1
|
Zhao Y, Wang Y, Liang T, Song X, Zhu Y, Liu X, Lv M, Zheng C, Ni F. Dysregulated glutathione metabolism impairs natural killer cell function in patients with acute leukemia. Int Immunopharmacol 2025; 154:114566. [PMID: 40184815 DOI: 10.1016/j.intimp.2025.114566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/11/2025] [Accepted: 03/25/2025] [Indexed: 04/07/2025]
Abstract
Natural killer (NK) cell function is markedly impaired in patients with acute leukemia, weakening their anti-tumor immune response. However, the mechanisms underlying NK cell dysfunction are not fully understood. Here, we reveal that NK cells from patients with acute leukemia (AL-NK) exhibit significantly reduced intracellular glutathione (GSH) levels, accompanied by disrupted redox homeostasis and increased levels of mitochondrial reactive oxygen species. Flow cytometry and transcriptomic analyses indicate that dysregulated GSH metabolism leads to mitochondrial dysfunction in NK cells, thereby impairing their antileukemic cytotoxicity and proliferative capacity. Notably, supplementation with glutathione reduced ethyl ester (GSHEE)-a GSH precursor-effectively restores GSH levels in AL-NK cells, enhancing mitochondrial activity, oxidative phosphorylation, ATP production, and NK cell-mediated cytotoxicity. Moreover, GSHEE treatment activates the mTOR signaling pathway in NK cells, further promoting their function and proliferation. Overall, our study identifies dysregulated GSH metabolism as a key driver of NK cell dysfunction in acute leukemia and suggests that GSH-based interventions may provide a promising strategy to enhance NK cell-mediated immunotherapies.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Hematology, The First Affiliated Hospital of USTC, National Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Institute of Blood and Cell Therapy and Anhui Provincial Key Laboratory of Blood Research and Applications, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Institute of Immunology, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230022, China
| | - Yan Wang
- Department of Hematology, The First Affiliated Hospital of USTC, National Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Institute of Blood and Cell Therapy and Anhui Provincial Key Laboratory of Blood Research and Applications, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Tingting Liang
- Department of Hematology, The First Affiliated Hospital of USTC, National Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Institute of Blood and Cell Therapy and Anhui Provincial Key Laboratory of Blood Research and Applications, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Institute of Immunology, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230022, China
| | - Xian Song
- Department of Hematology, The First Affiliated Hospital of USTC, National Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Institute of Blood and Cell Therapy and Anhui Provincial Key Laboratory of Blood Research and Applications, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Institute of Immunology, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230022, China
| | - Yingqiao Zhu
- Department of Hematology, The First Affiliated Hospital of USTC, National Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Institute of Blood and Cell Therapy and Anhui Provincial Key Laboratory of Blood Research and Applications, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Xinru Liu
- Department of Hematology, The First Affiliated Hospital of USTC, National Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Institute of Blood and Cell Therapy and Anhui Provincial Key Laboratory of Blood Research and Applications, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Institute of Immunology, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230022, China
| | - Mengya Lv
- Department of Hematology, The First Affiliated Hospital of USTC, National Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Institute of Blood and Cell Therapy and Anhui Provincial Key Laboratory of Blood Research and Applications, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Changcheng Zheng
- Department of Hematology, The First Affiliated Hospital of USTC, National Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Institute of Blood and Cell Therapy and Anhui Provincial Key Laboratory of Blood Research and Applications, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| | - Fang Ni
- Department of Hematology, The First Affiliated Hospital of USTC, National Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Institute of Blood and Cell Therapy and Anhui Provincial Key Laboratory of Blood Research and Applications, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Institute of Immunology, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230022, China.
| |
Collapse
|
2
|
Hu J, Guo M, Gao Q, Jia H, He M, Wang Z, Guo L, Liu G, Gao Q, Zhao KT. QBEmax is a sequence-permuted and internally protected base editor. Nat Biotechnol 2025:10.1038/s41587-025-02641-9. [PMID: 40258958 DOI: 10.1038/s41587-025-02641-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 03/18/2025] [Indexed: 04/23/2025]
Abstract
Cytosine base editors (CBEs) show promise for multiplex gene knockout applications, but impure edits, indels and off-targets still frequently occur. We describe here QBEmax, which exhibits high efficiency, low indel and off-targets and high product purity with up to 99.8% of edits comprised of C-to-T. Through molecular dynamic modeling, QBEmax presents as a compact and stable base editor that shields protected bases from undesired repair processes.
