hydroxide species with an FeO distance of 1.88 Å (Kwon, et al. Nat Commun2016, 7, 13,445), while X-ray absorption spectroscopy (XAS) experiments (utilizing extended X-ray absorption fine structure (EXAFS) and pre-edge analyses) indicate APX-II is an authentic iron(IV)oxo species with an FeO distance 1.68 Å (Ledray, et al. Journal of the American Chemical Society2020,142, 20,419). Previous debates concerning ferryl protonation states have been resolved through the application of Badger's rule, which correlates FeO bond distances with FeO vibrational frequencies. To obtain the required vibrational data, we have collected Nuclear Resonance Vibrational Spectroscopy (NRVS) data for APX-II. We observe a broad vibrational feature in the range associated with iron(IV)oxo stretching (700-800 cm-1). This feature appears to have two peaks at 732 cm-1 and 770 cm-1, corresponding to FeO distances of 1.69 and 1.67 Å, respectively. The broad vibrational envelope and the presence of multiple resonances could reflect a distribution of hydrogen bonding interactions within the active-site pocket.
Collapse
Affiliation(s)
- Aaron P Ledray
- Department of Chemistry, University of California, Irvine, CA 92697, USA; Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Kaustuv Mittra
- Department of Chemistry, University of California, Irvine, CA 92697, USA; Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Michael T Green
- Department of Chemistry, University of California, Irvine, CA 92697, USA; Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
17
|
Mehmood R, Vennelakanti V, Kulik HJ. Spectroscopically Guided Simulations Reveal Distinct Strategies for Positioning Substrates to Achieve Selectivity in Nonheme Fe(II)/α-Ketoglutarate-Dependent Halogenases. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03169] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Rimsha Mehmood
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Vyshnavi Vennelakanti
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J. Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
18
|
Lee JL, Ross DL, Barman SK, Ziller JW, Borovik AS. C-H Bond Cleavage by Bioinspired Nonheme Metal Complexes. Inorg Chem 2021; 60:13759-13783. [PMID: 34491738 DOI: 10.1021/acs.inorgchem.1c01754] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The functionalization of C-H bonds is one of the most challenging transformations in synthetic chemistry. In biology, these processes are well-known and are achieved with a variety of metalloenzymes, many of which contain a single metal center within their active sites. The most well studied are those with Fe centers, and the emerging experimental data show that high-valent iron oxido species are the intermediates responsible for cleaving the C-H bond. This Forum Article describes the state of this field with an emphasis on nonheme Fe enzymes and current experimental results that provide insights into the properties that make these species capable of C-H bond cleavage. These parameters are also briefly considered in regard to manganese oxido complexes and Cu-containing metalloenzymes. Synthetic iron oxido complexes are discussed to highlight their utility as spectroscopic and mechanistic probes and reagents for C-H bond functionalization. Avenues for future research are also examined.
Collapse
Affiliation(s)
- Justin L Lee
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - Dolores L Ross
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - Suman K Barman
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - Joseph W Ziller
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - A S Borovik
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| |
Collapse
|
19
|
Jesse KA, Chang MC, Filatov AS, Anderson JS. Iron(II) Complexes Featuring a Redox-Active Dihydrazonopyrrole Ligand. Z Anorg Allg Chem 2021; 647:1415-1420. [PMID: 36059917 PMCID: PMC9435867 DOI: 10.1002/zaac.202100097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Indexed: 09/04/2024]
Abstract
Nature uses control of the secondary coordination sphere to facilitate an astounding variety of transformations. Similarly, synthetic chemists have found metal-ligand cooperativity to be a powerful strategy for designing complexes that can mediate challenging reactivity. In particular, this strategy has been used to facilitate two electron reactions with first row transition metals that more typically engage in one electron redox processes. While NNN pincer ligands feature prominently in this area, examples which can potentially engage in both proton and electron transfer are less common. Dihydrazonopyrrole (DHP) ligands have been isolated in a variety of redox and protonation states when complexed to Ni. However, the redox-state of this ligand scaffold is less obvious when complexed to metal centers with more accessible redox couples. Here, we synthesize a new series of Fe-DHP complexes in two distinct oxidation states. Detailed characterization supports that the redox-chemistry in this set is still primarily ligand based. Finally, these complexes exist as 5-coordinate species with an open coordination site offering the possibility of enhanced reactivity.
