1
|
Spunde K, Korotkaja K, Sominskaya I, Zajakina A. Genetic adjuvants: A paradigm shift in vaccine development and immune modulation. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102536. [PMID: 40336572 PMCID: PMC12056970 DOI: 10.1016/j.omtn.2025.102536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
The COVID-19 pandemic underscored the urgency of developing effective vaccines to combat infectious diseases, especially in vulnerable populations such as the elderly and immunocompromised. While recombinant protein vaccines offer safety, their poor immunogenicity highlights the need for advanced vaccination platforms. New genetic/nucleic acid vaccine formulations like plasmid DNA and mRNA showed efficiency and safety in preclinical and clinical studies; however, they demand innovative adjuvants because their mechanism of action differs from traditional protein vaccines. Genetic adjuvants-encoded by nucleic acids within DNA, RNA, or viral vectors-emerge as a promising solution by targeting and modulating specific immune pathways, including antigen presentation, T cell activation, and memory formation. These innovative adjuvants enhance vaccine efficacy by fine-tuning innate and adaptive immune responses, overcoming immune senescence, and addressing the challenges of CD8+ T cell activation in immunocompromised populations. This review explores the potential of genetically encoded adjuvants, including cytokines, chemokines, and other immune modulators. By comparing these adjuvants to traditional formulations, we highlight their capacity to address the limitations of modern vaccines while discussing their integration with emerging technologies like RNA-based vaccines. As genetic adjuvants advance toward clinical application, understanding their mechanisms and optimizing their delivery is pivotal to unlocking next-generation immunization strategies.
Collapse
Affiliation(s)
- Karina Spunde
- Cancer Gene Therapy Group, Latvian Biomedical Research and Study Centre, Ratsupites Str. 1 k. 1, LV-1067 Riga, Latvia
| | - Ksenija Korotkaja
- Cancer Gene Therapy Group, Latvian Biomedical Research and Study Centre, Ratsupites Str. 1 k. 1, LV-1067 Riga, Latvia
| | - Irina Sominskaya
- Cancer Gene Therapy Group, Latvian Biomedical Research and Study Centre, Ratsupites Str. 1 k. 1, LV-1067 Riga, Latvia
| | - Anna Zajakina
- Cancer Gene Therapy Group, Latvian Biomedical Research and Study Centre, Ratsupites Str. 1 k. 1, LV-1067 Riga, Latvia
| |
Collapse
|
2
|
Xiang Y, Zhang H, An Y, Chen Z. Intranasal Immunization with DNA Vaccine HA-CCL19/Polyethylenimine/Chitosan Composite Provides Immune Protection Against H7N9 Infection. Vaccines (Basel) 2024; 13:10. [PMID: 39852789 PMCID: PMC11768641 DOI: 10.3390/vaccines13010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/13/2024] [Accepted: 12/23/2024] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND/OBJECTIVES The H7N9 avian influenza virus (AIV) constitutes a novel subtype of influenza virus that has emerged within the past decade. Empirical studies have demonstrated that H7N9 AIV holds the potential to trigger a human pandemic. Vaccines constitute the sole armament available to humanity in combating influenza epidemics. DNA vaccines present numerous merits; however, substantial conundrums persist regarding how to augment their immunogenicity and implement their delivery through mucosal immunization. METHODS In this study; BALB/c mice were utilized as a model to investigate the effect of CCL19 as a molecular adjuvant and to determine the immune response elicited by polyethylene imine (PEI) and chitosan (CS) as adjuvants during the delivery of a DNA vaccine through the nasal mucosal route. RESULTS Our results revealed that the CCL19 molecular adjuvant exerts a substantial immunomodulatory enhancement effect on the H7N9-HA DNA vaccine, inducing more pronounced cellular and humoral immunity. Additionally, our results indicated that the composite formed by the HA-CCL19 DNA in combination with PEI and CS effectively activates local mucosal immunity as well as systemic humoral and cellular immunity, offering 100% protection against lethal doses of homologous virus challenges. CONCLUSIONS CCL19 conspicuously augments the immunogenicity of the influenza virus HA DNA and conserves the integrity of the vaccine antigen. Simultaneously, CS and PEI proficiently facilitate the mucosal delivery of DNA, thereby eliciting mucosal immunity related to DNA vaccines. This study investigated the feasibility of utilizing nasal mucosa for DNA vaccine immunization, which holds significant implications for the advancement and application of DNA vaccines in public health.
