1
|
Sklenář A, Zehnacker‐Rentien A, Kaminský J, Rohlíček J, Bouř P. Exploring Naproxen Cocrystals Through Solid-State Vibrational Circular Dichroism. Chirality 2025; 37:e70027. [PMID: 39961648 PMCID: PMC11832307 DOI: 10.1002/chir.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/21/2025]
Abstract
Vibrational circular dichroism (VCD) spectroscopy appears as a useful method for characterizing optically active substances in the solid state. This is particularly important for active pharmaceutical ingredients. However, measurement and interpretation of the spectra bring about many difficulties. To assess the experimental and computational methodologies, we explore an anti-inflammatory drug, naproxen. Infrared (IR) and VCD spectra of the pure compound and its cocrystals with alanine and proline were recorded, and the data were interpreted by quantum chemical simulations based on a cluster model and density functional theory. Although unpolarized IR spectroscopy can already distinguish pure ingredients from cocrystals or a mixture, the VCD technique is much more sensitive. For example, the naproxen carboxyl group strongly interacts with the zwitterionic alanine in the cocrystal via two strong hydrogen bonds, which results in a rather rigid structure crystallizing in the chiral P212121 Sohncke group and its VCD is relatively strong. In contrast, the d-proline and (S)-naproxen cocrystal (P21 group) involves a single hydrogen bond between the subunits, which together with a limited motion of the proline ring gives a weaker signal. Solid-state VCD spectroscopy thus appears useful for exploring composite crystal structures and interactions within them, including studies of pharmaceutical compounds.
Collapse
Affiliation(s)
- Adam Sklenář
- Institute of Organic Chemistry and BiochemistryAcademy of SciencesPragueCzech Republic
- Department of Analytical ChemistryUniversity of Chemistry and TechnologyPrague 6Czech Republic
| | | | - Jakub Kaminský
- Institute of Organic Chemistry and BiochemistryAcademy of SciencesPragueCzech Republic
| | - Jan Rohlíček
- Institute of PhysicsAcademy of SciencesPragueCzech Republic
| | - Petr Bouř
- Institute of Organic Chemistry and BiochemistryAcademy of SciencesPragueCzech Republic
- Department of Analytical ChemistryUniversity of Chemistry and TechnologyPrague 6Czech Republic
| |
Collapse
|
2
|
Das M, Gangopadhyay D, Hudecová J, Kessler J, Kapitán J, Bouř P. Monitoring Conformation and Protonation States of Glutathione by Raman Optical Activity and Molecular Dynamics. Chempluschem 2023; 88:e202300219. [PMID: 37283530 DOI: 10.1002/cplu.202300219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 06/08/2023]
Abstract
Glutathione (GSH) is a common antioxidant and its biological activity depends on the conformation and protonation state. We used molecular dynamics, Raman and Raman optical activity (ROA) spectroscopies to investigate GSH structural changes in a broad pH range. Factor analysis of the spectra provided protonation constants (2.05, 3.45, 8.62, 9.41) in good agreement with previously published values. Following the analysis, spectra of differently protonated forms were obtained by extrapolation. The complete deprotonation of the thiol group above pH 11 was clearly visible in the spectra; however, many spectral features did not change much with pH. Experimental spectra at various pH values were decomposed into the simulated ones, which allowed us to study the conformer populations and quality of molecular dynamics (MD). According to this combined ROA/MD analysis conformation of the GSH backbone is affected by the pH changes only in a limited way. The combination of ROA with the computations thus has the potential to improve the MD force field and obtain more accurate populations of the conformer species. The methodology can be used for any molecule, but for a more detailed insight better computational techniques are needed in the future.
Collapse
Affiliation(s)
- Moumita Das
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic
- Department of Analytical Chemistry Faculty of Chemical Engineering, University of Chemistry and Technology, Technická 5, 16628, Prague 6, Czech Republic
| | - Debraj Gangopadhyay
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic
| | - Jana Hudecová
- Department of Optics, Palacký University, 17. listopadu 12, 77146, Olomouc, Czech Republic
| | - Jiří Kessler
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic
| | - Josef Kapitán
- Department of Optics, Palacký University, 17. listopadu 12, 77146, Olomouc, Czech Republic
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic
- Department of Analytical Chemistry Faculty of Chemical Engineering, University of Chemistry and Technology, Technická 5, 16628, Prague 6, Czech Republic
| |
Collapse
|
3
|
Schrenková V, Para Kkadan MS, Kessler J, Kapitán J, Bouř P. Molecular dynamics and Raman optical activity spectra reveal nucleotide conformation ratios in solution. Phys Chem Chem Phys 2023; 25:8198-8208. [PMID: 36880812 DOI: 10.1039/d2cp05756e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Nucleotide conformational flexibility affects their biological functions. Although the spectroscopy of Raman optical activity (ROA) is well suited to structural analyses in aqueous solutions, the link between the spectral shape and the nucleotide geometry is not fully understood. We recorded the Raman and ROA spectra of model nucleotides (rAMP, rGMP, rCMP, and dTMP) and interpreted them on the basis of molecular dynamics (MD) combined with density functional theory (DFT). The relation between the sugar puckering, base conformation and spectral intensities is discussed. Hydrogen bonds between the sugar's C3' hydroxyl and the phosphate groups were found to be important for the sugar puckering. The simulated spectra correlated well with the experimental data and provided an understanding of the dependence of the spectral shapes on conformational dynamics. Most of the strongest spectral bands could be assigned to vibrational molecular motions. Decomposition of the experimental spectra into calculated subspectra based on arbitrary maps of free energies provided experimental conformer populations, which could be used to verify and improve the MD predictions. The analyses indicate some flaws of common MD force fields, such as being unable to describe the fine conformer distribution. Also the accuracy of conformer populations obtained from the spectroscopic data depends on the simulations, improvement of which is desirable for gaining a more detailed insight in the future. Improvement of the spectroscopic and computational methodology for nucleotides also provides opportunities for its application to larger nucleic acids.