Collapse
Affiliation(s)
- Kate A Jesse
- University of Chicago Department of Chemistry, 929 E 57 St. Chicago, IL, 60637
| | - Mu-Chieh Chang
- National Taiwan University Department of Chemistry, No. 1, Section 4, Roosevelt Rd, Da'an District, Taipei City, Taiwan 10
| | - Alexander S Filatov
- University of Chicago Department of Chemistry, 929 E 57 St. Chicago, IL, 60637
| | - John S Anderson
- University of Chicago Department of Chemistry, 929 E 57 St. Chicago, IL, 60637
| |
Collapse
|
20
|
Ali HS, Henchman RH, Visser SP. Mechanism of Oxidative Ring‐Closure as Part of the Hygromycin Biosynthesis Step by a Nonheme Iron Dioxygenase. ChemCatChem 2021. [DOI: 10.1002/cctc.202100393] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hafiz Saqib Ali
- Manchester Institute of Biotechnology The University of Manchester 131 Princess Street Manchester M1 7DN UK
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Richard H. Henchman
- Manchester Institute of Biotechnology The University of Manchester 131 Princess Street Manchester M1 7DN UK
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Sam P. Visser
- Manchester Institute of Biotechnology The University of Manchester 131 Princess Street Manchester M1 7DN UK
- Department of Chemical Engineering and Analytical Science The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
21
|
Han SB, Ali HS, de Visser SP. Glutarate Hydroxylation by the Carbon Starvation-Induced Protein D: A Computational Study into the Stereo- and Regioselectivities of the Reaction. Inorg Chem 2021; 60:4800-4815. [DOI: 10.1021/acs.inorgchem.0c03749] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Sungho Bosco Han
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Hafiz Saqib Ali
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Sam P. de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
22
|
Ali HS, Henchman RH, Warwicker J, de Visser SP. How Do Electrostatic Perturbations of the Protein Affect the Bifurcation Pathways of Substrate Hydroxylation versus Desaturation in the Nonheme Iron-Dependent Viomycin Biosynthesis Enzyme? J Phys Chem A 2021; 125:1720-1737. [DOI: 10.1021/acs.jpca.1c00141] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hafiz Saqib Ali
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Richard H. Henchman
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Jim Warwicker
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Sam P. de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| |
Collapse
|
23
|
Keshari K, Bera M, Velasco L, Munshi S, Gupta G, Moonshiram D, Paria S. Characterization and reactivity study of non-heme high-valent iron-hydroxo complexes. Chem Sci 2021; 12:4418-4424. [PMID: 34163706 PMCID: PMC8179568 DOI: 10.1039/d0sc07054h] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A terminal FeIIIOH complex, [FeIII(L)(OH)]2− (1), has been synthesized and structurally characterized (H4L = 1,2-bis(2-hydroxy-2-methylpropanamido)benzene). The oxidation reaction of 1 with one equiv. of tris(4-bromophenyl)ammoniumyl hexachloroantimonate (TBAH) or ceric ammonium nitrate (CAN) in acetonitrile at −45 °C results in the formation of a FeIIIOH ligand radical complex, [FeIII(L˙)(OH)]− (2), which is hereby characterized by UV-visible, 1H nuclear magnetic resonance, electron paramagnetic resonance, and X-ray absorption spectroscopy techniques. The reaction of 2 with a triphenylcarbon radical further gives triphenylmethanol and mimics the so-called oxygen rebound step of Cpd II of cytochrome P450. Furthermore, the reaction of 2 was explored with different 4-substituted-2,6-di-tert-butylphenols. Based on kinetic analysis, a hydrogen atom transfer (HAT) mechanism has been established. A pKa value of 19.3 and a BDFE value of 78.2 kcal/mol have been estimated for complex 2. One-electron oxidation of an FeIII–OH complex (1) results in the formation of a FeIII–OH ligand radical complex (2). Its reaction with (C6H5)3C˙ results in the formation of (C6H5)3COH, which is a functional mimic of compound II of cytochrome P450.![]()
Collapse
Affiliation(s)
- Kritika Keshari
- Department of Chemistry, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Moumita Bera
- Department of Chemistry, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Lucía Velasco
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia Calle Faraday, 9 28049 Madrid Spain
| | - Sandip Munshi
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Geetika Gupta
- Department of Chemistry, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Dooshaye Moonshiram
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia Calle Faraday, 9 28049 Madrid Spain
| | - Sayantan Paria
- Department of Chemistry, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| |
Collapse
|
24
|
Xue SS, Li XX, Lee YM, Seo MS, Kim Y, Yanagisawa S, Kubo M, Jeon YK, Kim WS, Sarangi R, Kim SH, Fukuzumi S, Nam W. Enhanced Redox Reactivity of a Nonheme Iron(V)-Oxo Complex Binding Proton. J Am Chem Soc 2020; 142:15305-15319. [PMID: 32786748 DOI: 10.1021/jacs.0c05108] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Acid effects on the chemical properties of metal-oxygen intermediates have attracted much attention recently, such as the enhanced reactivity of high-valent metal(IV)-oxo species by binding proton(s) or Lewis acidic metal ion(s) in redox reactions. Herein, we report for the first time the proton effects of an iron(V)-oxo complex bearing a negatively charged tetraamido macrocyclic ligand (TAML) in oxygen atom transfer (OAT) and electron-transfer (ET) reactions. First, we synthesized and characterized a mononuclear nonheme Fe(V)-oxo TAML complex (1) and its protonated iron(V)-oxo complexes binding two and three protons, which are denoted as 2 and 3, respectively. The protons were found to bind to the TAML ligand of the Fe(V)-oxo species based on spectroscopic characterization, such as resonance Raman, extended X-ray absorption fine structure (EXAFS), and electron paramagnetic resonance (EPR) measurements, along with density functional theory (DFT) calculations. The two-protons binding constant of 1 to produce 2 and the third protonation constant of 2 to produce 3 were determined to be 8.0(7) × 108 M-2 and 10(1) M-1, respectively. The reactivities of the proton-bound iron(V)-oxo complexes were investigated in OAT and ET reactions, showing a dramatic increase in the rate of sulfoxidation of thioanisole derivatives, such as 107 times increase in reactivity when the oxidation of p-CN-thioanisole by 1 was performed in the presence of HOTf (i.e., 200 mM). The one-electron reduction potential of 2 (Ered vs SCE = 0.97 V) was significantly shifted to the positive direction, compared to that of 1 (Ered vs SCE = 0.33 V). Upon further addition of a proton to a solution of 2, a more positive shift of the Ered value was observed with a slope of 47 mV/log([HOTf]). The sulfoxidation of thioanisole derivatives by 2 was shown to proceed via ET from thioanisoles to 2 or direct OAT from 2 to thioanisoles, depending on the ET driving force.
