1
|
Suri H, Salgado-Puga K, Wang Y, Allen N, Lane K, Granroth K, Olivei A, Nass N, Rothschild G. A Cortico-Striatal Circuit for Sound-Triggered Prediction of Reward Timing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.21.568134. [PMID: 38045246 PMCID: PMC10690153 DOI: 10.1101/2023.11.21.568134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
A crucial aspect of auditory perception is the ability to use sound cues to predict future events and to time actions accordingly. For example, distinct smartphone notification sounds reflect a call that needs to be answered within a few seconds, or a text that can be read later; the sound of an approaching vehicle signals when it is safe to cross the street. Other animals similarly use sounds to plan, time and execute behaviors such as hunting, evading predation and tending to offspring. However, the neural mechanisms that underlie sound-guided prediction of upcoming salient event timing are not well understood. To address this gap, we employed an appetitive sound-triggered reward time prediction behavior in head-fixed mice. We find that mice trained on this task reliably estimate the time from a sound cue to upcoming reward on the scale of a few seconds, as demonstrated by learning-dependent well-timed increases in reward-predictive licking. Moreover, mice showed a dramatic impairment in their ability to use sound to predict delayed reward when the auditory cortex was inactivated, demonstrating its causal involvement. To identify the neurophysiological signatures of auditory cortical reward-timing prediction, we recorded local field potentials during learning and performance of this behavior and found that the magnitude of auditory cortical responses to the sound prospectively encoded the duration of the anticipated sound-reward time interval. Next, we explored how and where these sound-triggered time interval prediction signals propagate from the auditory cortex to time and initiate consequent action. We targeted the monosynaptic projections from the auditory cortex to the posterior striatum and found that chemogenetic inactivation of these projections impairs animal's ability to predict sound-triggered delayed reward. Simultaneous neural recordings in the auditory cortex and posterior striatum during task performance revealed coordination of neural activity across these regions during the sound cue predicting the time interval to reward. Collectively, our findings identify an auditory cortical-striatal circuit supporting sound-triggered timing-prediction behaviors.
Collapse
|
2
|
Kamada T, Hata T. Striatal dopamine D1 receptors control motivation to respond, but not interval timing, during the timing task. ACTA ACUST UNITED AC 2020; 28:24-29. [PMID: 33323499 PMCID: PMC7747650 DOI: 10.1101/lm.052266.120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/05/2020] [Indexed: 11/24/2022]
Abstract
Dopamine plays a critical role in behavioral tasks requiring interval timing (time perception in a seconds-to-minutes range). Although some studies demonstrate the role of dopamine receptors as a controller of the speed of the internal clock, other studies demonstrate their role as a controller of motivation. Both D1 dopamine receptors (D1DRs) and D2 dopamine receptors (D2DRs) within the dorsal striatum may play a role in interval timing because the dorsal striatum contains rich D1DRs and D2DRs. However, relative to D2DRs, the precise role of D1DRs within the dorsal striatum in interval timing is unclear. To address this issue, rats were trained on the peak-interval 20-sec procedure, and D1DR antagonist SCH23390 was infused into the bilateral dorsocentral striatum before behavioral sessions. Our results showed that the D1DR blockade drastically reduced the maximum response rate and increased the time to start responses with no effects on the time to terminate responses. These findings suggest that the D1DRs within the dorsal striatum are required for motivation to respond, but not for modulation of the internal clock speed.