Collapse
Affiliation(s)
- Věra Schrenková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610 Prague, Czech Republic. .,Department of Analytical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague, Czech Republic
| | - Mohammed Siddhique Para Kkadan
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610 Prague, Czech Republic. .,Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16, Prague, Czech Republic
| | - Jiří Kessler
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610 Prague, Czech Republic.
| | - Josef Kapitán
- Department of Optics, Palacký University Olomouc, 17. listopadu 12, 77146, Olomouc, Czech Republic
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610 Prague, Czech Republic. .,Department of Analytical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague, Czech Republic
| |
Collapse
|
4
|
Dobšíková K, Michal P, Spálovská D, Kuchař M, Paškanová N, Jurok R, Kapitán J, Setnička V. Conformational analysis of amphetamine and methamphetamine: a comprehensive approach by vibrational and chiroptical spectroscopy. Analyst 2023; 148:1337-1348. [PMID: 36857656 DOI: 10.1039/d2an02014a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
After cannabis, the most commonly used illicit substance worldwide is amphetamine and its derivatives, such as methamphetamine, with an ever-increasing number of synthetic modifications. Thus, fast and reliable methods are needed to identify them according to their spectral patterns and structures. Here, we have investigated the use of molecular spectroscopy methods to describe the 3D structures of these substances in a solution that models the physiological environment. The substances were analyzed by Raman and infrared (IR) absorption spectroscopy and by chiroptical methods, vibrational circular dichroism (VCD) and Raman optical activity (ROA). The obtained experimental data were supported by three different computational approaches based on density functional theory (DFT) and molecular dynamics (MD). Successful interpretation relies on good agreement between experimental and predicted spectra. The determination of the conformer populations of the studied molecules was based on maximizing the similarity overlap of weighted conformer spectra by a global minimization algorithm. Very good agreement was obtained between the experimental spectra and optimized-population weighted spectra from MD, providing a detailed insight into the structure of the molecules and their interaction with the solvent. The relative population of three amphetamine and six methamphetamine conformers was determined and is consistent with a previous NMR study. However, this work shows that only a few isolated conformers are not sufficient for the successful interpretation of the spectra, but the entire conformational space needs to be sampled appropriately and explicit interaction with the solvent needs to be included.
Collapse
Affiliation(s)
- Kristýna Dobšíková
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague 6, 166 28, Czech Republic.
| | - Pavel Michal
- Department of Optics, Palacký University Olomouc, Olomouc, 771 46, Czech Republic.
| | - Dita Spálovská
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague 6, 166 28, Czech Republic.
| | - Martin Kuchař
- Forensic Laboratory of Biologically Active Substances, University of Chemistry and Technology, Prague 6, 166 28, Czech Republic.,Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague 6, 166 28, Czech Republic.,National Institute of Mental Health, Klecany 250 67, Czech Republic
| | - Natalie Paškanová
- Forensic Laboratory of Biologically Active Substances, University of Chemistry and Technology, Prague 6, 166 28, Czech Republic.,Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague 6, 166 28, Czech Republic
| | - Radek Jurok
- Forensic Laboratory of Biologically Active Substances, University of Chemistry and Technology, Prague 6, 166 28, Czech Republic.,Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague 6, 166 28, Czech Republic.,Department of Organic Chemistry, University of Chemistry and Technology, Prague 6, 166 28, Czech Republic
| | - Josef Kapitán
- Department of Optics, Palacký University Olomouc, Olomouc, 771 46, Czech Republic.
| | - Vladimír Setnička
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague 6, 166 28, Czech Republic.
| |
Collapse
|
5
|
Bakker MJ, Mládek A, Semrád H, Zapletal V, Pavlíková Přecechtělová J. Improving IDP theoretical chemical shift accuracy and efficiency through a combined MD/ADMA/DFT and machine learning approach. Phys Chem Chem Phys 2022; 24:27678-27692. [PMID: 36373847 DOI: 10.1039/d2cp01638a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This work extends the multi-scale computational scheme for the quantum mechanics (QM) calculations of Nuclear Magnetic Resonance (NMR) chemical shifts (CSs) in proteins that lack a well-defined 3D structure. The scheme couples the sampling of an intrinsically disordered protein (IDP) by classical molecular dynamics (MD) with protein fragmentation using the adjustable density matrix assembler (ADMA) and density functional theory (DFT) calculations. In contrast to our early investigation on IDPs (Pavlíková Přecechtělová et al., J. Chem. Theory Comput., 2019, 15, 5642-5658) and the state-of-the art NMR calculations for structured proteins, a partial re-optimization was implemented on the raw MD geometries in vibrational normal mode coordinates to enhance the accuracy of the MD/ADMA/DFT computational scheme. In addition, machine-learning based cluster analysis was performed on the scheme to explore its potential in producing protein structure ensembles (CLUSTER ensembles) that yield accurate CSs at a reduced computational cost. The performance of the cluster-based calculations is validated against results obtained with conventional structural ensembles consisting of MD snapshots extracted from the MD trajectory at regular time intervals (REGULAR ensembles). CS calculations performed with the refined MD/ADMA/DFT framework employed the 6-311++G(d,p) basis set that outperformed IGLO-III calculations with the same density functional approximation (B3LYP) and both explicit and implicit solvation. The partial geometry optimization did not universally improve the agreement of computed CSs with the experiment but substantially decreased errors associated with the ensemble averaging. A CLUSTER ensemble with 50 structures yielded ensemble averages close to those obtained with a REGULAR ensemble consisting of 500 MD frames. The cluster based calculations thus required only a fraction of the computational time.
Collapse
Affiliation(s)
- Michael J Bakker
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203/8, 500 05 Hradec Králové, Czech Republic.
| | - Arnošt Mládek
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203/8, 500 05 Hradec Králové, Czech Republic.
| | - Hugo Semrád
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203/8, 500 05 Hradec Králové, Czech Republic. .,Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czech Republic
| | - Vojtěch Zapletal
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203/8, 500 05 Hradec Králové, Czech Republic.
| | - Jana Pavlíková Přecechtělová
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203/8, 500 05 Hradec Králové, Czech Republic.
| |
Collapse
|
6
|
Michal P, Kapitan J, Kessler J, Bour P. Low-frequency Raman Optical Activity Provides Insight into Structure of Chiral Liquids. Phys Chem Chem Phys 2022; 24:19722-19733. [DOI: 10.1039/d2cp02290g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vibrational frequencies of modes involving intermolecular motions in liquids are relatively small, in the Raman scattering close to the excitation frequency, and the bands may merge into a diverging uninterpretable...
