1
|
Jara-Cortés J, Resendiz-Pérez A, Hernández-Trujillo J, Peón J. Relaxation and Photochemistry of Nitroaromatic Compounds: Intersystem Crossing through 1ππ* to Higher 3ππ* States, and NO • Dissociation in 9-Nitroanthracene─A Theoretical Study. J Phys Chem A 2025; 129:3220-3230. [PMID: 40138542 DOI: 10.1021/acs.jpca.4c08534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Determination of the photodegradation pathways of nitroaromatic compounds, known for their mutagenic properties and toxicity, is a relevant topic in atmospheric chemistry. In the present theoretical study, mechanisms for the photophysical relaxation and NO• dissociation of 9-nitroanthracene (9-NA) are proposed that challenge the commonly assumed pathways based on the El-Sayed rules. The analysis of the stationary points on the potential energy surfaces obtained with multiconfigurational methods indicates that after light absorption and subsequent relaxation of the S1 state, the system undergoes ultrafast intersystem crossing to T2, which serves as a gate-state to the triplet manifold due to favorable energetic couplings. This occurs despite the nature of the singlet and triplet states being 1ππ* and 3ππ*, where the receiver triplet involves NO2 orbitals that are tilted from the polyaromatic plane, with no involvement of the 3nπ state in the process. After the singlet to triplet manifold crossing, the system evolves along two possible trajectories. One leads to the global minimum of T1 (phosphorescent end state) and the other involves the dissociation into antryloxy and NO• radicals. Overall, the information obtained is in agreement with steady-state and time-resolved spectroscopic data reported for 9-NA. Furthermore, it suggests that the deactivation mechanism of nitroaromatic compounds can take place between 1ππ* and 3ππ* states, which opens a new landscape for the rationalization of the photophysics of these and other systems.
Collapse
Affiliation(s)
- Jesús Jara-Cortés
- Unidad Académica de Ciencias Básicas e Ingenierías, Universidad Autónoma de Nayarit, Tepic 63155, México
| | - Antonio Resendiz-Pérez
- Unidad Académica de Ciencias Básicas e Ingenierías, Universidad Autónoma de Nayarit, Tepic 63155, México
| | - Jesús Hernández-Trujillo
- Departamento de Física y Química Teórica, Facultad de Química, UNAM, Ciudad de México 04510, México
| | - Jorge Peón
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| |
Collapse
|
2
|
Wen L, Yoshinaga K, Imasaka T, Imasaka T. Trace analysis of nitrated polycyclic aromatic hydrocarbons based on two-color femtosecond laser ionization mass spectrometry. Talanta 2023; 265:124807. [PMID: 37327661 DOI: 10.1016/j.talanta.2023.124807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/10/2023] [Accepted: 06/09/2023] [Indexed: 06/18/2023]
Abstract
Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) are suspected to be highly carcinogenic and mutagenic compounds that are present in the environment. Gas chromatography combined with mass spectrometry (GC-MS) is the most frequently used technique for trace analysis. The electron ionization techniques that are currently used in MS, however, typically do not result in the formation of a molecular ion, thus making the determination of these compounds more difficult. In this study, we report on the use of a compact highly-repetitive (low-pulse-energy) ultraviolet (UV) femtosecond laser as the ionization source in combination with a miniature time-of-flight mass analyzer and a time-correlated ion counting system. The UV laser pulses emitted at 343, 257, and 206 nm were produced by harmonic generations of a femtosecond Yb laser emitting at 1030 nm and were utilized for single-color multiphoton ionization. A combination of the 343-nm and 257-nm pulses was further employed to achieve two-color two-photon ionization. This technique was found to be more useful for sensitive detection and also resulted in the formation of a molecular ion. A pump-and-probe technique using these pulses was examined in a proof-of-concept study to measure the femtosecond lifetimes of the nitro-PAHs separated by GC, providing additional information for use in the characterization of the analyte. The developed technique was applied in the analysis of an authentic sample, an organic solvent extract from diesel exhaust particulates. The nitro-PAHs contained in a standard reference material (SRM1975) were determined on a two-dimensional GC-MS display, suggesting that this technique would be useful for the practical trace analysis of nitro-PAHs in environmental samples.