Collapse
Affiliation(s)
- Shan-Shan Xue
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Xiao-Xi Li
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yujeong Kim
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.,Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Korea
| | - Sachiko Yanagisawa
- Graduate School of Life Science, University of Hyogo, Hyogo 678-1297, Japan
| | - Minoru Kubo
- Graduate School of Life Science, University of Hyogo, Hyogo 678-1297, Japan
| | - Young-Kyo Jeon
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Won-Suk Kim
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Ritimukta Sarangi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, California 94025, United States
| | - Sun Hee Kim
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.,Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.,School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
25
|
Oswald VF, Lee JL, Biswas S, Weitz AC, Mittra K, Fan R, Li J, Zhao J, Hu MY, Alp EE, Bominaar EL, Guo Y, Green MT, Hendrich MP, Borovik AS. Effects of Noncovalent Interactions on High-Spin Fe(IV)-Oxido Complexes. J Am Chem Soc 2020; 142:11804-11817. [PMID: 32489096 DOI: 10.1021/jacs.0c03085] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
High-valent nonheme FeIV-oxido species are key intermediates in biological oxidation, and their properties are proposed to be influenced by the unique microenvironments present in protein active sites. Microenvironments are regulated by noncovalent interactions, such as hydrogen bonds (H-bonds) and electrostatic interactions; however, there is little quantitative information about how these interactions affect crucial properties of high valent metal-oxido complexes. To address this knowledge gap, we introduced a series of FeIV-oxido complexes that have the same S = 2 spin ground state as those found in nature and then systematically probed the effects of noncovalent interactions on their electronic, structural, and vibrational properties. The key design feature that provides access to these complexes is the new tripodal ligand [poat]3-, which contains phosphinic amido groups. An important structural aspect of [FeIVpoat(O)]- is the inclusion of an auxiliary site capable of binding a Lewis acid (LAII); we used this unique feature to further modulate the electrostatic environment around the Fe-oxido unit. Experimentally, studies confirmed that H-bonds and LAII s can interact directly with the oxido ligand in FeIV-oxido complexes, which weakens the Fe═O bond and has an impact on the electronic structure. We found that relatively large vibrational changes in the Fe-oxido unit correlate with small structural changes that could be difficult to measure, especially within a protein active site. Our work demonstrates the important role of noncovalent interactions on the properties of metal complexes, and that these interactions need to be considered when developing effective oxidants.
Collapse
Affiliation(s)
- Victoria F Oswald
- Department of Chemistry, 1102 Natural Sciences II, University of California at Irvine, Irvine, California 92697, United States
| | - Justin L Lee
- Department of Chemistry, 1102 Natural Sciences II, University of California at Irvine, Irvine, California 92697, United States
| | - Saborni Biswas
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Andrew C Weitz
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Kaustuv Mittra
- Department of Molecular Biosciences and Biochemistry, University of California at Irvine, Irvine, California 92697, United States
| | - Ruixi Fan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jikun Li
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jiyong Zhao
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Michael Y Hu
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Esen E Alp
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Emile L Bominaar
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Michael T Green
- Department of Chemistry, 1102 Natural Sciences II, University of California at Irvine, Irvine, California 92697, United States.,Department of Molecular Biosciences and Biochemistry, University of California at Irvine, Irvine, California 92697, United States
| | - Michael P Hendrich
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - A S Borovik
- Department of Chemistry, 1102 Natural Sciences II, University of California at Irvine, Irvine, California 92697, United States
| |
Collapse
|
26
|
Abstract
AuIII-oxygen adducts have been implicated as intermediates in homogeneous and heterogeneous Au oxidation catalysis, but their reactivity is under-explored. Complex 1, ([AuIII(OH)(terpy)](ClO4)2, (terpy = 2,2':6',2-terpyridine), readily oxidized substrates bearing C-H and O-H bonds. Kinetic analysis revealed that the oxidation occurred through a hydrogen atom transfer (HAT) mechanism. Stable radicals were detected and quantified as products of almost quantitative HAT oxidation of alcohols by 1. Our findings highlight the possible role of AuIII-oxygen adducts in oxidation catalysis and the capability of late transition metal-oxygen adducts to perform proton coupled electron transfer.
Collapse
Affiliation(s)
- Marta Lovisari
- School of Chemistry, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - Aidan R McDonald
- School of Chemistry, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| |
Collapse
|
27
|
Visser SP. Second‐Coordination Sphere Effects on Selectivity and Specificity of Heme and Nonheme Iron Enzymes. Chemistry 2020; 26:5308-5327. [DOI: 10.1002/chem.201905119] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/04/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Sam P. Visser
- The Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical ScienceThe University of Manchester 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
28
|
Massie AA, Denler MC, Singh R, Sinha A, Nordlander E, Jackson TA. Structural Characterization of a Series of N5-Ligated Mn IV -Oxo Species. Chemistry 2020; 26:900-912. [PMID: 31693757 PMCID: PMC7388070 DOI: 10.1002/chem.201904434] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/23/2019] [Indexed: 11/05/2022]
Abstract
Analysis of extended X-ray absorption fine structure (EXAFS) data for the MnIV -oxo complexes [MnIV (O)(DMM N4py)]2+ , [MnIV (O)(2pyN2B)]2+ , and [MnIV (O)(2pyN2Q)]2+ (DMM N4py=N,N-bis(4-methoxy-3,5-dimethyl-2-pyridylmethyl)-N-bis(2-pyridyl)methylamine; 2pyN2B=(N-bis(1-methyl-2-benzimidazolyl)methyl-N-(bis-2-pyridylmethyl)amine, and 2pyN2Q=N,N-bis(2-pyridyl)-N,N-bis(2-quinolylmethyl)methanamine) afforded Mn=O and Mn-N bond lengths. The Mn=O distances for [MnIV (O)(DMM N4py)]2+ and [MnIV (O)(2pyN2B)]2+ are 1.72 and 1.70 Å, respectively. In contrast, the Mn=O distance for [MnIV (O)(2pyN2Q)]2+ was significantly longer (1.76 Å). We attribute this long distance to sample heterogeneity, which is reasonable given the reduced stability of [MnIV (O)(2pyN2Q)]2+ . The Mn=O distances for [MnIV (O)(DMM N4py)]2+ and [MnIV (O)(2pyN2B)]2+ could only be well-reproduced using DFT-derived models that included strong hydrogen-bonds between second-sphere solvent 2,2,2-trifluoroethanol molecules and the oxo ligand. These results suggest an important role for the 2,2,2-trifluoroethanol solvent in stabilizing MnIV -oxo adducts. The DFT methods were extended to investigate the structure of the putative [MnIV (O)(N4py)]2+ ⋅(HOTf)2 adduct. These computations suggest that a MnIV -hydroxo species is most consistent with the available experimental data.