Collapse
|
7
|
Yamamoto S, Ishiro S, Kessler J, Bouř P. Intense chiral signal from α-helical poly-L-alanine observed in low-frequency Raman optical activity. Phys Chem Chem Phys 2021; 23:26501-26509. [PMID: 34806737 DOI: 10.1039/d1cp04401j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Raman optical activity (ROA) spectral features reliably indicate the structure of peptides and proteins, but the signal is often weak. However, we observed significantly enhanced low-frequency bands for α-helical poly-L-alanine (PLA) in solution. The biggest ROA signal at ∼100 cm-1 is about 10 times stronger than higher-frequency bands described previously, which facilitates the detection. The low-frequency bands of PLA were compared to those of α-helical proteins. For PLA, density functional simulations well reproduced the experimental spectra and revealed that about 12 alanine residues within two turns of the α-helix generate the strong ROA band. Averaging based on molecular dynamics (MD) provided an even more realistic spectrum compared to the static model. The low-frequency bands could be largely related to a collective motion of the α-helical backbone, partially modulated by the solvent. Helical and intermolecular vibrational coordinates have been introduced and the helical unwinding modes were assigned to the strongest ROA signal at 101-128 cm-1. Further analysis indicated that the helically arranged amide and methyl groups are important for the strong chiral signal of PLA, while the local chiral centers CαH contribute in a minor way only. The strong low-frequency ROA can thus provide precious information about the motions of the peptide backbone and facilitate future protein studies.
Collapse
Affiliation(s)
- Shigeki Yamamoto
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka 560-0043, Japan.
| | - Shota Ishiro
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka 560-0043, Japan.
| | - Jiří Kessler
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610 Prague, Czech Republic.
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610 Prague, Czech Republic.
| |
Collapse
|
8
|
Kaminský J, Horáčková F, Biačková N, Hubáčková T, Socha O, Kubelka J. Double Hydrogen Bonding Dimerization Propensity of Aqueous Hydroxy Acids Investigated Using Vibrational Optical Activity. J Phys Chem B 2021; 125:11350-11363. [PMID: 34612644 DOI: 10.1021/acs.jpcb.1c05480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lactic and malic acids are key substances in a number of biochemical processes in living cells and are also utilized in industry. Vibrational spectroscopy represents an efficient and sensitive way to study their structure and interactions. Since water is the natural environment, proper understanding of their molecular dynamics in aqueous solutions is of critical importance. To this end, we employed Raman spectroscopy and Raman optical activity (ROA) to study the conformation of l-lactic and l-malic acids in water (while varying pH, temperature, and concentration), with special emphasis on their double hydrogen bonding dimerization propensity. Raman and ROA experimental data were supported by extensive theoretical calculations of the vibrational properties and by additional experiments (IR absorption, vibrational circular dichroism, and NMR). Conformational behavior of the acids in water was described by molecular dynamics simulations. Reliability of the results was verified by calculating the vibrational properties of populated conformers and by comparing thus obtained spectral features with the experimental data. Calculations estimated the incidence of H-bonded dimers in water to be low in lactic acid and comparable to monomers in malic acid. The "hybrid" approach presented here reveals limitations of relying on the experimental spectra alone to study dimer formation.
Collapse
Affiliation(s)
- Jakub Kaminský
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Františka Horáčková
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Nina Biačková
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Tereza Hubáčková
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Ondřej Socha
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Jan Kubelka
- University of Wyoming, 651 N. 19th Street, Laramie, Wyoming 82072, United States
| |
Collapse
|
9
|
Kurochka A, Průša J, Kessler J, Kapitán J, Bouř P. α-Synuclein conformations followed by vibrational optical activity. Simulation and understanding of the spectra. Phys Chem Chem Phys 2021; 23:16635-16645. [DOI: 10.1039/d1cp02574k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For α-synuclein novel structural markers were identified in vibrational optical activity spectra and supported by theoretical modeling.
Collapse
Affiliation(s)
- Andrii Kurochka
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences
- 16610 Prague
- Czech Republic
- Department of Analytical Chemistry
| | - Jiří Průša
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences
- 16610 Prague
- Czech Republic
- Department of Analytical Chemistry
| | - Jiří Kessler
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences
- 16610 Prague
- Czech Republic
| | - Josef Kapitán
- Department of Optics
- Palacký University Olomouc
- Olomouc
- Czech Republic
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences
- 16610 Prague
- Czech Republic
| |
Collapse
|
10
|
Hope M, Šebestík J, Kapitán J, Bouř P. Understanding CH-Stretching Raman Optical Activity in Ala–Ala Dipeptides. J Phys Chem A 2020; 124:674-683. [DOI: 10.1021/acs.jpca.9b10557] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marius Hope
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610 Prague, Czech Republic
- Norwegian University of Science and Technology NO-7491 Trondheim, Norway
| | - Jaroslav Šebestík
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610 Prague, Czech Republic
| | - Josef Kapitán
- Department of Optics, Palacký University, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610 Prague, Czech Republic
| |
Collapse
|
11
|
Mensch C, Bultinck P, Johannessen C. The effect of protein backbone hydration on the amide vibrations in Raman and Raman optical activity spectra. Phys Chem Chem Phys 2019; 21:1988-2005. [PMID: 30633268 DOI: 10.1039/c8cp06423g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Raman and specifically Raman optical activity (ROA) spectroscopy are very sensitive to the solution structure and conformation of biomolecules. Because of this strong conformational sensitivity, density functional theory (DFT) calculations are often used to get a better understanding of the experimentally observed spectral patterns. While e.g. for carbohydrate structure the water molecules that surround the solute have been demonstrated to be of vital importance to get accurate modelled ROA spectra, the effect of explicit water molecules on the calculated ROA patterns of peptides and proteins is less well studied. Here, the effect of protein backbone hydration was studied using DFT calculations of HCO-(l-Ala)5-NH2 in specific secondary structure conformations with different treatments of the solvation. The effect of the explicit water molecules on the calculated spectra mainly arises from the formation of hydrogen bonds with the amide C[double bond, length as m-dash]O and N-H groups. Hydrogen bonding of water with the C[double bond, length as m-dash]O group determines the shape and position of the amide I band. The C[double bond, length as m-dash]O bond length increases upon formation of C[double bond, length as m-dash]OH2O hydrogen bonds. The effect of the explicit water molecules on the amide III vibrations arises from hydrogen bonding of the solvent with both the C[double bond, length as m-dash]O and N-H group, but their contributions to this spectral region differ: geometrically, the formation of a C[double bond, length as m-dash]OH2O bond decreases the C-N bond length, while upon forming a N-HH2O hydrogen bond, the N-H bond length increases.