Collapse
Affiliation(s)
| | | | | | - He Jia
- Qi Biodesign, Beijing, China
| | | | | | | | - Guanwen Liu
- Qi Biodesign, Beijing, China
- Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | | |
Collapse
|
3
|
Rahmatallah Y, Glazko G. Improving data interpretability with new differential sample variance gene set tests. BMC Bioinformatics 2025; 26:103. [PMID: 40229677 PMCID: PMC11998189 DOI: 10.1186/s12859-025-06117-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 03/20/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Gene set analysis methods have played a major role in generating biological interpretations of omics data such as gene expression datasets. However, most methods focus on detecting homogenous pattern changes in mean expression while methods detecting pattern changes in variance remain poorly explored. While a few studies attempted to use gene-level variance analysis, such approach remains under-utilized. When comparing two phenotypes, gene sets with distinct changes in subgroups under one phenotype are overlooked by available methods although they reflect meaningful biological differences between two phenotypes. Multivariate sample-level variance analysis methods are needed to detect such pattern changes. RESULTS We used ranking schemes based on minimum spanning tree to generalize the Cramer-Von Mises and Anderson-Darling univariate statistics into multivariate gene set analysis methods to detect differential sample variance or mean. We characterized the detection power and Type I error rate of these methods in addition to two methods developed earlier using simulation results with different parameters. We applied the developed methods to microarray gene expression dataset of prednisolone-resistant and prednisolone-sensitive children diagnosed with B-lineage acute lymphoblastic leukemia and bulk RNA-sequencing gene expression dataset of benign hyperplastic polyps and potentially malignant sessile serrated adenoma/polyps. One or both of the two compared phenotypes in each of these datasets have distinct molecular subtypes that contribute to within phenotype variability and to heterogeneous differences between two compared phenotypes. Our results show that methods designed to detect differential sample variance provide meaningful biological interpretations by detecting specific hallmark gene sets associated with the two compared phenotypes as documented in available literature. CONCLUSIONS The results of this study demonstrate the usefulness of methods designed to detect differential sample variance in providing biological interpretations when biologically relevant but heterogeneous changes between two phenotypes are prevalent in specific signaling pathways. Software implementation of the methods is available with detailed documentation from Bioconductor package GSAR. The available methods are applicable to gene expression datasets in a normalized matrix form and could be used with other omics datasets in a normalized matrix form with available collection of feature sets.
Collapse
Affiliation(s)
- Yasir Rahmatallah
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| | - Galina Glazko
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| |
Collapse
|
4
|
Balkhi S, Zuccolotto G, Di Spirito A, Rosato A, Mortara L. CAR-NK cell therapy: promise and challenges in solid tumors. Front Immunol 2025; 16:1574742. [PMID: 40260240 PMCID: PMC12009813 DOI: 10.3389/fimmu.2025.1574742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 03/17/2025] [Indexed: 04/23/2025] Open
Abstract
Over the past few years, cellular immunotherapy has emerged as a promising treatment for certain hematologic cancers, with various CAR-T therapies now widely used in clinical settings. However, challenges related to the production of autologous cell products and the management of CAR-T cell toxicity highlight the need for new cell therapy options that are universal, safe, and effective. Natural killer (NK) cells, which are part of the innate immune system, offer unique advantages, including the potential for off-the-shelf therapy. A recent first-in-human trial of CD19-CAR-NK infusion in patients with relapsed/refractory lymphoid malignancies demonstrated safety and promising clinical activity. Building on these positive clinical outcomes, current research focuses on enhancing CAR-NK cell potency by increasing their in vivo persistence and addressing functional exhaustion. There is also growing interest in applying the successes seen in hematologic malignancies to solid tumors. This review discusses current trends and emerging concepts in the engineering of next-generation CAR- NK therapies. It will cover the process of constructing CAR-NK cells, potential targets for their manufacturing, and their role in various solid tumors. Additionally, it will examine the mechanisms of action and the research status of CAR-NK therapies in the treatment of solid tumors, along with their advantages, limitations, and future challenges. The insights provided may guide future investigations aimed at optimizing CAR-NK therapy for a broader range of malignancies.