Collapse
Affiliation(s)
- Allyssa A. Massie
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, KS 66045, USA
| | - Melissa C. Denler
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, KS 66045, USA
| | - Reena Singh
- Lund University, Chemical Physics, Department of Chemistry, Box 124, SE-221 00 Lund, Sweden
| | - Arup Sinha
- Lund University, Chemical Physics, Department of Chemistry, Box 124, SE-221 00 Lund, Sweden
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Vellore - 632014 Tamil Nadu, India
| | - Ebbe Nordlander
- Lund University, Chemical Physics, Department of Chemistry, Box 124, SE-221 00 Lund, Sweden
| | - Timothy A. Jackson
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, KS 66045, USA
| |
Collapse
|
29
|
Baek Y, Hennessy ET, Betley TA. Direct Manipulation of Metal Imido Geometry: Key Principles to Enhance C-H Amination Efficacy. J Am Chem Soc 2019; 141:16944-16953. [PMID: 31550162 DOI: 10.1021/jacs.9b09015] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We report the catalytic C-H amination mediated by an isolable CoIII imido complex (TrL)Co(NR) supported by a sterically demanding dipyrromethene ligand (TrL = 5-mesityl-1,9-(trityl)dipyrrin). Metalation of (TrL)Li with CoCl2 in THF afforded a high-spin (S = 3/2) three-coordinate complex (TrL)CoCl. Chemical reduction of (TrL)CoCl with potassium graphite yielded the high-spin (S = 1) CoI synthon (TrL)Co which is stabilized through an intramolecular η6-arene interaction. Treatment of (TrL)Co with a stoichiometric amount of 1-azidoadamantane (AdN3) furnished a three-coordinate, diamagnetic CoIII imide (TrL)Co(NAd) as confirmed by single-crystal X-ray diffraction, revealing a rare trigonal pyramidal geometry with an acute Co-Nimido-C angle 145.0(3)°. Exposure of 1-10 mol % of (TrL)Co to linear alkyl azides (RN3) resulted in catalytic formation of substituted N-heterocycles via intramolecular C-H amination of a range of C-H bonds, including primary C-H bonds. The mechanism of the C-N bond formation was probed via initial rate kinetic analysis and kinetic isotope effect experiments [kH/kD = 38.4(1)], suggesting a stepwise H-atom abstraction followed by radical recombination. In contrast to the previously reported C-H amination mediated by (ArL)Co(NR) (ArL = 5-mesityl-1,9-(2,4,6-Ph3C6H2)dipyrrin), (TrL)Co(NR) displays enhanced yields and rates of C-H amination without the aid of a cocatalyst, and no catalyst degradation to a tetrazene species was observed, as further supported by the pyridine inhibition effect on the rate of C-H amination. Furthermore, (TrL)Co(NAd) exhibits an extremely low one-electron reduction potential (E°red = -1.98 V vs [Cp2Fe]+/0) indicating that the highly basic terminal imido unit contributes to the driving force for H-atom abstraction.
Collapse
Affiliation(s)
- Yunjung Baek
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 , United States
| | - Elisabeth T Hennessy
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 , United States
| | - Theodore A Betley
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 , United States
| |
Collapse
|
30
|
Ehudin MA, Quist DA, Karlin KD. Enhanced Rates of C-H Bond Cleavage by a Hydrogen-Bonded Synthetic Heme High-Valent Iron(IV) Oxo Complex. J Am Chem Soc 2019; 141:12558-12569. [PMID: 31318198 PMCID: PMC6734939 DOI: 10.1021/jacs.9b01253] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Secondary coordination sphere interactions are critical in facilitating the formation, stabilization, and enhanced reactivity of high-valent oxidants required for essential biochemical processes. Herein, we compare the C-H bond oxidizing capabilities of spectroscopically characterized synthetic heme iron(IV) oxo complexes, F8Cmpd-II (F8 = tetrakis(2,6-difluorophenyl)porphyrinate), and a 2,6-lutidinium triflate (LutH+) Lewis acid adduct involving ferryl O-atom hydrogen-bonding, F8Cmpd-II(LutH+). Second-order rate constants utilizing C-H and C-D substrates were obtained by UV-vis spectroscopic monitoring, while products were characterized and quantified by EPR spectroscopy and gas chromatography (GC). With xanthene, F8Cmpd-II(LutH+) reacts 40 times faster (k2 = 14.2 M-1 s-1; -90 °C) than does F8Cmpd-II, giving bixanthene plus xanthone and the heme product [F8FeIIIOH2]+. For substrates with greater C-H bond dissociation energies (BDEs) F8Cmpd-II(LutH+) reacts with the second order rate constants k2(9,10-dihydroanthracene; DHA) = 0.485 M-1 s-1 and k2(fluorene) = 0.102 M-1 s-1 (-90 °C); by contrast, F8Cmpd-II is unreactive toward these substrates. For xanthene vs xanthene-(d2), large, nonclassical deuterium kinetic isotope effects are roughly estimated for both F8Cmpd-II and F8Cmpd-II(LutH+). The deuterated H-bonded analog, F8Cmpd-II(LutD+), was also prepared; for the reaction with DHA, an inverse KIE (compared to F8Cmpd-II(LutH+)) was observed. This work originates/inaugurates experimental investigation of the reactivity of authentic H-bonded heme-based FeIV═O compounds, critically establishing the importance of oxo H-bonding (or protonation) in heme complexes and enzyme active sites.