Collapse
Affiliation(s)
- Carl Mensch
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium.
| | | | | |
Collapse
|
12
|
Michal P, Čelechovský R, Dudka M, Kapitán J, Vůjtek M, Berešová M, Šebestík J, Thangavel K, Bouř P. Vibrational Optical Activity of Intermolecular, Overtone, and Combination Bands: 2-Chloropropionitrile and α-Pinene. J Phys Chem B 2019; 123:2147-2156. [DOI: 10.1021/acs.jpcb.9b00403] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pavel Michal
- Department of Optics, Palacký University Olomouc, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Radek Čelechovský
- Department of Optics, Palacký University Olomouc, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Michal Dudka
- Department of Optics, Palacký University Olomouc, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Josef Kapitán
- Department of Optics, Palacký University Olomouc, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Milan Vůjtek
- Department of Optics, Palacký University Olomouc, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Marie Berešová
- Department of Analytical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610 Prague, Czech Republic
| | - Jaroslav Šebestík
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610 Prague, Czech Republic
| | - Karthick Thangavel
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610 Prague, Czech Republic
| | - Petr Bouř
- Department of Analytical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610 Prague, Czech Republic
| |
Collapse
|
13
|
Kessler J, Andrushchenko V, Kapitán J, Bouř P. Insight into vibrational circular dichroism of proteins by density functional modeling. Phys Chem Chem Phys 2018; 20:4926-4935. [PMID: 29384537 DOI: 10.1039/c7cp08016f] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Vibrational circular dichroism (VCD) spectroscopy is an excellent method to determine the secondary structure of proteins in solution. Comparison of experimental spectra with quantum-chemical simulations represents a convenient and objective way to extract information on the structure. This has been difficult for such large molecules where approximate theoretical models have to be used. In the present study we applied the Cartesian-coordinate based tensor transfer (CCT) making it possible to extend the density functional theory (DFT) and model spectral intensities of large globular proteins nearly at quantum-chemical precision. Indeed, comparison with experiment provided a better understanding of the dependence of VCD spectral shapes on the geometry, their sensitivity to fine structural details and interactions with the environment. On a model set of globular proteins the simulated spectra correlated well with experimental data and revealed which structural information can (and cannot) be obtained from this kind of spectroscopy. Although the VCD technique has been regarded as being rather insensitive to side-chain variations, we found that the spectra of human and hen lysozyme differing by a few amino acids only are quite distinct. This has been explained by long-distance coupling of the amide vibrations. Likewise, the modeling reproduced some spectral changes caused by protein deuteration even when the protein structure was conserved.
Collapse
Affiliation(s)
- Jiří Kessler
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610 Prague, Czech Republic.
| | - Valery Andrushchenko
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610 Prague, Czech Republic.
| | - Josef Kapitán
- Department of Optics, Palacký University, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610 Prague, Czech Republic.
| |
Collapse
|
14
|
The Influence of the Amino Acid Side Chains on the Raman Optical Activity Spectra of Proteins. Chemphyschem 2018; 20:42-54. [DOI: 10.1002/cphc.201800924] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 10/19/2018] [Indexed: 11/07/2022]
|
15
|
Mensch C, Johannessen C. Is Raman Optical Activity Spectroscopy Sensitive to β-Turns in Proteins? Secondary Structure and Side-Chain Dependence. Chemphyschem 2018; 19:3134-3143. [DOI: 10.1002/cphc.201800678] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Carl Mensch
- Department of Chemistry; University of Antwerp; Groenenborgerlaan 171 2020 Antwerp Belgium)
- Department of Chemistry; Ghent University; Krijgslaan 281 (S3) 9000 Ghent Belgium
| | - Christian Johannessen
- Department of Chemistry; University of Antwerp; Groenenborgerlaan 171 2020 Antwerp Belgium)
| |
Collapse
|
16
|
Etinski M, Ensing B. Puzzle of the Intramolecular Hydrogen Bond of Dibenzoylmethane Resolved by Molecular Dynamics Simulations. J Phys Chem A 2018; 122:5945-5954. [DOI: 10.1021/acs.jpca.8b01930] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mihajlo Etinski
- Faculty of Physical Chemistry, University of Belgrade Studentski trg 12-16 11000 Belgrade, Serbia
| | - Bernd Ensing
- Van ’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
17
|
Raich I, Lövyová Z, Trnka L, Parkan K, Kessler J, Pohl R, Kaminský J. Limitations in the description of conformational preferences of C-disaccharides: The (1 → 3)-C-mannobiose case. Carbohydr Res 2017; 451:42-50. [PMID: 28950209 DOI: 10.1016/j.carres.2017.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 09/07/2017] [Accepted: 09/11/2017] [Indexed: 11/19/2022]
Abstract
Conformational preferences of two C-glycosyl analogues of Manp-(1 → 3)-Manp, were studied using a combined method of theoretical and experimental chemistry. Molecular dynamics was utilized to provide conformational behavior along C-glycosidic bonds of methyl 3-deoxy-3-C-[(α-d-mannopyranosyl)methyl]-α-d- and l-mannopyranosides. The OPLS2005 and Glycam06 force fields were used. Simulations were performed with explicit water (TIP3P) and methanol. Results were compared with a complete conformational scan at the MM4 level with the dielectric constant corresponding to methanol. In order to verify predicted conformational preferences, vicinal 3JHH NMR coupling constants were calculated by the Karplus equation on simulated potential energy surfaces (PES). A set of new parameters for the Karplus equation was also designed. Predicted 3JHH were compared with experimental data. We also used reverse methodology, in which the 3JHH coupling constants were calculated at the DFT level for each family of (ϕ, ψ)-conformers separately and then experimental values were decomposed onto calculated 3JHH couplings in order to obtain experimentally derived populations of conformers. As an alternative method of evaluation of preferred conformers, analysis of sensitive 13C chemical shifts was introduced. We were able to thoroughly discuss several fundamental issues in predictions of preferred conformers of C-saccharides, such as the solvent effect, reliability of the force field, character of empirical Karplus equation or applicability of NMR parameters in predictions of conformational preferences in general.