Collapse
Affiliation(s)
- Lu Wen
- Faculty of Design, Kyushu University, 4-9-1, Shiobaru, Minami-ku, Fukuoka 815-8540: 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Katsunori Yoshinaga
- Faculty of Design, Kyushu University, 4-9-1, Shiobaru, Minami-ku, Fukuoka 815-8540: 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Totaro Imasaka
- Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan; Hikari Giken, Co., 2-10-30, Sakurazaka, Chuou-ku, Fukuoka, 810-0024, Japan
| | - Tomoko Imasaka
- Faculty of Design, Kyushu University, 4-9-1, Shiobaru, Minami-ku, Fukuoka 815-8540: 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
3
|
Sen A, Mora AK, Agarwalla SK, Sridhar G, Kundu S, Nath S. Surfactant mediated suppression of aggregation and excited state ring puckering process in Pyrromethene 597-Application in water based dye laser. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 282:121642. [PMID: 35901541 DOI: 10.1016/j.saa.2022.121642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/29/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Water is being considered as an economical, safe and environmental friendly alternative solvent for dye lasers. However, the use of water in dye laser is restricted due to the formation of non-emissive aggregates of dye molecules. In the present study we have explored the possibility of the use of commercially available surfactant molecules for the water based laser of Pyrromethene 597 (PM597) dye, which has emerged as an alternative for more commonly used Rhodamine dyes in dye laser systems. Our studies show that in water, PM597 forms non-emissive aggregates which can be dissociated into monomeric dye molecules by adding common surfactants. Further, the high microviscosity in the micellar media retarded energy wasting ring puckering process in the excited state of the dye leading to the increase in its emission yield and excited state lifetime to a significant extent. It has been demonstrated that the emission yield and excited state lifetime in surfactant solution is relatively higher than in ethanol, the most commonly used organic solvent for dye lasers. Lasing action has been demonstrated in the aqueous solution of dye and lasing efficiency is found to be comparable to ethanol.
Collapse
Affiliation(s)
- Ayentika Sen
- Beam Technology and Development Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - Aruna K Mora
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - Sandeep K Agarwalla
- Beam Technology and Development Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - G Sridhar
- Beam Technology and Development Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - Soumitra Kundu
- Beam Technology and Development Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Sukhendu Nath
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India.
| |
Collapse
|
4
|
|
5
|
Zobel JP, González L. Nonadiabatic Dynamics Simulation Predict Intersystem Crossing in Nitroaromatic Molecules on a Picosecond Time Scale. CHEMPHOTOCHEM 2019; 3:833-845. [PMID: 31681833 PMCID: PMC6813632 DOI: 10.1002/cptc.201900108] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/06/2019] [Indexed: 12/19/2022]
Abstract
Previous time-resolved spectroscopic experiments and static quantum-chemical calculations attributed nitronaphthalene derivatives one of the fastest time scales for intersystem crossing within organic molecules, reaching the 100 fs mark. Nonadiabatic dynamics simulations on three nitronaphthalene derivatives challenge this view, showing that the experimentally observed ∼100 fs process corresponds to internal conversion in the singlet manifolds. Intersystem crossing, instead, takes place on a longer time scale of ∼1 ps. The dynamics simulations further reveal that the spin transitions occur via two distinct pathways with different contribution for the three systems, which are determined by electronic factors and the torsion of the nitro group. This study, therefore, indicates that the existence of sub-picosecond intersystem crossing in other nitroaromatic molecules should be questioned.
Collapse
Affiliation(s)
- J. Patrick Zobel
- Division of Theoretical Chemistry, KemicentrumLund UniversityP.O. Box 124SE-221 00LundSweden
| | - Leticia González
- Institute of Theoretical ChemistryUniversity of ViennaWähringer Straße 17A-1090ViennaAustria
| |
Collapse
|
6
|
Zobel JP, Nogueira JJ, González L. Mechanism of Ultrafast Intersystem Crossing in 2-Nitronaphthalene. Chemistry 2018; 24:5379-5387. [PMID: 29377370 PMCID: PMC5947663 DOI: 10.1002/chem.201705854] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Indexed: 01/10/2023]
Abstract
Nitronaphthalene derivatives efficiently populate their electronically excited triplet states upon photoexcitation through ultrafast intersystem crossing (ISC). Despite having been studied extensively by time-resolved spectroscopy, the reasons behind their ultrafast ISC remain unknown. Herein, we present the first ab initio nonadiabatic molecular dynamics study of a nitronaphthalene derivative, 2-nitronaphthalene, including singlet and triplet states. We find that there are two distinct ISC reaction pathways involving different electronic states at distinct nuclear configurations. The high ISC efficiency is explained by the very small electronic and nuclear alterations that the chromophore needs to undergo during the singlet-triplet transition in the dominating ISC pathway after initial dynamics in the singlet manifold. The insights gained in this work are expected to shed new light on the photochemistry of other nitro polycyclic aromatic hydrocarbons that exhibit ultrafast intersystem crossing.