Collapse
Affiliation(s)
- Taisuke Kamada
- Organization for Research Initiatives and Development, Doshisha University, Tatara-Miyakodani, Kyotanabe, Kyoto 610-0394, Japan.,Faculty of Psychology, Doshisha University, Tatara-Miyakodani, Kyotanabe, Kyoto 610-0394, Japan
| | - Toshimichi Hata
- Faculty of Psychology, Doshisha University, Tatara-Miyakodani, Kyotanabe, Kyoto 610-0394, Japan
| |
Collapse
|
3
|
Orsini CA, Mitchell MR, Heshmati SC, Shimp KG, Spurrell MS, Bizon JL, Setlow B. Effects of nucleus accumbens amphetamine administration on performance in a delay discounting task. Behav Brain Res 2017; 321:130-136. [PMID: 28057530 DOI: 10.1016/j.bbr.2017.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/30/2016] [Accepted: 01/01/2017] [Indexed: 01/06/2023]
Abstract
Chronic administration of cocaine can cause pronounced and enduring cognitive alterations such as increases in impulsive choice. Chronic cocaine can also result in enhanced dopamine (DA) release in the nucleus accumbens (NAc) in response to reward-related cues. It is possible that this enhanced DA release in the NAc is a mechanism by which cocaine increases impulsive choice. To date, however, the specific role of DA in the NAc in impulsive choice is unclear. To begin to address this, rats received acute microinjections of the indirect DA agonist amphetamine directly into the NAc prior to testing in a delay discounting task in which rats chose between a small, immediate and a large, delayed food reward. When delays to the large reward increased within test sessions, amphetamine increased choice of the large reward. When delays decreased within test sessions, however, amphetamine decreased choice of the large reward. These findings suggest that, rather than specifically mediating impulsive choice, DA neurotransmission in the NAc is necessary for flexible adaptation of choice strategies in the presence of shifting reward contingencies. These results further indicate that enhancements in NAc DA release likely do not account for lasting increases in impulsive choice caused by chronic cocaine.
Collapse
Affiliation(s)
- Caitlin A Orsini
- Department of Psychiatry, University of Florida College of Medicine, P.O. Box 100256, Gainesville, FL, 32610-0256, United States.
| | - Marci R Mitchell
- Department of Psychiatry, Yale University School of Medicine, 1 Church St., Fl7, New Haven, CT, 06510, United States
| | - Sara C Heshmati
- Department of Psychiatry, University of Florida College of Medicine, P.O. Box 100256, Gainesville, FL, 32610-0256, United States
| | - Kristy G Shimp
- Department of Psychiatry, University of Florida College of Medicine, P.O. Box 100256, Gainesville, FL, 32610-0256, United States
| | - Megan S Spurrell
- Department of Psychiatry, University of Florida College of Medicine, P.O. Box 100256, Gainesville, FL, 32610-0256, United States
| | - Jennifer L Bizon
- Department of Psychiatry, University of Florida College of Medicine, P.O. Box 100256, Gainesville, FL, 32610-0256, United States; Department of Neuroscience, University of Florida College of Medicine, P.O. Box 100244, Gainesville, FL, 32610-0244, United States; Center for Addiction Research and Education, University of Florida, United States
| | - Barry Setlow
- Department of Psychiatry, University of Florida College of Medicine, P.O. Box 100256, Gainesville, FL, 32610-0256, United States; Department of Neuroscience, University of Florida College of Medicine, P.O. Box 100244, Gainesville, FL, 32610-0244, United States; Department of Psychology, University of Florida, United States; Center for Addiction Research and Education, University of Florida, United States.
| |
Collapse
|
4
|
Emmons EB, Ruggiero RN, Kelley RM, Parker KL, Narayanan NS. Corticostriatal Field Potentials Are Modulated at Delta and Theta Frequencies during Interval-Timing Task in Rodents. Front Psychol 2016; 7:459. [PMID: 27092091 PMCID: PMC4820903 DOI: 10.3389/fpsyg.2016.00459] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/15/2016] [Indexed: 11/24/2022] Open
Abstract
Organizing movements in time is a critical and highly conserved feature of mammalian behavior. Temporal control of action requires corticostriatal networks. We investigate these networks in rodents using a two-interval timing task while recording LFPs in medial frontal cortex (MFC) or dorsomedial striatum. Consistent with prior work, we found cue-triggered delta (1–4 Hz) and theta activity (4–8 Hz) primarily in rodent MFC. We observed delta activity across temporal intervals in MFC and dorsomedial striatum. Rewarded responses were associated with increased delta activity in MFC. Activity in theta bands in MFC and delta bands in the striatum was linked with the timing of responses. These data suggest both delta and theta activity in frontostriatal networks are modulated during interval timing and that activity in these bands may be involved in the temporal control of action.