Collapse
Affiliation(s)
- Yuqing Xiang
- Department of Basic Research, Ab & B Bio-Tech Co., Ltd. JS, Taizhou 225300, China; (Y.X.); (Y.A.)
- College of Life Science, Hunan Normal University, Changsha 410081, China
- Innovative Human Vaccine Technology and Engineering Research Center of Taizhou, Taizhou 225300, China
- Innovative Antiviral Vaccines Engineering Technology Research Center of Taizhou, Taizhou 225300, China
| | - Hongbo Zhang
- Department of Basic Research, Ab & B Bio-Tech Co., Ltd. JS, Taizhou 225300, China; (Y.X.); (Y.A.)
- Innovative Human Vaccine Technology and Engineering Research Center of Taizhou, Taizhou 225300, China
- Innovative Antiviral Vaccines Engineering Technology Research Center of Taizhou, Taizhou 225300, China
| | - Youcai An
- Department of Basic Research, Ab & B Bio-Tech Co., Ltd. JS, Taizhou 225300, China; (Y.X.); (Y.A.)
- Innovative Human Vaccine Technology and Engineering Research Center of Taizhou, Taizhou 225300, China
- Innovative Antiviral Vaccines Engineering Technology Research Center of Taizhou, Taizhou 225300, China
| | - Ze Chen
- Department of Basic Research, Ab & B Bio-Tech Co., Ltd. JS, Taizhou 225300, China; (Y.X.); (Y.A.)
- College of Life Science, Hunan Normal University, Changsha 410081, China
- Innovative Human Vaccine Technology and Engineering Research Center of Taizhou, Taizhou 225300, China
- Innovative Antiviral Vaccines Engineering Technology Research Center of Taizhou, Taizhou 225300, China
| |
Collapse
|
3
|
Zhang Y, Gu A, An Z, Huang S, Zhang C, Zhong X, Hu Y. B cells enhance EphA2 chimeric antigen receptor T cells cytotoxicity against glioblastoma via improving persistence. Hum Immunol 2024; 85:111093. [PMID: 39243423 DOI: 10.1016/j.humimm.2024.111093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/13/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
Chimeric antigen receptor (CAR) T cell therapy is a powerful adoptive immunotherapy against blood cancers, but the therapeutic effect was not efficient enough on solid tumors. B cells have been reported to play a critical role in regulating memory T differentiation and cytotoxic T development. However, as of yet the influence of such B cells on CAR T cells has not been discussed. In this study, using ephrin type-A receptor 2 (EphA2) specific CAR T cells, we cultured B cells successfully to stimulate CAR T cells in vitro, and investigated the cell differentiation and anti-tumor efficiency. We observed that EphA2-CAR T cells stimulated by B cells performed increased interferon γ (IFN γ) production and upregulated OX40 expression, as well as the enhanced anti-tumor activity and reduced PD-1 expression. The persistence of CAR T cells was enhanced after B cells stimulation for more than 7 days with the increased subset of central memory T cells (TCM). In addition, next generation sequencing was performed to explore the underlying mechanisms. The up-regulated genes clustered in, immune response activation, chemokine signaling pathway, calcium signaling pathway, cGMP-PKG signaling pathway and et al. which contributed to the upregulated anti-glioblastoma (GBM) activity of CAR T cells stimulated by B cell. Furthermore, MEF2C, CD40, SYK and TNFRSF13B were upregulated in CAR T cells after co-culturing with B cells. These genes functionally enriched in promoting lymphocytes proliferation and may contribute to the enhanced persistence of CAR T cells. In conclusion, these results indicated the critical role of B cells in prolonging CAR T cells longevity and enhancing anti-tumor activity, which paves the way for the therapeutic exploitation of EphA2-CAR T cells against GBM in the future.