Collapse
Affiliation(s)
- Melanie A. Ehudin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - David A. Quist
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kenneth D. Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
31
|
Mehmood R, Qi HW, Steeves AH, Kulik HJ. The Protein’s Role in Substrate Positioning and Reactivity for Biosynthetic Enzyme Complexes: The Case of SyrB2/SyrB1. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00865] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
32
|
Singh O, Gupta P, Singh A, Maji A, Singh UP, Ghosh K. Selective oxidation of benzyl alcohol to benzaldehyde, 1‐phenylethanol to acetophenone and fluorene to fluorenol catalysed by iron (II) complexes supported by pincer‐type ligands: Studies on rapid degradation of organic dyes. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ovender Singh
- Department of ChemistryIIT Roorkee Roorkee 247667 Uttarakhand India
| | - Priyanka Gupta
- Department of ChemistryIIT Roorkee Roorkee 247667 Uttarakhand India
| | - Anshu Singh
- Department of ChemistryIIT Roorkee Roorkee 247667 Uttarakhand India
| | - Ankur Maji
- Department of ChemistryIIT Roorkee Roorkee 247667 Uttarakhand India
| | - Udai P. Singh
- Department of ChemistryIIT Roorkee Roorkee 247667 Uttarakhand India
| | - Kaushik Ghosh
- Department of ChemistryIIT Roorkee Roorkee 247667 Uttarakhand India
| |
Collapse
|
33
|
Matheu R, Ertem MZ, Gimbert-Suriñach C, Sala X, Llobet A. Seven Coordinated Molecular Ruthenium–Water Oxidation Catalysts: A Coordination Chemistry Journey. Chem Rev 2019; 119:3453-3471. [DOI: 10.1021/acs.chemrev.8b00537] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Roc Matheu
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Mehmed Z. Ertem
- Chemistry Division, Energy & Photon Sciences Directorate, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Carolina Gimbert-Suriñach
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Xavier Sala
- Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Antoni Llobet
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
34
|
Weitz AC, Mills MR, Ryabov AD, Collins TJ, Guo Y, Bominaar EL, Hendrich MP. A Synthetically Generated LFe IVOH n Complex. Inorg Chem 2019; 58:2099-2108. [PMID: 30667223 DOI: 10.1021/acs.inorgchem.8b03200] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
High-valent Fe-OH species are important intermediates in hydroxylation chemistry. Such complexes have been implicated in mechanisms of oxygen-activating enzymes and have thus far been observed in Compound II of sulfur-ligated heme enzymes like cytochrome P450. Attempts to synthetically model such species have thus far seen relatively little success. Here, the first synthetic FeIVOH n complex has been generated and spectroscopically characterized as either [LFeIVOH]- or [LFeIVOH2]0, where H4L = Me4C2(NHCOCMe2NHCO)2CMe2 is a variant of a tetra-amido macrocyclic ligand (TAML). The steric bulk provided by the replacement of the aryl group with the -CMe2CMe2- unit in this TAML variant prevents dimerization in all oxidation states over a wide pH range, thus allowing the generation of FeIVOH n in near quantitative yield from oxidation of the [LFeIIIOH2]- precursor.
Collapse
Affiliation(s)
- Andrew C Weitz
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Matthew R Mills
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Alexander D Ryabov
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Terrence J Collins
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Yisong Guo
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Emile L Bominaar
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Michael P Hendrich
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| |
Collapse
|
35
|
Harmalkar DS, Santosh G, Shetgaonkar SB, Sankaralingam M, Dhuri SN. A putative heme manganese(v)-oxo species in the C–H activation and epoxidation reactions in an aqueous buffer. NEW J CHEM 2019. [DOI: 10.1039/c9nj01381d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Synthesis and reactivity studies of manganese(v)-oxo species in the C–H activation of alkyl hydrocarbons and epoxidation of cyclohexene in aqueous conditions are investigated.
Collapse
Affiliation(s)
| | - G. Santosh
- School of Chemical Sciences
- Goa University
- Panaji
- India
- Divison of Chemistry
| | | | | | | |
Collapse
|
36
|
Weitz AC, Hill EA, Oswald VF, Bominaar EL, Borovik AS, Hendrich MP, Guo Y. Probing Hydrogen Bonding Interactions to Iron-Oxido/Hydroxido Units by 57 Fe Nuclear Resonance Vibrational Spectroscopy. Angew Chem Int Ed Engl 2018; 57:16010-16014. [PMID: 30353620 PMCID: PMC6263813 DOI: 10.1002/anie.201810227] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Indexed: 11/11/2022]
Abstract
Hydrogen bonds (H-bonds) have been shown to modulate the chemical reactivities of iron centers in iron-containing dioxygen-activating enzymes and model complexes. However, few examples are available that investigate how systematic changes in intramolecular H-bonds within the secondary coordination sphere influence specific properties of iron intermediates, such as iron-oxido/hydroxido species. Here, we used 57 Fe nuclear resonance vibrational spectroscopy (NRVS) to probe the Fe-O/OH vibrations in a series of FeIII -hydroxido and FeIV/III -oxido complexes with varying H-bonding networks but having similar trigonal bipyramidal primary coordination spheres. The data show that even subtle changes in the H-bonds to the Fe-O/OH units result in significant changes in their vibrational frequencies, thus demonstrating the utility of NRVS in studying the effect of the secondary coordination sphere to the reactivities of iron complexes.
Collapse
Affiliation(s)
- Andrew C Weitz
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Ethan A Hill
- Department of Chemistry, University of California, Irvine, CA, 92697, USA
| | - Victoria F Oswald
- Department of Chemistry, University of California, Irvine, CA, 92697, USA
| | - Emile L Bominaar
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Andrew S Borovik
- Department of Chemistry, University of California, Irvine, CA, 92697, USA
| | - Michael P Hendrich
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| |
Collapse
|
37
|
Weitz AC, Hill EA, Oswald VF, Bominaar EL, Borovik AS, Hendrich MP, Guo Y. Probing Hydrogen Bonding Interactions to Iron‐Oxido/Hydroxido Units by
57
Fe Nuclear Resonance Vibrational Spectroscopy. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201810227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Andrew C. Weitz
- Department of Chemistry Carnegie Mellon University Pittsburgh PA 15213 USA
| | - Ethan A. Hill
- Department of Chemistry University of California Irvine CA 92697 USA
| | | | - Emile L. Bominaar
- Department of Chemistry Carnegie Mellon University Pittsburgh PA 15213 USA
| | - Andrew S. Borovik
- Department of Chemistry University of California Irvine CA 92697 USA
| | | | - Yisong Guo
- Department of Chemistry Carnegie Mellon University Pittsburgh PA 15213 USA
| |
Collapse
|
38
|
Rajabimoghadam K, Darwish Y, Bashir U, Pitman D, Eichelberger S, Siegler MA, Swart M, Garcia-Bosch I. Catalytic Aerobic Oxidation of Alcohols by Copper Complexes Bearing Redox-Active Ligands with Tunable H-Bonding Groups. J Am Chem Soc 2018; 140:16625-16634. [PMID: 30400740 DOI: 10.1021/jacs.8b08748] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this research article, we describe the structure, spectroscopy, and reactivity of a family of copper complexes bearing bidentate redox-active ligands that contain H-bonding donor groups. Single-crystal X-ray crystallography shows that these tetracoordinate complexes are stabilized by intramolecular H-bonding interactions between the two ligand scaffolds. Interestingly, the Cu complexes undergo multiple reversible oxidation-reduction processes associated with the metal ion (CuI, CuII, CuIII) and/or the o-phenyldiamido ligand (L2-, L•-, L). Moreover, some of the CuII complexes catalyze the aerobic oxidation of alcohols to aldehydes (or ketones) at room temperature. Our extensive mechanistic analysis suggests that the dehydrogenation of alcohols occurs via an unusual reaction pathway for galactose oxidase model systems, in which O2 reduction occurs concurrently with substrate oxidation.