Collapse
Affiliation(s)
- Eric B Emmons
- Department of Neurology, Carver College of Medicine, The University of Iowa Iowa City, IA, USA
| | - Rafael N Ruggiero
- Department of Neurology, Carver College of Medicine, The University of IowaIowa City, IA, USA; Department of Neuroscience and Behavioral Sciences, University of São PauloSão Paulo, Brazil
| | - Ryan M Kelley
- Department of Neurology, Carver College of Medicine, The University of Iowa Iowa City, IA, USA
| | - Krystal L Parker
- Department of Neurology, Carver College of Medicine, The University of Iowa Iowa City, IA, USA
| | - Nandakumar S Narayanan
- Department of Neurology, Carver College of Medicine, The University of IowaIowa City, IA, USA; Aging Mind and Brain Initiative, Carver College of Medicine, The University of IowaIowa City, IA, USA
| |
Collapse
|
5
|
Abstract
In a series of recent experiments, we found that if rats are presented with two temporal cues, each signifying that reward will be delivered after a different duration elapses (e.g., tone-10 seconds / light-20 seconds), they will behave as if they have computed a weighted average of these respective durations. In the current article, we argue that this effect, referred to as "temporal averaging", can be understood within the context of Bayesian Decision Theory. Specifically, we propose and provide preliminary data showing that, when averaging, rats weight different durations based on the relative variability of the information their respective cues provide.
Collapse
|
6
|
Matell MS, Kurti AN. Reinforcement probability modulates temporal memory selection and integration processes. Acta Psychol (Amst) 2014; 147:80-91. [PMID: 23896560 DOI: 10.1016/j.actpsy.2013.06.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 05/28/2013] [Accepted: 06/17/2013] [Indexed: 11/25/2022] Open
Abstract
We have previously shown that rats trained in a mixed-interval peak procedure (tone=4s, light=12s) respond in a scalar manner at a time in between the trained peak times when presented with the stimulus compound (Swanton & Matell, 2011). In our previous work, the two component cues were reinforced with different probabilities (short=20%, long=80%) to equate response rates, and we found that the compound peak time was biased toward the cue with the higher reinforcement probability. Here, we examined the influence that different reinforcement probabilities have on the temporal location and shape of the compound response function. We found that the time of peak responding shifted as a function of the relative reinforcement probability of the component cues, becoming earlier as the relative likelihood of reinforcement associated with the short cue increased. However, as the relative probabilities of the component cues grew dissimilar, the compound peak became non-scalar, suggesting that the temporal control of behavior shifted from a process of integration to one of selection. As our previous work has utilized durations and reinforcement probabilities more discrepant than those used here, these data suggest that the processes underlying the integration/selection decision for time are based on cue value.