Collapse
Affiliation(s)
- Ying Zhang
- Beijing Key Laboratory for Therapeutic Cancer Vaccines, Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Aiqin Gu
- Beijing Key Laboratory for Therapeutic Cancer Vaccines, Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Zhijing An
- Beijing Key Laboratory for Therapeutic Cancer Vaccines, Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Shuai Huang
- Beijing Key Laboratory for Therapeutic Cancer Vaccines, Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Can Zhang
- Beijing Key Laboratory for Therapeutic Cancer Vaccines, Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Xiaosong Zhong
- The Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Yi Hu
- Beijing Key Laboratory for Therapeutic Cancer Vaccines, Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China.
| |
Collapse
|
4
|
Chen J, Ma Y, Liu Y, Zhao H, Qi X, Sun Y, Zhou X, Zhou J, Ma X, Wang L. CCL17 and CCL19 are markers of disease progression in alveolar echinococcosis. Cytokine 2024; 181:156669. [PMID: 38875750 DOI: 10.1016/j.cyto.2024.156669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024]
Abstract
OBJECTIVES Alveolar echinococcosis (AE) represents one of the deadliest helminthic infections, characterized by an insidious onset and high lethality. METHODS This study utilized the Gene Expression Omnibus (GEO) database, applied Weighted Correlation Network Analysis (WGCNA) and Differential Expression Analysis (DEA), and employed the Matthews Correlation Coefficient (MCC) to identify CCL17 and CCL19 as key genes in AE. Immunohistochemistry and immunofluorescence co-localization techniques were used to examine the expression of CCL17 and CCL19 in liver tissue lesions of AE patients. Additionally, a mouse model of multilocular echinococcus larvae infection was developed to study the temporal expression patterns of these genes, along with liver fibrosis and inflammatory responses. RESULTS The in vitro model simulating echinococcal larva infection mirrored the hepatic microenvironment post-infection with multilocular echinococcal tapeworms. Quantitative RT-PCR analysis showed that liver fibrosis occurred in AE patients, with proximal activation and increased expression of CCL17 and CCL19 over time post-infection. Notably, expression peaked during the late stages of infection. Similarly, F4/80, a macrophage marker, exhibited corresponding trends in expression. Upon stimulation of normal hepatocytes by vesicular larvae in cellular experiments, there was a significant increase in CCL17 and CCL19 expression at 12 h post-infection, mirroring the upregulation observed with F4/80. CONCLUSION CCL17 and CCL19 facilitate macrophage aggregation via the chemokine pathway and their increased expression correlates with the progression of infection, suggesting their potential as biomarkers for AE progression.
Collapse
Affiliation(s)
- Jiahui Chen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang 830011, China
| | - Yuyu Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang 830011, China
| | - Yumei Liu
- Xinjiang Medical University Affiliated Traditional Chinese Medicine Hospital, Medical Testing Center, Xinjiang, China
| | - Hui Zhao
- The First Affiliated Hospital of Xinjiang Medical University, Medical Testing Center, Xinjiang, China
| | - Xinwei Qi
- The First Affiliated Hospital of Xinjiang Medical University, Medical Testing Center, Xinjiang, China
| | - Yuqin Sun
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang 830011, China
| | - Xuan Zhou
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang 830011, China
| | - Jinping Zhou
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang 830011, China
| | - Xiumin Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang 830011, China.
| | - Liang Wang
- The Fifth Affiliated Hospital of Xinjiang Medical University, Medical Testing Center, Xinjiang, China.