Collapse
Affiliation(s)
- J. Patrick Zobel
- Institute of Theoretical Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Straße 171090ViennaAustria
| | - Juan J. Nogueira
- Institute of Theoretical Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Straße 171090ViennaAustria
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Straße 171090ViennaAustria
| |
Collapse
|
7
|
Zhang D, Jin P, Yang M, Du Y, Zheng X, Xue J. Intermolecular Hydrogen Abstraction from Hydroxy Group and Alkyl by T 1(ππ*) of 1-Chloro-4-nitronaphthalene. J Phys Chem A 2018; 122:1831-1837. [PMID: 29432008 DOI: 10.1021/acs.jpca.7b11146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nanosecond transient absorption and theoretical calculations have been used to investigate the intermolecular hydrogen abstractions from alcohols and 1-naphthol by the lowest excited triplet (T1) of 1-chloro-4-nitronaphthalene upon excitation of the compound in organic solvents. The hydrogen abstraction of T1 from hydroxy group of 1-naphthol takes place through an electron transfer followed by a proton transfer through hydrogen bonding interaction with rate constants of ∼109 M-1 s-1. Hydrogen-bonding is crucial in this process, indicated by the observation of a half reduction for T1 yield when increasing the concentration of 1-naphthol. The hydrogen abstraction in this way can be decelerated by increasing solvent polarity and hydrogen-bonding donor ability. The T1 of 1-chloro-4-nitronaphthalene can undergo one-step H atom abstraction from alkyl hydrogen in alcoholic solvents, with rate constants of ∼104 M-1 s-1, and produce radical intermediates with the absorption maximum at 368 nm. DFT calculation results indicate both oxygens of the nitro group are active sites for hydrogen abstraction, and the difference of activation barriers for formation of two radical isomers is only 1.0 kcal/mol.
Collapse
Affiliation(s)
- Di Zhang
- Department of Chemsitry, Zhejiang Sci-Tech University , Hangzhou 310018, China
| | - Peipei Jin
- Department of Chemsitry, Zhejiang Sci-Tech University , Hangzhou 310018, China
| | - Meng Yang
- Department of Chemsitry, Zhejiang Sci-Tech University , Hangzhou 310018, China
| | - Yong Du
- Center for THz Research, China Jiliang University , Hangzhou 310018, China
| | - Xuming Zheng
- Department of Chemsitry, Zhejiang Sci-Tech University , Hangzhou 310018, China
| | - Jiadan Xue
- Department of Chemsitry, Zhejiang Sci-Tech University , Hangzhou 310018, China
| |
Collapse
|
8
|
Rajagopal SK, K. N, Deb S, Bhat V, Sasikumar D, Sebastian E, Hariharan M. Extending the scope of the carbonyl facilitated triplet excited state towards visible light excitation. Phys Chem Chem Phys 2018; 20:19120-19128. [DOI: 10.1039/c8cp01023d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A series of extended π-conjugated benzophenone analogs was synthesized through a facile Lewis-acid catalyzed Friedel–Crafts reaction in order to exploit the integral triplet state properties of benzophenone.
Collapse
Affiliation(s)
- Shinaj K. Rajagopal
- School of Chemistry
- Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM)
- Thiruvananthapuram 695551
- India
| | - Nagaraj K.