Collapse
|
7
|
Allman MJ, Teki S, Griffiths TD, Meck WH. Properties of the Internal Clock: First- and Second-Order Principles of Subjective Time. Annu Rev Psychol 2014; 65:743-71. [DOI: 10.1146/annurev-psych-010213-115117] [Citation(s) in RCA: 231] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Melissa J. Allman
- Department of Psychology, Michigan State University, East Lansing, Michigan 48823;
| | - Sundeep Teki
- Wellcome Trust Center for Neuroimaging, University College London, London, WC1N 3BG United Kingdom;
| | - Timothy D. Griffiths
- Wellcome Trust Center for Neuroimaging, University College London, London, WC1N 3BG United Kingdom;
- Institute of Neuroscience, The Medical School, Newcastle University, Newcastle-upon-Tyne, NE2 4HH United Kingdom;
| | - Warren H. Meck
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina 27701;
| |
Collapse
|
8
|
Wenzel JM, Cheer JF. Endocannabinoid-dependent modulation of phasic dopamine signaling encodes external and internal reward-predictive cues. Front Psychiatry 2014; 5:118. [PMID: 25225488 PMCID: PMC4150350 DOI: 10.3389/fpsyt.2014.00118] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/13/2014] [Indexed: 11/13/2022] Open
Abstract
The mesolimbic dopamine (DA) system plays an integral role in incentive motivation and reward seeking and a growing body of evidence identifies signal transduction at cannabinoid receptors as a critical modulator of this system. Indeed, administration of exogenous cannabinoids results in burst firing of DA neurons of the ventral tegmental area and increases extracellular DA in the nucleus accumbens (NAcc). Implementation of fast-scan cyclic voltammetry (FSCV) confirms the ability of cannabinoids to augment DA within the NAcc on a subsecond timescale. The use of FSCV along with newly developed highly selective pharmacological compounds advances our understanding of how cannabinoids influence DA transmission and highlights a role for endocannabinoid-modulated subsecond DAergic activation in the incentive motivational properties of not only external, but also internal reward-predictive cues. For example, our laboratory has recently demonstrated that in mice responding under a fixed-interval (FI) schedule for food reinforcement, fluctuations in NAcc DA signal the principal cue predictive of reinforcer availability - time. That is, as the interval progresses, NAcc DA levels decline leading to accelerated food seeking and the resulting characteristic FI scallop pattern of responding. Importantly, administration of WIN 55,212-2, a synthetic cannabinoid agonist, or JZL184, an indirect cannabinoid agonist, increases DA levels during the interval and disrupts this pattern of responding. Along with a wealth of other reports, these results illustrate the role of cannabinoid receptor activation in the regulation of DA transmission and the control of temporally guided reward seeking. The current review will explore the striatal beat frequency model of interval timing as it pertains to cannabinoid signaling and propose a neurocircuitry through which this system modulates interoceptive time cues.
Collapse
Affiliation(s)
- Jennifer M Wenzel
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine , Baltimore, MD , USA
| | - Joseph F Cheer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine , Baltimore, MD , USA ; Department of Psychiatry, University of Maryland School of Medicine , Baltimore, MD , USA
| |
Collapse
|
9
|
Heilbronner SR, Meck WH. Dissociations between interval timing and intertemporal choice following administration of fluoxetine, cocaine, or methamphetamine. Behav Processes 2014; 101:123-34. [PMID: 24135569 PMCID: PMC4081038 DOI: 10.1016/j.beproc.2013.09.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 09/19/2013] [Accepted: 09/21/2013] [Indexed: 12/26/2022]
Abstract
The goal of our study was to characterize the relationship between intertemporal choice and interval timing, including determining how drugs that modulate brain serotonin and dopamine levels influence these two processes. In Experiment 1, rats were tested on a standard 40-s peak-interval procedure following administration of fluoxetine (3, 5, or 8 mg/kg) or vehicle to assess basic effects on interval timing. In Experiment 2, rats were tested in a novel behavioral paradigm intended to simultaneously examine interval timing and impulsivity. Rats performed a variant of the bi-peak procedure using 10-s and 40-s target durations with an additional "defection" lever that provided the possibility of a small, immediate reward. Timing functions remained relatively intact, and 'patience' across subjects correlated with peak times, indicating a negative relationship between 'patience' and clock speed. We next examined the effects of fluoxetine (5 mg/kg), cocaine (15 mg/kg), or methamphetamine (1 mg/kg) on task performance. Fluoxetine reduced impulsivity as measured by defection time without corresponding changes in clock speed. In contrast, cocaine and methamphetamine both increased impulsivity and clock speed. Thus, variations in timing may mediate intertemporal choice via dopaminergic inputs. However, a separate, serotonergic system can affect intertemporal choice without affecting interval timing directly. This article is part of a Special Issue entitled: Associative and Temporal Learning.