| |
Collapse
|
5
|
Vieira Antão A, Oltmanns F, Schmidt A, Viherlehto V, Irrgang P, Rameix-Welti MA, Bayer W, Lapuente D, Tenbusch M. Filling two needs with one deed: a combinatory mucosal vaccine against influenza A virus and respiratory syncytial virus. Front Immunol 2024; 15:1376395. [PMID: 38975350 PMCID: PMC11224462 DOI: 10.3389/fimmu.2024.1376395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
Influenza A Virus (IAV) and Respiratory Syncytial Virus (RSV) are both responsible for millions of severe respiratory tract infections every year worldwide. Effective vaccines able to prevent transmission and severe disease, are important measures to reduce the burden for the global health system. Despite the strong systemic immune responses induced upon current parental immunizations, this vaccination strategy fails to promote a robust mucosal immune response. Here, we investigated the immunogenicity and efficacy of a mucosal adenoviral vector vaccine to tackle both pathogens simultaneously at their entry site. For this purpose, BALB/c mice were immunized intranasally with adenoviral vectors (Ad) encoding the influenza-derived proteins, hemagglutinin (HA) and nucleoprotein (NP), in combination with an Ad encoding for the RSV fusion (F) protein. The mucosal combinatory vaccine induced neutralizing antibodies as well as local IgA responses against both viruses. Moreover, the vaccine elicited pulmonary CD8+ and CD4+ tissue resident memory T cells (TRM) against the immunodominant epitopes of RSV-F and IAV-NP. Furthermore, the addition of Ad-TGFβ or Ad-CCL17 as mucosal adjuvant enhanced the formation of functional CD8+ TRM responses against the conserved IAV-NP. Consequently, the combinatory vaccine not only provided protection against subsequent infections with RSV, but also against heterosubtypic challenges with pH1N1 or H3N2 strains. In conclusion, we present here a potent combinatory vaccine for mucosal applications, which provides protection against two of the most relevant respiratory viruses.
Collapse
Affiliation(s)
- Ana Vieira Antão
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Friederike Oltmanns
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Anna Schmidt
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Vera Viherlehto
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Pascal Irrgang
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Marie-Anne Rameix-Welti
- Université Paris-Saclay – Université de Versailles St. Quentin, UMR 1173 (2I), Institut national de la santé et de la recherche médicale (INSERM), Montigny-le-Bretonneux, France
| | - Wibke Bayer
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Dennis Lapuente
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Tenbusch
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- FAU Profile Center Immunomedicine (FAU I-MED), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
6
|
Lupancu TJ, Eivazitork M, Hamilton JA, Achuthan AA, Lee KMC. CCL17/TARC in autoimmunity and inflammation-not just a T-cell chemokine. Immunol Cell Biol 2023; 101:600-609. [PMID: 36975092 DOI: 10.1111/imcb.12644] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/21/2023] [Accepted: 03/26/2023] [Indexed: 03/29/2023]
Abstract
Chemokine (C-C) ligand 17 (CCL17) was first identified as thymus- and activation-regulated chemokine when it was found to be constitutively expressed in the thymus and identified as a T-cell chemokine. This chemoattractant molecule has subsequently been found at elevated levels in a range of autoimmune and inflammatory diseases, as well as in cancer. CCL17 is a C-C chemokine receptor type 4 (CCR4) ligand, with chemokine (C-C) ligand 22 being the other major ligand and, as CCR4 is highly expressed on helper T cells, CCL17 can play a role in T-cell-driven diseases, usually considered to be via its chemotactic activity on T helper 2 cells; however, given that CCR4 is also expressed by other cell types and there is elevated expression of CCL17 in many diseases, a broader CCL17 biology is suggested. In this review, we summarize the biology of CCL17, its regulation and its potential contribution to the pathogenesis of various preclinical models. Reference is made, for example, to recent literature indicating a role for CCL17 in the control of pain as part of a granulocyte macrophage-colony-stimulating factor/CCL17 pathway in lymphocyte-independent models and thus not as a T-cell chemokine. The review also discusses the potential for CCL17 to be a biomarker and a therapeutic target in human disorders.