- School of Chemistry
- Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM)
- Thiruvananthapuram 695551
- India
| | - Somadrita Deb
- School of Chemistry
- Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM)
- Thiruvananthapuram 695551
- India
| | - Vinayak Bhat
- School of Chemistry
- Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM)
- Thiruvananthapuram 695551
- India
| | - Devika Sasikumar
- School of Chemistry
- Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM)
- Thiruvananthapuram 695551
- India
| | - Ebin Sebastian
- School of Chemistry
- Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM)
- Thiruvananthapuram 695551
- India
| | - Mahesh Hariharan
- School of Chemistry
- Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM)
- Thiruvananthapuram 695551
- India
| |
Collapse
|
9
|
Brister MM, Piñero-Santiago LE, Morel M, Arce R, Crespo-Hernández CE. Photochemical Relaxation Pathways in Dinitropyrene Isomer Pollutants. J Phys Chem A 2017; 121:8197-8206. [PMID: 28984454 DOI: 10.1021/acs.jpca.7b04769] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Dinitropyrenes are polycyclic aromatic pollutants prevalent in the environment. While their transformations by sunlight in the environment have been documented, the effect that the nitro-group substitution pattern has on the relaxation pathways has not been extensively studied. In this contribution, the steady-state and femtosecond-to-microsecond excited-state dynamics of 1,3-dinitropyrene and 1,8-dinitropyrene isomers are investigated upon visible light excitation at 425 nm and compared with those recently reported for the 1,6-dinitropyrene isomer. The experimental results are complemented with ground- and excited-state density functional calculations. It is shown that excitation at 425 nm results in the ultrafast branching of the excited-state population in the S1 state to populate the triplet state in ca. 90% yield and to form a nitropyrenoxy radical in less than 10% yield. In addition, the position of the NO2 group does not affect significantly the excited-state relaxation mechanism, while it does influence the absorption and fluorescence spectra, the fluorescence, triplet, singlet oxygen, and photodegradation yields, as well as the relative yield of radical formation. Radical formation is implicated in the photodegradation of these pollutants, while in the presence of hydrogen donors, direct reactions from the triplet state are also observed.
Collapse
Affiliation(s)
- Matthew M Brister
- Department of Chemistry, Case Western Reserve University , 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Luis E Piñero-Santiago
- Department of Chemistry, University of Puerto Rico , Río Piedras Campus, San Juan, Puerto Rico 00931, United States
| | - María Morel
- Department of Chemistry, University of Puerto Rico , Río Piedras Campus, San Juan, Puerto Rico 00931, United States
| | - Rafael Arce
- Department of Chemistry, University of Puerto Rico , Río Piedras Campus, San Juan, Puerto Rico 00931, United States
| | - Carlos E Crespo-Hernández
- Department of Chemistry, Case Western Reserve University , 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
10
|
García-Berríos ZI, Arce R, Burgos-Martínez M, Burgos-Polanco ND. Phototransformations of environmental contaminants in models of the aerosol: 2 and 4-Nitropyrene. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2016.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Rajagopal SK, Mallia AR, Hariharan M. Enhanced intersystem crossing in carbonylpyrenes. Phys Chem Chem Phys 2017; 19:28225-28231. [DOI: 10.1039/c7cp04834c] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Photoexcited state relaxation of carbonylpyrenes displays ultrafast intersystem crossing to generate near-unity triplet formation.
Collapse
Affiliation(s)
- Shinaj K. Rajagopal
- School of Chemistry
- Indian Institute of Science Education and Research Thiruvananthapuram
- Thiruvananthapuram 695551
- India
| | - Ajith R. Mallia
- School of Chemistry
- Indian Institute of Science Education and Research Thiruvananthapuram
- Thiruvananthapuram 695551
- India
| | - Mahesh Hariharan
- School of Chemistry
- Indian Institute of Science Education and Research Thiruvananthapuram
- Thiruvananthapuram 695551
- India
| |
Collapse
|
12
|
Brister MM, Piñero-Santiago LE, Morel M, Arce R, Crespo-Hernández CE. The Photochemical Branching Ratio in 1,6-Dinitropyrene Depends on the Excitation Energy. J Phys Chem Lett 2016; 7:5086-5092. [PMID: 27973879 DOI: 10.1021/acs.jpclett.6b02549] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nitropolycyclic aromatic hydrocarbons constitute one of the most disconcerting classes of pollutants. Photochemical degradation is thought to be a primary mode of their natural removal from the environment, but the microscopic mechanism leading to product formation as a function of excitation wavelength is poorly understood. In this Letter, it is revealed that excitation of 1,6-dinitropyrene with 425, 415, or 340 nm radiation leads to an increasing amount of radical production through photodissociation at the expense of triplet-state population-the two primary reaction pathways in this class of pollutants. Radical formation requires overcoming an energy barrier in the excited singlet manifold. This activation energy explains the large fraction of the initial singlet-state population that intersystem crosses to a doorway triplet state, instead of leading overwhelmingly to photodissociation. The unforeseen excitation wavelength dependence of this branching process is expected to regulate the photochemistry of 1,6-dinitropyrene and possibly of other nitroaromatic pollutants in the environment.