Collapse
Affiliation(s)
| | - Yousef Darwish
- Department of Chemistry , Southern Methodist University , Dallas , Texas 75275 , United States
| | - Umyeena Bashir
- Department of Chemistry , Southern Methodist University , Dallas , Texas 75275 , United States
| | - Dylan Pitman
- Department of Chemistry , Southern Methodist University , Dallas , Texas 75275 , United States
| | - Sidney Eichelberger
- Department of Chemistry , Southern Methodist University , Dallas , Texas 75275 , United States
| | - Maxime A Siegler
- Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Marcel Swart
- ICREA , Pg. Lluís Companys 23 , 08010 Barcelona , Spain.,IQCC , University of Girona , Campus Montilivi (Ciències) , Girona , Spain
| | - Isaac Garcia-Bosch
- Department of Chemistry , Southern Methodist University , Dallas , Texas 75275 , United States
| |
Collapse
|
39
|
Rana S, Biswas JP, Sen A, Clémancey M, Blondin G, Latour JM, Rajaraman G, Maiti D. Selective C-H halogenation over hydroxylation by non-heme iron(iv)-oxo. Chem Sci 2018; 9:7843-7858. [PMID: 30429994 PMCID: PMC6194801 DOI: 10.1039/c8sc02053a] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/14/2018] [Indexed: 12/26/2022] Open
Abstract
Non-heme iron based halogenase enzymes promote selective halogenation of the sp3-C-H bond through iron(iv)-oxo-halide active species. During halogenation, competitive hydroxylation can be prevented completely in enzymatic systems. However, synthetic iron(iv)-oxo-halide intermediates often result in a mixture of halogenation and hydroxylation products. In this report, we have developed a new synthetic strategy by employing non-heme iron based complexes for selective sp3-C-H halogenation by overriding hydroxylation. A room temperature stable, iron(iv)-oxo complex, [Fe(2PyN2Q)(O)]2+ was directed for hydrogen atom abstraction (HAA) from aliphatic substrates and the iron(ii)-halide [FeII(2PyN2Q)(X)]+ (X, halogen) was exploited in conjunction to deliver the halogen atom to the ensuing carbon centered radical. Despite iron(iv)-oxo being an effective promoter of hydroxylation of aliphatic substrates, the perfect interplay of HAA and halogen atom transfer in this work leads to the halogenation product selectively by diverting the hydroxylation pathway. Experimental studies outline the mechanistic details of the iron(iv)-oxo mediated halogenation reactions. A kinetic isotope study between PhCH3 and C6D5CD3 showed a value of 13.5 that supports the initial HAA step as the RDS during halogenation. Successful implementation of this new strategy led to the establishment of a functional mimic of non-heme halogenase enzymes with an excellent selectivity for halogenation over hydroxylation. Detailed theoretical studies based on density functional methods reveal how the small difference in the ligand design leads to a large difference in the electronic structure of the [Fe(2PyN2Q)(O)]2+ species. Both experimental and computational studies suggest that the halide rebound process of the cage escaped radical with iron(iii)-halide is energetically favorable compared to iron(iii)-hydroxide and it brings in selective formation of halogenation products over hydroxylation.
Collapse
Affiliation(s)
- Sujoy Rana
- Department of Chemistry , IIT Bombay , Powai , Mumbai-400076 , India
| | | | - Asmita Sen
- Department of Chemistry , IIT Bombay , Powai , Mumbai-400076 , India
| | - Martin Clémancey
- University of Grenoble Alpes , LCBM/PMB and CEA , IRTSV/CBM/PMB and CNRS , LCBM UMR 5249, PMB , 38000 Grenoble , France
| | - Geneviève Blondin
- University of Grenoble Alpes , LCBM/PMB and CEA , IRTSV/CBM/PMB and CNRS , LCBM UMR 5249, PMB , 38000 Grenoble , France
| | - Jean-Marc Latour
- University of Grenoble Alpes , LCBM/PMB and CEA , IRTSV/CBM/PMB and CNRS , LCBM UMR 5249, PMB , 38000 Grenoble , France
| | - Gopalan Rajaraman
- Department of Chemistry , IIT Bombay , Powai , Mumbai-400076 , India
| | - Debabrata Maiti
- Department of Chemistry , IIT Bombay , Powai , Mumbai-400076 , India
| |
Collapse
|
40
|
Oswald VF, Weitz AC, Biswas S, Ziller JW, Hendrich MP, Borovik AS. Manganese-Hydroxido Complexes Supported by a Urea/Phosphinic Amide Tripodal Ligand. Inorg Chem 2018; 57:13341-13350. [PMID: 30299920 DOI: 10.1021/acs.inorgchem.8b01886] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrogen bonds (H-bonds) within the secondary coordination sphere are often invoked as essential noncovalent interactions that lead to productive chemistry in metalloproteins. Incorporating these types of effects within synthetic systems has proven a challenge in molecular design that often requires the use of rigid organic scaffolds to support H-bond donors or acceptors. We describe the preparation and characterization of a new hybrid tripodal ligand ([H2pout]3-) that contains two monodeprotonated urea groups and one phosphinic amide. The urea groups serve as H-bond donors, while the phosphinic amide group serves as a single H-bond acceptor. The [H2pout]3- ligand was utilized to stabilize a series of Mn-hydroxido complexes in which the oxidation state of the metal center ranges from 2+ to 4+. The molecular structure of the MnIII-OH complex demonstrates that three intramolecular H-bonds involving the hydroxido ligand are formed. Additional evidence for the formation of intramolecular H-bonds was provided by vibrational spectroscopy in which the energy of the O-H vibration supports its assignment as an H-bond donor. The stepwise oxidation of [MnIIH2pout(OH)]2- to its higher oxidized analogs was further substantiated by electrochemical measurements and results from electronic absorbance and electron paramagnetic resonance spectroscopies. Our findings illustrate the utility of controlling both the primary and secondary coordination spheres to achieve structurally similar Mn-OH complexes with varying oxidation states.