Collapse
Affiliation(s)
- Tanya J Lupancu
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Mahtab Eivazitork
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - John A Hamilton
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St Albans, VIC, Australia
| | - Adrian A Achuthan
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Kevin M-C Lee
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
7
|
Li H, Xing J, Tang X, Sheng X, Chi H, Zhan W. Two bicistronic DNA vaccines against Vibrio anguillarum and the immune effects on flounder Paralichthys olivaceus. JOURNAL OF OCEANOLOGY AND LIMNOLOGY 2022; 40:786-804. [PMID: 35018224 PMCID: PMC8739378 DOI: 10.1007/s00343-021-1092-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/11/2021] [Indexed: 05/05/2023]
Abstract
Chemokines are cytokines that can promote the activation and migration of immune cells, and increase the recognition of antigen by antigen-presenting cells (APC). Previous studies showed that a DNA vaccine can induce humoral and cellular immune responses of flounder after immunization. To explore the improvement of chemokines on the efficiency of OmpK vaccine, two bicistronic DNA candidate vaccines were constructed and the immune responses they induced in the flounder were investigated by reverse transcription polymerase chain reaction (RT-PCR), indirect immunofluorescent assay (IFA), H&E staining, flow cytometry (FCM), and quantificational real-time polymerase chain reaction (qRT-PCR). pBudCE4.1 plasmid as an expression vector, bicistronic DNA vaccines encoding OmpK gene and CC-motif ligand 4 gene (p-OmpK-CCL4), or Ompk gene and CC-motif ligand 19 gene (p-OmpK-CCL19) were successfully constructed. The results showed that two bicistronic DNA vaccines expressed Ompk protein of Vibrio anguillarum and CCL4/CCL19 proteins of flounder both in vitro and in vivo. After immunization, a large number of leucocytes in muscle were recruited at the injection site in treatment groups. The constructed vaccines induced significant increases in CD4-1+ and CD4-2+ T lymphocytes, and sIgM+ B lymphocytes in peripheral blood, spleen, and head kidney. The percentage of T lymphocytes peaked on the 14th post-vaccination day whereas that of B lymphocytes peaked in the 6th post-vaccination week. Moreover, the expression profiles of 10 immune-related genes increased in muscles around the injection site, spleen, and head kidney. After the challenge, p-OmpK-CCL4 and p-OmpK-CCL19 conferred a relative percentage survival (RPS) of 74.1% and 63.3%, respectively, higher than p-OmpK alone (40.8%). In conclusion, both CCL4 and CCL19 can improve the protection of p-OmpK via evoking local immune response and then humoral and cellular immunity. CCL4 and CCL19 will be potential molecular adjuvants for use in DNA vaccines.
Collapse
Affiliation(s)
- Hanlin Li
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003 China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071 China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071 China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003 China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003 China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071 China
| |
Collapse
|
8
|
Patel M. Dental caries vaccine: are we there yet? Lett Appl Microbiol 2019; 70:2-12. [PMID: 31518435 DOI: 10.1111/lam.13218] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 12/21/2022]
Abstract
Dental caries, caused by Streptococcus mutans, is a common infection. Caries vaccine has been under investigation for the last 40 years. Many in vitro and in vivo studies and some human clinical trials have determined many pertinent aspects regarding vaccine development. The virulence determinants of Strep. mutans, such as Ag I/II, responsible for adherence to surfaces, glucosyltransferase, responsible for the production of glucan, and the glucan-binding protein, responsible for the attachment of glucan to surfaces, have been known to elicit an antigen-specific immune response. It is also known that more than one antigen or a functional part of the genome responsible for these virulence determinants provide a better host response compared with the monogenic vaccine or complete genome of a specific antigen. To enhance the host response, the use of adjuvants has been studied and the routes of antigen administration have been investigated. In recent years, some promising vaccines such as pGJA-P/VAX, LT derivative/Pi39-512 , KFD2-rPAc and SBR/GBR-CMV-nirB have been developed and tested in animals. New virulence targets need to be explored. Multicentre collaborative studies and human clinical trials are required and some interest from funders and public health experts should be generated to overcome this hurdle. SIGNIFICANCE AND IMPACT OF THE STUDY: Dental caries is an irreversible, multifactorial opportunistic infection. The treatment is costly, making it a public health problem. Despite many years of promising laboratory research, animal studies and clinical trials, there is no commercially available vaccine today. The research objectives have become more refined from lessons learnt over the years. Multigenic DNA/recombinant vaccines, using the best proved adjuvants with a delivery system for the nasal or sublingual route, should be developed and researched with multicentre collaborative efforts. In addition, new vaccine targets can be identified. To overcome the economic hurdle, funders and public health interest should be stimulated.