Collapse
Affiliation(s)
- Ivan Raich
- University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Zuzana Lövyová
- University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Ladislav Trnka
- University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Kamil Parkan
- University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; Institute of Organic Chemistry and Biochemistry AS CR, Gilead Sciences & IOCB Research Center, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Jiří Kessler
- Institute of Organic Chemistry and Biochemistry AS CR, Gilead Sciences & IOCB Research Center, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry AS CR, Gilead Sciences & IOCB Research Center, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Jakub Kaminský
- Institute of Organic Chemistry and Biochemistry AS CR, Gilead Sciences & IOCB Research Center, Flemingovo nám. 2, 166 10 Prague, Czech Republic.
| |
Collapse
|
18
|
Jungwirth J, Šebestík J, Šafařík M, Kapitán J, Bouř P. Quantitative Determination of Ala-Ala Conformer Ratios in Solution by Decomposition of Raman Optical Activity Spectra. J Phys Chem B 2017; 121:8956-8964. [DOI: 10.1021/acs.jpcb.7b07154] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jakub Jungwirth
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo
náměstí 2, 16610 Prague, Czech Republic
- Faculty
of Mathematics and Physics, Charles University, Ke Karlovu 3, 12116 Prague, Czech Republic
| | - Jaroslav Šebestík
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo
náměstí 2, 16610 Prague, Czech Republic
| | - Martin Šafařík
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo
náměstí 2, 16610 Prague, Czech Republic
| | - Josef Kapitán
- Department
of Optics, Palacký University, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Petr Bouř
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo
náměstí 2, 16610 Prague, Czech Republic
| |
Collapse
|
19
|
Kaminský J, Kříž J, Bouř P. On the magnetic circular dichroism of benzene. A density-functional study. J Chem Phys 2017; 146:144301. [PMID: 28411621 DOI: 10.1063/1.4979570] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Spectroscopy of magnetic circular dichroism (MCD) provides enhanced information on molecular structure and a more reliable assignment of spectral bands than absorption alone. Theoretical modeling can significantly enhance the information obtained from experimental spectra. In the present study, the time dependent density functional theory is employed to model the lowest-energy benzene transitions, in particular to investigate the role of the Rydberg states and vibrational interference in spectral intensities. The effect of solvent is explored on model benzene-methane clusters. For the lowest-energy excitation, the vibrational sub-structure of absorption and MCD spectra is modeled within the harmonic approximation, providing a very good agreement with the experiment. The simulations demonstrate that the Rydberg states have a much stronger effect on the MCD intensities than on the absorption, and a very diffuse basis set must be used to obtain reliable results. The modeling also indicates that the Rydberg-like states and associated transitions may persist in solutions. Continuum-like solvent models are thus not suitable for their modeling; solvent-solute clusters appear to be more appropriate, providing they are large enough.
Collapse
Affiliation(s)
- Jakub Kaminský
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo Náměstí 2, 16610 Prague, Czech Republic
| | - Jan Kříž
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo Náměstí 2, 16610 Prague, Czech Republic
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo Náměstí 2, 16610 Prague, Czech Republic
| |
Collapse
|
20
|
Kessler J, Yamamoto S, Bouř P. Establishing the link between fibril formation and Raman optical activity spectra of insulin. Phys Chem Chem Phys 2017; 19:13614-13621. [DOI: 10.1039/c7cp01556a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Molecular dynamics and density functional simulations are used to explain changes in Raman optical activity accompanying the formation of insulin fibrils.
Collapse
Affiliation(s)
- Jiří Kessler
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences
- 16610 Prague
- Czech Republic
- Department of Physical and Macromolecular Chemistry
| | - Shigeki Yamamoto
- Department of Chemistry
- Graduate School of Science
- Osaka University
- Osaka 560-0043
- Japan
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences
- 16610 Prague
- Czech Republic
| |
Collapse
|
21
|
Perera AS, Thomas J, Poopari MR, Xu Y. The Clusters-in-a-Liquid Approach for Solvation: New Insights from the Conformer Specific Gas Phase Spectroscopy and Vibrational Optical Activity Spectroscopy. Front Chem 2016; 4:9. [PMID: 26942177 PMCID: PMC4766311 DOI: 10.3389/fchem.2016.00009] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/08/2016] [Indexed: 11/30/2022] Open
Abstract
Vibrational optical activity spectroscopies, namely vibrational circular dichroism (VCD) and Raman optical activity (ROA), have been emerged in the past decade as powerful spectroscopic tools for stereochemical information of a wide range of chiral compounds in solution directly. More recently, their applications in unveiling solvent effects, especially those associated with water solvent, have been explored. In this review article, we first select a few examples to demonstrate the unique sensitivity of VCD spectral signatures to both bulk solvent effects and explicit hydrogen-bonding interactions in solution. Second, we discuss the induced solvent chirality, or chiral transfer, VCD spectral features observed in the water bending band region in detail. From these chirality transfer spectral data, the related conformer specific gas phase spectroscopic studies of small chiral hydration clusters, and the associated matrix isolation VCD experiments of hydrogen-bonded complexes in cold rare gas matrices, a general picture of solvation in aqueous solution emerges. In such an aqueous solution, some small chiral hydration clusters, rather than the chiral solutes themselves, are the dominant species and are the ones that contribute mainly to the experimentally observed VCD features. We then review a series of VCD studies of amino acids and their derivatives in aqueous solution under different pHs to emphasize the importance of the inclusion of the bulk solvent effects. These experimental data and the associated theoretical analyses are the foundation for the proposed "clusters-in-a-liquid" approach to account for solvent effects effectively. We present several approaches to identify and build such representative chiral hydration clusters. Recent studies which applied molecular dynamics simulations and the subsequent snapshot averaging approach to generate the ROA, VCD, electronic CD, and optical rotatory dispersion spectra are also reviewed. Challenges associated with the molecular dynamics snapshot approach are discussed and the successes of the seemingly random "ad hoc explicit solvation" reported before are also explained. To further test and improve the "clusters-in-a-liquid" model in practice, future work in terms of conformer specific gas phase spectroscopy of sequential solvation of a chiral solute, matrix isolation VCD measurements of small chiral hydration clusters, and more sophisticated models for the bulk solvent effects would be highly valuable.