Collapse
Affiliation(s)
- Victoria F Oswald
- Department of Chemistry , University of California-Irvine , 1102 Natural Sciences II , Irvine , California 92697 , United States
| | - Andrew C Weitz
- Department of Chemistry , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - Saborni Biswas
- Department of Chemistry , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - Joseph W Ziller
- Department of Chemistry , University of California-Irvine , 1102 Natural Sciences II , Irvine , California 92697 , United States
| | - Michael P Hendrich
- Department of Chemistry , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - A S Borovik
- Department of Chemistry , University of California-Irvine , 1102 Natural Sciences II , Irvine , California 92697 , United States
| |
Collapse
|
41
|
Affiliation(s)
- Paolo Pirovano
- School of Chemistry and CRANN/AMBER Nanoscience Institute; Trinity College Dublin; The University of Dublin; College Green 2 Dublin Ireland
| | - Aidan R. McDonald
- School of Chemistry and CRANN/AMBER Nanoscience Institute; Trinity College Dublin; The University of Dublin; College Green 2 Dublin Ireland
| |
Collapse
|
42
|
Castillo RG, Banerjee R, Allpress CJ, Rohde GT, Bill E, Que L, Lipscomb JD, DeBeer S. High-Energy-Resolution Fluorescence-Detected X-ray Absorption of the Q Intermediate of Soluble Methane Monooxygenase. J Am Chem Soc 2017; 139:18024-18033. [PMID: 29136468 PMCID: PMC5729100 DOI: 10.1021/jacs.7b09560] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Kα high-energy-resolution fluorescence detected X-ray absorption spectroscopy (HERFD XAS) provides a powerful tool for overcoming the limitations of conventional XAS to identify the electronic structure and coordination environment of metalloprotein active sites. Herein, Fe Kα HERFD XAS is applied to the diiron active site of soluble methane monooxygenase (sMMO) and to a series of high-valent diiron model complexes, including diamond-core [FeIV2(μ-O)2(L)2](ClO4)4] (3) and open-core [(O═FeIV-O-FeIV(OH)(L)2](ClO4)3 (4) models (where, L = tris(3,5-dimethyl-4-methoxypyridyl-2-methyl)amine) (TPA*)). Pronounced differences in the HERFD XAS pre-edge energies and intensities are observed for the open versus closed Fe2O2 cores in the model compounds. These differences are reproduced by time-dependent density functional theory (TDDFT) calculations and allow for the pre-edge energies and intensity to be directly correlated with the local active site geometric and electronic structure. A comparison of the model complex HERFD XAS data to that of MMOHQ (the key intermediate in methane oxidation) is supportive of an open-core structure. Specifically, the large pre-edge area observed for MMOHQ may be rationalized by invoking an open-core structure with a terminal FeIV═O motif, though further modulations of the core structure due to the protein environment cannot be ruled out. The present study thus motivates the need for additional experimental and theoretical studies to unambiguously assess the active site conformation of MMOHQ.
Collapse
Affiliation(s)
- Rebeca G. Castillo
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34, D-45470 Mülheim an der Ruhr, Germany
| | - Rahul Banerjee
- Department of Biochemistry, Molecular Biology and Biophysics, 321 Church St. SE, Minneapolis, MN 55455
| | - Caleb J. Allpress
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455
| | - Gregory T. Rohde
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455
| | - Eckhard Bill
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34, D-45470 Mülheim an der Ruhr, Germany
| | - Lawrence Que
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455
| | - John D. Lipscomb
- Department of Biochemistry, Molecular Biology and Biophysics, 321 Church St. SE, Minneapolis, MN 55455
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
43
|
de Sousa DP, Miller CJ, Chang Y, Waite TD, McKenzie CJ. Electrochemically Generated cis-Carboxylato-Coordinated Iron(IV) Oxo Acid-Base Congeners as Promiscuous Oxidants of Water Pollutants. Inorg Chem 2017; 56:14936-14947. [PMID: 29039183 DOI: 10.1021/acs.inorgchem.7b02208] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The nonheme iron(IV) oxo complex [FeIV(O)(tpenaH)]2+ and its conjugate base [FeIV(O)(tpena)]+ [tpena- = N,N,N'-tris(2-pyridylmethyl)ethylenediamine-N'-acetate] have been prepared electrochemically in water by bulk electrolysis of solutions prepared from [FeIII2(μ-O)(tpenaH)2](ClO4)4 at potentials over 1.3 V (vs NHE) using inexpensive and commercially available carbon-based electrodes. Once generated, these iron(IV) oxo complexes persist at room temperature for minutes to half an hour over a wide range of pH values. They are capable of rapidly decomposing aliphatic and aromatic alcohols, alkanes, formic acid, phenols, and the xanthene dye rhodamine B. The oxidation of formic acid to carbon dioxide demonstrates the capacity for total mineralization of organic compounds. A radical hydrogen-atom-abstraction mechanism is proposed with a reactivity profile for the series that is reminiscent of oxidations by the hydroxyl radical. Facile regeneration of [FeIV(O)(tpenaH)]2+/ [FeIV(O)(tpena)]+ and catalytic turnover in the oxidation of cyclohexanol under continuous electrolysis demonstrates the potential of the application of [FeIII(tpena)]2+ as an electrocatalyst. The promiscuity of the electrochemically generated iron(IV) oxo complexes, in terms of the broad range of substrates examined, represents an important step toward the goal of cost-effective electrocatalytic water purification.