Collapse
Affiliation(s)
- M Patel
- Department of Oral Biological Sciences, School of Oral Health Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
9
|
Ge H, Farris CM, Tong M, Maina A, Richards AL. Transcriptional profiles of cytokines and chemokines reveal important pro-inflammatory response from endothelial cells during Orientia tsutsugamushi infection. Microbes Infect 2019; 21:313-320. [PMID: 30684683 DOI: 10.1016/j.micinf.2019.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/14/2019] [Indexed: 01/18/2023]
Abstract
Endothelial cells (EC) are key targets during Orientia tsutsugamushi infection. Knowledge of the pro-inflammatory response against O. tsutsugamushi by ECs is limited. The aim of the present study was to characterize the pro-inflammatory transcriptional response during the first 24 h of infection of the human dermal microvascular endothelial cell line with O. tsutsugamushi Karp by examining five-time points. The transcriptional profiles of 84 genes including cytokines, chemokines, growth factors, and TNF receptor superfamily genes were studied using a RT-PCR array. We identified 40 of the 84 genes that were up or down modulated during the early O. tsutsugamushi infection that differed remarkably from genes of non-infected cells. The modulated genes included: the interleukins (IL-1α/β, IL-4, IL-6, IL-7, IL-10, IL-11, IL-18, and IL-24), chemokines (CXCL8, CCL2/MCP1, CCL5/RANTES, and CCL17), growth factors (NODAL, CNTF, and CSF2/GM-CSF), and TNFSF13B. IL-1β, IL-4, and IL-11 were highly induced at one hour post infection, whereas, CCL17 was profoundly up-regulated and IFNα2 was greatly down-regulated during the entire 24-hour time course. These results provide insight into the early pro-inflammatory response of endothelial cells to O. tsutsugamushi infection and indicate their potential role in the pathophysiology of the host's initial response to O. tsutsugamushi infection.
Collapse
Affiliation(s)
- Hong Ge
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, USA
| | - Christina M Farris
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, USA; US Naval Medical Research Unit No. 2, Phnom Penh, Cambodia
| | - Min Tong
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, USA
| | - Alice Maina
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, USA
| | - Allen L Richards
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, USA.
| |
Collapse
|
10
|
Lemos JA, Palmer SR, Zeng L, Wen ZT, Kajfasz JK, Freires IA, Abranches J, Brady LJ. The Biology of Streptococcus mutans. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0051-2018. [PMID: 30657107 PMCID: PMC6615571 DOI: 10.1128/microbiolspec.gpp3-0051-2018] [Citation(s) in RCA: 395] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Indexed: 12/30/2022] Open
Abstract
As a major etiological agent of human dental caries, Streptococcus mutans resides primarily in biofilms that form on the tooth surfaces, also known as dental plaque. In addition to caries, S. mutans is responsible for cases of infective endocarditis with a subset of strains being indirectly implicated with the onset of additional extraoral pathologies. During the past 4 decades, functional studies of S. mutans have focused on understanding the molecular mechanisms the organism employs to form robust biofilms on tooth surfaces, to rapidly metabolize a wide variety of carbohydrates obtained from the host diet, and to survive numerous (and frequent) environmental challenges encountered in oral biofilms. In these areas of research, S. mutans has served as a model organism for ground-breaking new discoveries that have, at times, challenged long-standing dogmas based on bacterial paradigms such as Escherichia coli and Bacillus subtilis. In addition to sections dedicated to carbohydrate metabolism, biofilm formation, and stress responses, this article discusses newer developments in S. mutans biology research, namely, how S. mutans interspecies and cross-kingdom interactions dictate the development and pathogenic potential of oral biofilms and how next-generation sequencing technologies have led to a much better understanding of the physiology and diversity of S. mutans as a species.