Collapse
Affiliation(s)
- Sarah R Heilbronner
- Department of Pharmacology & Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Warren H Meck
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
10
|
Lejeune S, Dourmap N, Martres MP, Giros B, Daugé V, Naudon L. The dopamine D1 receptor agonist SKF 38393 improves temporal order memory performance in maternally deprived rats. Neurobiol Learn Mem 2013; 106:268-73. [DOI: 10.1016/j.nlm.2013.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/11/2013] [Indexed: 10/26/2022]
|
11
|
Parker KL, Lamichhane D, Caetano MS, Narayanan NS. Executive dysfunction in Parkinson's disease and timing deficits. Front Integr Neurosci 2013; 7:75. [PMID: 24198770 PMCID: PMC3813949 DOI: 10.3389/fnint.2013.00075] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/14/2013] [Indexed: 11/13/2022] Open
Abstract
Patients with Parkinson’s disease (PD) have deficits in perceptual timing, or the perception and estimation of time. PD patients can also have cognitive symptoms, including deficits in executive functions such as working memory, planning, and visuospatial attention. Here, we discuss how PD-related cognitive symptoms contribute to timing deficits. Timing is influenced by signaling of the neurotransmitter dopamine in the striatum. Timing also involves the frontal cortex, which is dysfunctional in PD. Frontal cortex impairments in PD may influence memory subsystems as well as decision processes during timing tasks. These data suggest that timing may be a type of executive function. As such, timing can be used to study the neural circuitry of cognitive symptoms of PD as they can be studied in animal models. Performance of timing tasks also maybe a useful clinical biomarker of frontal as well as striatal dysfunction in PD.
Collapse
Affiliation(s)
- Krystal L Parker
- Department of Neurology, University of Iowa Hospitals and Clinics Iowa City, IA, USA
| | | | | | | |
Collapse
|
12
|
Abstract
In 1984, there was considerable evidence that the hippocampus was important for spatial learning and some evidence that it was also involved in duration discrimination. The article "Hippocampus, Time, and Memory" (Meck, Church, & Olton, 1984), however, was the first to isolate the effects of hippocampal damage on specific stages of temporal processing. In this review, to celebrate the 30th anniversary of Behavioral Neuroscience, we look back on factors that contributed to the long-lasting influence of this article. The major results were that a fimbria-fornix lesion (a) interferes with the ability to retain information in temporal working memory, and (b) distorts the content of temporal reference memory, but (c) did not decrease sensitivity to signal duration. This was the first lesion experiment in which the results were interpreted by a well-developed theory of behavior (scalar timing theory). It has led to extensive research on the role of the hippocampus in temporal processing by many investigators. The most important ones are the development of computational models with plausible neural mechanisms (such as the striatal beat-frequency model of interval timing), the use of multiple behavioral measures of timing, and empirical research on the neural mechanisms of timing and temporal memory using ensemble recording of neurons in prefrontal-striatal-hippocampal circuits.