Collapse
Affiliation(s)
| | | | | | - Yunjie Xu
- Department of Chemistry, University of AlbertaEdmonton, AB, Canada
| |
Collapse
|
22
|
Dračínský M, Bouř P, Hodgkinson P. Temperature Dependence of NMR Parameters Calculated from Path Integral Molecular Dynamics Simulations. J Chem Theory Comput 2016; 12:968-73. [PMID: 26857802 DOI: 10.1021/acs.jctc.5b01131] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The influence of temperature on NMR chemical shifts and quadrupolar couplings in model molecular organic solids is explored using path integral molecular dynamics (PIMD) and density functional theory (DFT) calculations of shielding and electric field gradient (EFG) tensors. An approach based on convoluting calculated shielding or EFG tensor components with probability distributions of selected bond distances and valence angles obtained from DFT-PIMD simulations at several temperatures is used to calculate the temperature effects. The probability distributions obtained from the quantum PIMD simulations, which includes nuclear quantum effects, are significantly broader and less temperature dependent than those obtained with conventional DFT molecular dynamics or with 1D scans through the potential energy surface. Predicted NMR observables for the model systems were in excellent agreement with experimental data.
Collapse
Affiliation(s)
- Martin Dračínský
- Institute of Organic Chemistry and Biochemistry , Flemingovo nám. 2, 16610 Prague, Czech Republic
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry , Flemingovo nám. 2, 16610 Prague, Czech Republic
| | - Paul Hodgkinson
- Department of Chemistry, Durham University , South Road, DH1 3LE Durham, United Kingdom
| |
Collapse
|
23
|
Ravi Kumar V, Verma C, Umapathy S. Molecular dynamics and simulations study on the vibrational and electronic solvatochromism of benzophenone. J Chem Phys 2016; 144:064302. [DOI: 10.1063/1.4941058] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
24
|
Melcrová A, Kessler J, Bouř P, Kaminský J. Simulation of Raman optical activity of multi-component monosaccharide samples. Phys Chem Chem Phys 2016; 18:2130-42. [DOI: 10.1039/c5cp04111b] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Determination of the saccharide structure in solution is a laborious process that can be significantly enhanced by chiral optical spectroscopies.
Collapse
Affiliation(s)
- Adéla Melcrová
- Institute of Organic Chemistry and Biochemistry
- 166 10 Prague
- Czech Republic
- J. Heyrovský Institute of Physical Chemistry
- 182 23 Prague
| | - Jiří Kessler
- Institute of Organic Chemistry and Biochemistry
- 166 10 Prague
- Czech Republic
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry
- 166 10 Prague
- Czech Republic
| | - Jakub Kaminský
- Institute of Organic Chemistry and Biochemistry
- 166 10 Prague
- Czech Republic
| |
Collapse
|
25
|
Fischer SA, Ueltschi TW, El-Khoury PZ, Mifflin AL, Hess WP, Wang HF, Cramer CJ, Govind N. Infrared and Raman Spectroscopy from Ab Initio Molecular Dynamics and Static Normal Mode Analysis: The C-H Region of DMSO as a Case Study. J Phys Chem B 2015. [PMID: 26222601 DOI: 10.1021/acs.jpcb.5b03323] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Carbon-hydrogen (C-H) vibration modes serve as key probes in the chemical identification of hydrocarbons and in vibrational sum-frequency generation spectroscopy of hydrocarbons at the liquid/gas interface. Their assignments pose a challenge from a theoretical viewpoint. In this work, we present a detailed study of the C-H stretching region of dimethyl sulfoxide using a new ab initio molecular dynamics (AIMD) module that we have implemented in NWChem. Through a combination of AIMD simulations and static normal mode analysis, we interpret experimental infrared and Raman spectra and explore the role of anharmonic effects in this system. Comprehensive anharmonic normal mode analysis of the C-H stretching region casts doubt upon previous experimental assignments of the shoulder on the symmetric C-H stretching peak. In addition, our AIMD simulations also show significant broadening of the in-phase symmetric C-H stretching resonance, which suggests that the experimentally observed shoulder is due to thermal broadening of the symmetric stretching resonance.