Collapse
Affiliation(s)
- Matthew M Brister
- Department of Chemistry, Case Western Reserve University , 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Luis E Piñero-Santiago
- Department of Chemistry, University of Puerto Rico at Humacao , Humacao Campus, Humacao, Puerto Rico 00792
| | - María Morel
- Department of Chemistry, University of Puerto Rico , Río Piedras Campus, San Juan, Puerto Rico 00931
| | - Rafael Arce
- Department of Chemistry, University of Puerto Rico , Río Piedras Campus, San Juan, Puerto Rico 00931
| | - Carlos E Crespo-Hernández
- Department of Chemistry, Case Western Reserve University , 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
13
|
Espinoza EM, Xia B, Darabedian N, Larsen JM, Nuñez V, Bao D, Mac JT, Botero F, Wurch M, Zhou F, Vullev VI. Nitropyrene Photoprobes: Making Them, and What Are They Good for? European J Org Chem 2015. [DOI: 10.1002/ejoc.201501339] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Mora AK, Murudkar S, Singh PK, Gowthaman N, Mukherjee T, Nath S. Ultrafast excited state dynamics of 1-nitropyrene: Effect of H-bonding. J Photochem Photobiol A Chem 2013. [DOI: 10.1016/j.jphotochem.2013.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
García-Berríos ZI, Arce R. Photodegradation mechanisms of 1-nitropyrene, an environmental pollutant: the effect of organic solvents, water, oxygen, phenols, and polycyclic aromatics on the destruction and product yields. J Phys Chem A 2012; 116:3652-64. [PMID: 22458822 PMCID: PMC3334876 DOI: 10.1021/jp2126416] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This work describes studies of the photodegradation mechanism of 1-nitropyrene (1-NO(2)Py) in a chemical model system consisting of an organic solvent and known constituents of an aerosol particle. Photoproducts such as 1-hydroxypyrene (1-OHPy), 1-hydroxy-x-nitropyrenes (1-OH-x-NO(2)Py), 1-nitrosopyrene, and 1,6- and 1,8-pyrenediones were identified by high-performance liquid chromatography (HPLC) and HPLC/mass spectrometry (HPLC/MS) techniques, and their quantum yields show a significant dependence on the type of solvent. The photodegradation quantum yield of 1-NO(2)Py, φ((-1-NO2Py)), was larger in toluene, benzene, and polar protic solvents (10(-3)) in comparison with nonpolar and polar aprotic solvents, where the yield is on the order of 10(-4). In solvents with an abstractable hydrogen atom, the products formed in higher yields were 1-OHPy and 1-OH-x-NO(2)Py. These represent 60-80% of the photodestruction yield and result from abstraction and recombination reactions of the pyrenoxy radical, an intermediate postulated to be formed as a result of a nitro-nitrite rearrangement in nitroaromatics. The small O(2) effect in the photodegradation yield and the quenching experiments with azulene demonstrate the small contribution of the (3)(π,π*) state in the 1-NO(2)Py photoreaction. The nitrosopyrene product was not observed under these conditions, demonstrating the participation of the (3)(π,π*) state in its formation. In the presence various phenol aerosol constituents, the photodegradation yield increased by 10-fold in all solvents. This effect is partly ascribed to the reaction of the (3)(π,π*) state with the phenol. The effect of water resulted in the reduction of the 1-NO(2)Py photodegradation yield and of its photoproducts. The phototodegradation of 1-NO(2)Py was also studied in a viscous solvent, hexadecane, and it was determined that this medium does not inhibit its photodecay.
Collapse
Affiliation(s)
- Zulma I. García-Berríos
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico, 00931-3346
| | - Rafael Arce
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico, 00931-3346
| |
Collapse
|
16
|
Ghosh R, Palit DK. Ultrafast Dynamics of the Excited States of 1-(p-Nitrophenyl)-2-(hydroxymethyl)pyrrolidine. J Phys Chem A 2012; 116:1993-2005. [DOI: 10.1021/jp209271u] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rajib Ghosh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Dipak K. Palit
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| |
Collapse
|