Collapse
Affiliation(s)
- Warren H. Meck
- Department of Psychology and Neuroscience, Duke University
| | - Russell M. Church
- Department of Cognitive, Linguistic, and Psychological Sciences,
Brown University
| | | |
Collapse
|
13
|
Simon NW, Beas BS, Montgomery KS, Haberman RP, Bizon JL, Setlow B. Prefrontal cortical-striatal dopamine receptor mRNA expression predicts distinct forms of impulsivity. Eur J Neurosci 2013; 37:1779-88. [PMID: 23510331 DOI: 10.1111/ejn.12191] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/01/2013] [Accepted: 02/17/2013] [Indexed: 12/31/2022]
Abstract
Variation in dopamine receptor levels has been associated with different facets of impulsivity. To further delineate the neural substrates underlying impulsive action (inability to withhold a prepotent motor response) and impulsive choice (delay aversion), we characterised rats in the Differential Reinforcement of Low Rates of Responding task and a delay discounting task. We also measured performance on an effort-based discounting task. We then assessed D1 and D2 dopamine receptor mRNA expression in subregions of the prefrontal cortex and nucleus accumbens using in situ hybridisation, and compared these data with behavioral performance. Expression of D1 and D2 receptor mRNA in distinct brain regions was predictive of impulsive action. A dissociation within the nucleus accumbens was observed between subregions and receptor subtypes; higher D1 mRNA expression in the shell predicted greater impulsive action, whereas lower D2 mRNA expression in the core predicted greater impulsive action. We also observed a negative correlation between impulsive action and D2 mRNA expression in the prelimbic cortex. Interestingly, a similar relationship was present between impulsive choice and prelimbic cortex D2 mRNA, despite the fact that behavioral indices of impulsive action and impulsive choice were uncorrelated. Finally, we found that both high D1 mRNA expression in the insular cortex and low D2 mRNA expression in the infralimbic cortex were associated with willingness to exert effort for rewards. Notably, dopamine receptor mRNA in these regions was not associated with either facet of impulsivity. The data presented here provide novel molecular and neuroanatomical distinctions between different forms of impulsivity, as well as effort-based decision-making.
Collapse
Affiliation(s)
- Nicholas W Simon
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Temporal control, or how organisms guide movements in time to achieve behavioral goals, depends on dopamine signaling. The medial prefrontal cortex controls many goal-directed behaviors and receives dopaminergic input primarily from the midbrain ventral tegmental area. However, this system has never been linked with temporal control. Here, we test the hypothesis that dopaminergic projections from the ventral tegmental area to the prefrontal cortex influence temporal control. Rodents were trained to perform a fixed-interval timing task with an interval of 20 s. We report several results: first, that decreasing dopaminergic neurotransmission using virally mediated RNA interference of tyrosine hydroxylase impaired temporal control, and second that pharmacological disruption of prefrontal D1 dopamine receptors, but not D2 dopamine receptors, impaired temporal control. We then used optogenetics to specifically and selectively manipulate prefrontal neurons expressing D1 dopamine receptors during fixed-interval timing performance. Selective inhibition of D1-expressing prefrontal neurons impaired fixed-interval timing, whereas stimulation made animals more efficient during task performance. These data provide evidence that ventral tegmental dopaminergic projections to the prefrontal cortex influence temporal control via D1 receptors. The results identify a critical circuit for temporal control of behavior that could serve as a target for the treatment of dopaminergic diseases.
Collapse
|
15
|
Macdonald CJ, Cheng RK, Meck WH. Acquisition of "Start" and "Stop" response thresholds in peak-interval timing is differentially sensitive to protein synthesis inhibition in the dorsal and ventral striatum. Front Integr Neurosci 2012; 6:10. [PMID: 22435054 PMCID: PMC3303086 DOI: 10.3389/fnint.2012.00010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 02/28/2012] [Indexed: 01/07/2023] Open
Abstract
Time-based decision-making in peak-interval timing procedures involves the setting of response thresholds for the initiation (“Start”) and termination (“Stop”) of a response sequence that is centered on a target duration. Using intracerebral infusions of the protein synthesis inhibitor anisomycin, we report that the acquisition of the “Start” response depends on normal functioning (including protein synthesis) in the dorsal striatum (DS), but not the ventral striatum (VS). Conversely, disruption of the VS, but not the DS, impairs the acquisition of the “Stop” response. We hypothesize that the dorsal and ventral regions of the striatum function as a competitive neural network that encodes the temporal boundaries marking the beginning and end of a timed response sequence.
Collapse
|