Collapse
Affiliation(s)
- Sean A Fischer
- William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , P.O. Box 999, Richland, Washington 99352, United States
| | - Tyler W Ueltschi
- Department of Chemistry, University of Puget Sound , 1500 North Warner Street, Tacoma, Washington 98416, United States
| | - Patrick Z El-Khoury
- Physical Sciences Division, Pacific Northwest National Laboratory , P.O. Box 999, Richland, Washington 99352, United States
| | - Amanda L Mifflin
- Department of Chemistry, University of Puget Sound , 1500 North Warner Street, Tacoma, Washington 98416, United States
| | - Wayne P Hess
- Physical Sciences Division, Pacific Northwest National Laboratory , P.O. Box 999, Richland, Washington 99352, United States
| | - Hong-Fei Wang
- William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , P.O. Box 999, Richland, Washington 99352, United States
| | - Christopher J Cramer
- Department of Chemistry, Supercomputing Institute and Chemical Theory Center, University of Minnesota , 207 Pleasant Street South East, Minneapolis, Minnesota 55455, United States
| | - Niranjan Govind
- William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , P.O. Box 999, Richland, Washington 99352, United States
| |
Collapse
|
26
|
Andrushchenko V, Benda L, Páv O, Dračínský M, Bouř P. Vibrational Properties of the Phosphate Group Investigated by Molecular Dynamics and Density Functional Theory. J Phys Chem B 2015; 119:10682-92. [PMID: 26193890 DOI: 10.1021/acs.jpcb.5b05124] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The phosphate group (PO2(-)) is an important building block occurring in many components of living matter including nucleic acids. It provides distinct features in vibrational spectra and is useful as a local probe of NA conformation and interactions with the environment. For this purpose, it is desirable to explore in detail various factors influencing spectral shapes of characteristic phosphate vibrations. In the present study, effects of the solvent and conformational averaging are analyzed for simple model molecules, dimethylphosphate, ethylmethylphosphate, and ethylmethylthiophosphate. Infrared absorption (IR) and Raman spectra were measured and calculated using a combination of molecular dynamics (MD) and density functional theory (DFT). To fully understand the link between the structure and the spectra, the solvent has to be explicitly included in the computational modeling. The results indicate that vibrational properties of the phosphate moiety are very sensitive to its conformation and interactions with the aqueous environment indeed. Polarizable continuum solvent models without explicit water molecules provided significantly worse agreement with the experiment. The combined MD/DFT approach captures well spectral characteristics for the model systems and constitutes the most reliable basis for exploration of phosphate vibrational properties in biomolecular structural studies.
Collapse
Affiliation(s)
- Valery Andrushchenko
- Institute of Organic Chemistry and Biochemistry, Flemingovo náměstí 2, 16610, Prague, Czech Republic
| | - Ladislav Benda
- Institute of Organic Chemistry and Biochemistry, Flemingovo náměstí 2, 16610, Prague, Czech Republic
| | - Ondřej Páv
- Institute of Organic Chemistry and Biochemistry, Flemingovo náměstí 2, 16610, Prague, Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry, Flemingovo náměstí 2, 16610, Prague, Czech Republic
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry, Flemingovo náměstí 2, 16610, Prague, Czech Republic
| |
Collapse
|
27
|
Kessler J, Bouř P. Transfer of Frequency-Dependent Polarizabilities: A Tool To Simulate Absorption and Circular Dichroism Molecular Spectra. J Chem Theory Comput 2015; 11:2210-20. [DOI: 10.1021/acs.jctc.5b00136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jiří Kessler
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo
náměstí 2, 166
10 Prague, Czech Republic
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague, Czech Republic
| | - Petr Bouř
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo
náměstí 2, 166
10 Prague, Czech Republic
| |
Collapse
|
28
|
Orestes E, Bistafa C, Rivelino R, Canuto S. Including Thermal Disorder of Hydrogen Bonding to Describe the Vibrational Circular Dichroism Spectrum of Zwitterionic l-Alanine in Water. J Phys Chem A 2014; 119:5099-106. [DOI: 10.1021/jp508205k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Ednilsom Orestes
- Instituto
de Química, Universidade Federal Fluminense Campus do Valonguinho, CEP 24020-141, Niterói, RJ, Brazil
| | - Carlos Bistafa
- Instituto
de Física, Universidade de São Paulo, CP 66318, 05914-370 São Paulo, SP, Brazil
| | - Roberto Rivelino
- Instituto
de Física, Universidade de São Paulo, CP 66318, 05914-370 São Paulo, SP, Brazil
- Instituto
de Física, Universidade Federal da Bahia, 40210-340 Salvador, BA, Brazil
| | - Sylvio Canuto
- Instituto
de Física, Universidade de São Paulo, CP 66318, 05914-370 São Paulo, SP, Brazil
| |
Collapse
|
29
|
Luber S, Iannuzzi M, Hutter J. Raman spectra from ab initio molecular dynamics and its application to liquid S-methyloxirane. J Chem Phys 2014; 141:094503. [DOI: 10.1063/1.4894425] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
30
|
Štěpánek P, Bouř P. Multi-scale modeling of electronic spectra of three aromatic amino acids: importance of conformational averaging and explicit solute-solvent interactions. Phys Chem Chem Phys 2014; 16:20639-49. [PMID: 25158079 DOI: 10.1039/c4cp02668c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electronic transitions in the ultraviolet and visible spectral range can reveal a wealth of information about biomolecular geometry and interactions, such as those involved in protein folding. However, the modeling that provides the necessary link between spectral shapes and the structure is often difficult even for seemingly simple systems. To understand as to how conformational equilibria and solute-solvent interaction influence spectral intensities, we collected absorption (UV-vis), electronic circular dichroism (ECD), and magnetic circular dichroism (MCD) spectra of phenylalanine (Phe), tyrosine (Tyr) and tryptophan (Trp) zwitterions in aqueous solutions, and compared them with quantum-chemical simulations. These aromatic amino acids provide a relatively strong signal in the accessible wavelength range. At the same time, they allow for a relatively accurate modeling. Energies and intensities of spectral bands were reproduced by the time-dependent density functional theory (TD DFT). The solvent was approximated by a continuum as well as clusters containing solvent molecules from the first hydration sphere. The ECD signal was found to be strongly dependent on molecular conformation, and the dependence was much weaker in UV-vis and MCD spectra. All spectral intensities, however, were significantly affected by the solvent approximation; especially for ECD and MCD the usual polarizable continuum solvent model did not yield satisfactory spectral shapes. On the other hand, averaging of the clusters obtained from molecular dynamics simulations provided an unprecedented agreement with the experiment. Proper modeling of the interactions with the environment thus makes the information about the molecular structure, as obtained from the electronic spectra, more accurate and reliable.