Collapse
Affiliation(s)
- Sahar Balkhi
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Gaia Zuccolotto
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | - Anna Di Spirito
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Antonio Rosato
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
5
|
Puig-Gámez M, Van Attekum M, Theis T, Dick A, Park JE. Transcriptional signature of rapidly responding NK cells reveals S1P5 and CXCR4 as anti-tumor response disruptors. Sci Rep 2025; 15:10769. [PMID: 40155684 PMCID: PMC11953373 DOI: 10.1038/s41598-025-95211-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/19/2025] [Indexed: 04/01/2025] Open
Abstract
Natural killer (NK) cells are prototypic cytotoxic innate lymphocytes that can kill target cells, such as tumor cells, in the absence of antigen-restriction. Peripheral NK cells exhibit a high degree of heterogeneity. Here, we set out to broadly assess intrinsic modulators of NK cell degranulation in an unbiased manner. We stimulated human primary blood-borne NK cells pre-treated with different cytokine regimens with the HCT116 human colon cancer cell line and used detection of lysosome-associated membrane glycoprotein 1 (LAMP1) as an identifier of rapid NK cell degranulation. RNA sequencing of FACS-sorted LAMP1hi NK cells showed CXCR4 and S1PR5 were top down-regulated genes. Using compounds that modulate activity of CXCR4 and S1P receptor family members S1P1 and S1P5, we confirmed they play an important immunosuppressive role in NK cell cytotoxicity. Mechanistically, engagement of CXCR4 and S1P1/5 receptors triggered phosphorylation of p42 and Ca2+ influx. CXCR4 activation promoted S1P5 upregulation and vice versa, and joint activation of both receptors amplified the defect NK cell degranulation. Intriguingly, in tumor samples the expression of both receptors and the synthesis of their ligands themselves appear to be coordinately regulated. Together, these data suggest that specifically and simultaneously targeting CXCR4 and S1P5 activity in the tumor microenvironment (TME) could be a beneficial strategy to unleash full cytotoxic potential of cytotoxic NK effector cells in the tumor.
Collapse
Affiliation(s)
- Marta Puig-Gámez
- Department of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co. KG, 88387, Biberach an der Riss, Germany
| | - Martijn Van Attekum
- Department of Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88387, Biberach an der Riss, Germany
| | - Theodor Theis
- Department of Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, 88387, Biberach an der Riss, Germany
| | - Alec Dick
- Department of Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88387, Biberach an der Riss, Germany
| | - John E Park
- Department of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co. KG, 88387, Biberach an der Riss, Germany.
| |
Collapse
|
6
|
Semeradtova A, Liegertova M, Herma R, Capkova M, Brignole C, Del Zotto G. Extracellular vesicles in cancer´s communication: messages we can read and how to answer. Mol Cancer 2025; 24:86. [PMID: 40108630 PMCID: PMC11921637 DOI: 10.1186/s12943-025-02282-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/24/2025] [Indexed: 03/22/2025] Open
Abstract
Extracellular vesicles (EVs) are emerging as critical mediators of intercellular communication in the tumor microenvironment (TME), profoundly influencing cancer progression. These nano-sized vesicles, released by both tumor and stromal cells, carry a diverse cargo of proteins, nucleic acids, and lipids, reflecting the dynamic cellular landscape and mediating intricate interactions between cells. This review provides a comprehensive overview of the biogenesis, composition, and functional roles of EVs in cancer, highlighting their significance in both basic research and clinical applications. We discuss how cancer cells manipulate EV biogenesis pathways to produce vesicles enriched with pro-tumorigenic molecules, explore the specific contributions of EVs to key hallmarks of cancer, such as angiogenesis, metastasis, and immune evasion, emphasizing their role in shaping TME and driving therapeutic resistance. Concurrently, we submit recent knowledge on how the cargo of EVs can serve as a valuable source of biomarkers for minimally invasive liquid biopsies, and its therapeutic potential, particularly as targeted drug delivery vehicles and immunomodulatory agents, showcasing their promise for enhancing the efficacy and safety of cancer treatments. By deciphering the intricate messages carried by EVs, we can gain a deeper understanding of cancer biology and develop more effective strategies for early detection, targeted therapy, and immunotherapy, paving the way for a new era of personalized and precise cancer medicine with the potential to significantly improve patient outcomes.