Collapse
Affiliation(s)
- David P de Sousa
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , Campusvej 55, 5320 Odense, Denmark
| | - Christopher J Miller
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales , Sydney, New South Wales 2052, Australia
| | - Yingyue Chang
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales , Sydney, New South Wales 2052, Australia
| | - T David Waite
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales , Sydney, New South Wales 2052, Australia
| | - Christine J McKenzie
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , Campusvej 55, 5320 Odense, Denmark
| |
Collapse
|
44
|
Zaragoza JPT, Yosca TH, Siegler MA, Möenne-Loccoz P, Green MT, Goldberg DP. Direct Observation of Oxygen Rebound with an Iron-Hydroxide Complex. J Am Chem Soc 2017; 139:13640-13643. [PMID: 28930448 PMCID: PMC6058725 DOI: 10.1021/jacs.7b07979] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The rebound mechanism for alkane hydroxylation was invoked over 40 years ago to help explain reactivity patterns in cytochrome P450, and subsequently has been used to provide insight into a range of biological and synthetic systems. Efforts to model the rebound reaction in a synthetic system have been unsuccessful, in part because of the challenge in preparing a suitable metal-hydroxide complex at the correct oxidation level. Herein we report the synthesis of such a complex. The reaction of this species with a series of substituted radicals allows for the direct interrogation of the rebound process, providing insight into this uniformly invoked, but previously unobserved process.
Collapse
Affiliation(s)
- Jan Paulo T. Zaragoza
- Department of Chemistry, The Johns Hopkins University, 3400 N Charles Street, Baltimore, Maryland 21218, United States
| | - Timothy H. Yosca
- Department of Chemistry, University of California–Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - Maxime A. Siegler
- Department of Chemistry, The Johns Hopkins University, 3400 N Charles Street, Baltimore, Maryland 21218, United States
| | - Pierre Möenne-Loccoz
- Institute of Environmental Health, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Michael T. Green
- Department of Chemistry, University of California–Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - David P. Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 N Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
45
|
Roy S, Kästner J. Catalytic Mechanism of Salicylate Dioxygenase: QM/MM Simulations Reveal the Origin of Unexpected Regioselectivity of the Ring Cleavage. Chemistry 2017; 23:8949-8962. [DOI: 10.1002/chem.201701286] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Subhendu Roy
- Institute for Theoretical Chemistry; University of Stuttgart; Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Johannes Kästner
- Institute for Theoretical Chemistry; University of Stuttgart; Pfaffenwaldring 55 70569 Stuttgart Germany
| |
Collapse
|
46
|
Yosca TH, Ledray AP, Ngo J, Green MT. A new look at the role of thiolate ligation in cytochrome P450. J Biol Inorg Chem 2017; 22:209-220. [PMID: 28091754 PMCID: PMC5640440 DOI: 10.1007/s00775-016-1430-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 12/14/2016] [Indexed: 10/20/2022]
Abstract
Protonated ferryl (or iron(IV)hydroxide) intermediates have been characterized in several thiolate-ligated heme proteins that are known to catalyze C-H bond activation. The basicity of the ferryl intermediates in these species has been proposed to play a critical role in facilitating this chemistry, allowing hydrogen abstraction at reduction potentials below those that would otherwise lead to oxidative degradation of the enzyme. In this contribution, we discuss the events that led to the assignment and characterization of the unusual iron(IV)hydroxide species, highlighting experiments that provided a quantitative measure of the ferryl basicity, the iron(IV)hydroxide pKa. We then turn to the importance of the iron(IV)hydroxide state, presenting a new way of looking at the role of thiolate ligation in these systems.
Collapse
Affiliation(s)
- Timothy H Yosca
- Departments of Chemistry & Molecular Biology and Biochemistry, University of California-Irvine, 4134, Natural Sciences 1, Irvine, CA 92697, USA
| | - Aaron P Ledray
- Departments of Chemistry & Molecular Biology and Biochemistry, University of California-Irvine, 4134, Natural Sciences 1, Irvine, CA 92697, USA
| | - Joanna Ngo
- Departments of Chemistry & Molecular Biology and Biochemistry, University of California-Irvine, 4134, Natural Sciences 1, Irvine, CA 92697, USA
| | - Michael T Green
- Departments of Chemistry & Molecular Biology and Biochemistry, University of California-Irvine, 4134, Natural Sciences 1, Irvine, CA 92697, USA.
| |
Collapse
|
47
|
Guillo P, Daran J, Manoury E, Poli R. Synthesis and Characterization of First Row Metal Complexes Derived from a Pyridinophane Ligand Functionalized by Fluoroalcohol. ChemistrySelect 2017. [DOI: 10.1002/slct.201700404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Pascal Guillo
- Université de ToulouseInstitut Universitaire de Technologie Paul Sabatier-Département de Chimie Av. Georges Pompidou, BP 20258 Castres Cedex F- 81104 France
- CNRS, LCC (Laboratoire de Chimie de Coordination)Université de Toulouse, UPS, INPT 205, route de Narbonne Toulouse F- 31077 France
| | - Jean‐Claude Daran
- CNRS, LCC (Laboratoire de Chimie de Coordination)Université de Toulouse, UPS, INPT 205, route de Narbonne Toulouse F- 31077 France
| | - Eric Manoury
- CNRS, LCC (Laboratoire de Chimie de Coordination)Université de Toulouse, UPS, INPT 205, route de Narbonne Toulouse F- 31077 France
| | - Rinaldo Poli
- CNRS, LCC (Laboratoire de Chimie de Coordination)Université de Toulouse, UPS, INPT 205, route de Narbonne Toulouse F- 31077 France
- Institut Universitaire de France 103 bd Saint-Michel Paris 75005 France
| |
Collapse
|