Collapse
Affiliation(s)
- J A Lemos
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610
| | - S R Palmer
- Division of Biosciences, College of Dentistry, Ohio State University, Columbus, OH 43210
| | - L Zeng
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610
| | - Z T Wen
- Department of Comprehensive Dentistry and Biomaterials and Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - J K Kajfasz
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610
| | - I A Freires
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610
| | - J Abranches
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610
| | - L J Brady
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610
| |
Collapse
|
11
|
Huang SS, Li YW, Wu JL, Johnson FE, Huang JS. Development of the LYVE-1 gene with an acidic-amino-acid-rich (AAAR) domain in evolution is associated with acquisition of lymph nodes and efficient adaptive immunity. J Cell Physiol 2018; 233:2681-2692. [PMID: 28833090 PMCID: PMC6123220 DOI: 10.1002/jcp.26159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/17/2017] [Indexed: 12/13/2022]
Abstract
CRSBP-1 (mammalian LYVE-1) is a membrane glycoprotein highly expressed in lymphatic endothelial cells (LECs). It has multiple ligands, including hyaluronic acid (HA) and growth factors/cytokines (e.g., PDGF-BB and VEGF-A) containing CRS motifs (clusters of basic amino-acid residues). The ligand binding activities are mediated by Link module and acidic-amino-acid-rich (AAAR) domains, respectively. These CRSBP-1/LYVE-1 ligands have been shown to induce opening of lymphatic intercellular junctions in LEC monolayers and in lymphatic vessels in wild-type mice. We hypothesize that CRSBP-1/LYVE-1 ligands, particularly CRS-containing growth factors/cytokines, are secreted by immune and cancer cells for lymphatic entry during adaptive immune responses and lymphatic metastasis. We have looked into the origin of the Link module and AAAR domain of LYVE-1 in evolution and its association with the development of lymph nodes and efficient adaptive immunity. Lymph nodes represent the only major recent innovation of the adaptive immune systems in evolution particularly to mammals and bird. Here we demonstrate that the development of the LYVE-1 gene with the AAAR domain in evolution is associated with acquisition of lymph nodes and adaptive immunity. LYVE-1 from other species, which have no lymph nodes, lack the AAAR domain and efficient adaptive immunity. Synthetic CRSBP-1 ligands PDGF and VEGF peptides, which contain the CRS motifs of PDGF-BB and VEGF-A, respectively, specifically bind to CRSBP-1 but do not interact with either PDGFβR or VEGFR2. These peptides function as adjuvants by enhancing adaptive immunity of pseudorabies virus (PRV) vaccine in pigs. These results support the notion that LYVE-1 is involved in adaptive immunity in mammals.
Collapse
Affiliation(s)
| | - Ya-Wen Li
- Graduate Institute of Life Sciences, National Defense Medical Center and Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Jen-Leih Wu
- Graduate Institute of Life Sciences, National Defense Medical Center and Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Frank E Johnson
- Department of Surgery, Saint Louis University Medical Center, St. Louis, Missouri
| | - Jung San Huang
- Department of Biochemistry and Molecular Biology, Doisy Research Center, Saint Louis University School of Medicine, St. Louis, Missouri
| |
Collapse
|
12
|
Liu S, Wu T, Zhou X, Zhang B, Huo S, Yang Y, Zhang K, Cheng L, Xu X, Li M. Nicotine is a risk factor for dental caries: An in vivo study. J Dent Sci 2018; 13:30-36. [PMID: 30895091 PMCID: PMC6388820 DOI: 10.1016/j.jds.2017.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 08/11/2017] [Indexed: 02/05/2023] Open
Abstract
Background/purpose Streptococcus mutans is an important pathogen in the development of dental caries. Many studies have focused on the relationship between nicotine and S. mutans in vitro. The aim of this study was to investigate the effect of nicotine on the growth of S. mutans and its cariogenic potential in vivo. Materials and methods Sixteen male Specific-pathogen-free Wistar rats were divided into 2 groups (nicotine-treated and nicotine-untreated group) and infected with S. mutans. The S. mutans suspension was treated with 1 mg/mL nicotine in the nicotine-treated group. The Keyes method was used to evaluate sulcal caries of rats, and dental plaque on molar teeth was observed by scanning electron microscopy (SEM). Results Incidence of sulcal caries was higher in nicotine-treated group compared to nicotine-untreated group (42.7 ± 1.7 vs 37.3 ± 4.9, P = 0.009). Severity of caries increased with nicotine treatment. The slightly dentinal caries scores and moderate dentinal caries scores were higher in the presence of nicotine (P < 0.001). Increased number of S. mutans cells attached to dental surface was observed under SEM in the nicotine-treated group. Conclusion Nicotine would promote the attachment of S. mutans to dental surface, and further increase the incidence and severity of dental caries. Therefore, nicotine might be a risk factor for smoking-induced caries.
Collapse
Affiliation(s)
- Shiyu Liu
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tianmu Wu
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Zhang
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sibei Huo
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yutao Yang
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Keke Zhang
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mingyun Li
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
- Corresponding author. State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|