Collapse
Affiliation(s)
- Petr Štěpánek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 166 10 Prague, Czech Republic.
| | | |
Collapse
|
31
|
Kessler J, Keiderling TA, Bouř P. Arrangement of Fibril Side Chains Studied by Molecular Dynamics and Simulated Infrared and Vibrational Circular Dichroism Spectra. J Phys Chem B 2014; 118:6937-45. [DOI: 10.1021/jp502178d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jiří Kessler
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo
náměstí 2, 166
10 Prague, Czech Republic
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague, Czech Republic
| | - Timothy A. Keiderling
- Department
of Chemistry, University of Illinois at Chicago, 845 West Taylor
Street, Chicago, Illinois 60607-7061, United States
| | - Petr Bouř
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo
náměstí 2, 166
10 Prague, Czech Republic
| |
Collapse
|
32
|
Piccini G, Sauer J. Effect of Anharmonicity on Adsorption Thermodynamics. J Chem Theory Comput 2014; 10:2479-87. [PMID: 26580768 DOI: 10.1021/ct500291x] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effect of anharmonic corrections to the vibrational energies of extended systems is explored. Particular attention is paid to the thermodynamics of adsorption of small molecules on catalytically relevant systems typically affected by anharmonicity. The implemented scheme obtains one-dimensional anharmonic model potentials by distorting the equilibrium structure along the normal modes using both rectilinear (Cartesian) or curvilinear (internal) representations. Only in the latter case, the modes are decoupled also at higher order of the potential and the thermodynamic functions change in the expected directions. The method is applied to calculate ab initio enthalpies, entropies, and Gibbs free energies for the adsorption of methane in acidic chabazite (H-CHA) and on MgO(001) surface. The values obtained for the adsorption of methane in H-CHA (273.15 K, 0.1 MPa, θ = 0.5) are ΔH = -19.3, -TΔS = 11.9, and ΔG = -7.5 kJ/mol. For methane on the MgO(001) (47 K, 1.3 × 10(-14) MPa, θ = 1) ΔH = -14.4, -TΔS = 16.6, and ΔG = 2.1 kJ/mol are obtained. The calculated desorption temperature is 44 K, and the desorption prefactor is 4.26 × 10(12) s(-1). All calculated results agree within chemical accuracy limits with experimental data.
Collapse
Affiliation(s)
- GiovanniMaria Piccini
- Institut für Chemie, Humboldt Universität zu Berlin , Unter den Linden 6, 10099 Berlin, Germany
| | - Joachim Sauer
- Institut für Chemie, Humboldt Universität zu Berlin , Unter den Linden 6, 10099 Berlin, Germany
| |
Collapse
|
33
|
Dračínský M, Procházková E, Kessler J, Šebestík J, Matějka P, Bouř P. Resolution of Organic Polymorphic Crystals by Raman Spectroscopy. J Phys Chem B 2013; 117:7297-307. [DOI: 10.1021/jp404382f] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Martin Dračínský
- Institute of Organic Chemistry
and Biochemistry, Academy of Sciences,
Flemingovo nám. 2, 166 10 Prague, Czech Republic
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United
Kingdom
| | - Eliška Procházková
- Institute of Organic Chemistry
and Biochemistry, Academy of Sciences,
Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Jiří Kessler
- Institute of Organic Chemistry
and Biochemistry, Academy of Sciences,
Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Jaroslav Šebestík
- Institute of Organic Chemistry
and Biochemistry, Academy of Sciences,
Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Pavel Matějka
- Department of Physical
Chemistry, Institute of Chemical Technology, Technická
5, 166 28 Prague, Czech Republic
| | - Petr Bouř
- Institute of Organic Chemistry
and Biochemistry, Academy of Sciences,
Flemingovo nám. 2, 166 10 Prague, Czech Republic
| |
Collapse
|
34
|
Thomas M, Brehm M, Fligg R, Vöhringer P, Kirchner B. Computing vibrational spectra from ab initio molecular dynamics. Phys Chem Chem Phys 2013; 15:6608-22. [DOI: 10.1039/c3cp44302g] [Citation(s) in RCA: 319] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
35
|
Kessler J, Dračínský M, Bouř P. Parallel variable selection of molecular dynamics clusters as a tool for calculation of spectroscopic properties. J Comput Chem 2012; 34:366-71. [DOI: 10.1002/jcc.23143] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 08/30/2012] [Accepted: 09/07/2012] [Indexed: 11/10/2022]
|
36
|
Thorvaldsen AJ, Gao B, Ruud K, Fedorovsky M, Zuber G, Hug W. Efficient Calculation of ROA Tensors with Analytical Gradients and Fragmentation. Chirality 2012; 24:1018-30. [DOI: 10.1002/chir.22090] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 03/28/2012] [Indexed: 11/10/2022]
Affiliation(s)
- Andreas J. Thorvaldsen
- Centre for Theoretical and Computational Chemistry, Department of Chemistry; University of Tromsø; Tromsø Norway
| | - Bin Gao
- Centre for Theoretical and Computational Chemistry, Department of Chemistry; University of Tromsø; Tromsø Norway
| | - Kenneth Ruud
- Centre for Theoretical and Computational Chemistry, Department of Chemistry; University of Tromsø; Tromsø Norway
| | - Maxim Fedorovsky
- Department of Chemistry; University of Fribourg; Fribourg Switzerland
| | - Gérard Zuber
- Department of Chemistry; University of Fribourg; Fribourg Switzerland
| | - Werner Hug
- Department of Chemistry; University of Fribourg; Fribourg Switzerland
| |
Collapse
|
37
|
Welch WRW, Kubelka J. DFT-Based Simulations of Amide I′ IR Spectra of a Small Protein in Solution Using Empirical Electrostatic Map with a Continuum Solvent Model. J Phys Chem B 2012; 116:10739-47. [DOI: 10.1021/jp305387x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- William R. W. Welch
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Jan Kubelka
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| |
Collapse
|