Collapse
Affiliation(s)
- Alena Semeradtova
- Institute of Photonics and Electronics of the CAS, Chaberská 1014/57, Prague, 182 51, Czech Republic.
| | - Michaela Liegertova
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí Nad Labem, Pasteurova 3632/15, Ústí Nad Labem, 40096, Czech Republic
| | - Regina Herma
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí Nad Labem, Pasteurova 3632/15, Ústí Nad Labem, 40096, Czech Republic
| | - Magdalena Capkova
- Institute of Photonics and Electronics of the CAS, Chaberská 1014/57, Prague, 182 51, Czech Republic
| | - Chiara Brignole
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy.
| | - Genny Del Zotto
- Core Facilities, Department of Research and Diagnostics, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy.
| |
Collapse
|
7
|
Lee D, Oh S, Lawler S, Kim Y. Bistable dynamics of TAN-NK cells in tumor growth and control of radiotherapy-induced neutropenia in lung cancer treatment. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2025; 22:744-809. [PMID: 40296792 DOI: 10.3934/mbe.2025028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Neutrophils play a crucial role in the innate immune response as a first line of defense in many diseases, including cancer. Tumor-associated neutrophils (TANs) can either promote or inhibit tumor growth in various steps of cancer progression via mutual interactions with cancer cells in a complex tumor microenvironment (TME). In this study, we developed and analyzed mathematical models to investigate the role of natural killer cells (NK cells) and the dynamic transition between N1 and N2 TAN phenotypes in killing cancer cells through key signaling networks and how adjuvant therapy with radiation can be used in combination to increase anti-tumor efficacy. We examined the complex immune-tumor dynamics among N1/N2 TANs, NK cells, and tumor cells, communicating through key extracellular mediators (Transforming growth factor (TGF-$ \beta $), Interferon gamma (IFN-$ \gamma $)) and intracellular regulation in the apoptosis signaling network. We developed several tumor prevention strategies to eradicate tumors, including combination (IFN-$ \gamma $, exogenous NK, TGF-$ \beta $ inhibitor) therapy and optimally-controlled ionizing radiation in a complex TME. Using this model, we investigated the fundamental mechanism of radiation-induced changes in the TME and the impact of internal and external immune composition on the tumor cell fate and their response to different treatment schedules.
Collapse
Affiliation(s)
- Donggu Lee
- Department of Mathematics, Konkuk University, Seoul 05029, Republic of Korea
| | - Sunju Oh
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Sean Lawler
- Department of Pathology and Laboratory Medicine, Legorreta Brown Cancer Center, Brown University, Providence, RI 02912, USA
| | - Yangjin Kim
- Department of Mathematics, Konkuk University, Seoul 05029, Republic of Korea
- Department of Pathology and Laboratory Medicine, Legorreta Brown Cancer Center, Brown University, Providence, RI 02912, USA
| |
Collapse
|
8
|
Ye Y, Liu N, Zeng Y, Guo Z, Wang X, Xu X. Aclacinomycin enhances the killing effect of allogeneic NK cells on acute myeloid leukemia cells by inducing immunogenic cell death. Front Immunol 2025; 16:1521939. [PMID: 40051630 PMCID: PMC11882597 DOI: 10.3389/fimmu.2025.1521939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 01/13/2025] [Indexed: 03/09/2025] Open
Abstract
Introduction Natural killer (NK) cells, which exert spontaneous cytotoxicity against infectious diseases and cancer, also play an important role in leukemia therapy. Despite the success of NK-based therapy in the treatment of myeloid leukemia, the potential use of NK alloreactivity in these hematologic malignancies remains elusive. The aim of the present study was to investigate whether allogeneic NK cells combined with aclacinomycin (ACM) could enhance anti-leukemic functionality against an acute myeloid leukemia (AML) cell line and to clarify the underlying mechanism. Methods KG-1α and HL-60 AML cell lines were subjected to different treatments. The effects of different drug combinations on cytotoxicity, cell viability, and apoptotic status were examined. Results The results showed that the combination of ACM (40 nmol/l) and allogeneic NK cells (ratio 20:1) was significantly cytotoxic to AML cells and increased the apoptosis of AML cells, especially after 72 h of treatment. Subsequent analyses revealed that the expression of immunogenic cell death (ICD)-related molecules calreticulin, adenosine triphosphate, and high mobility group box 1, as well as NK cell effector production-perforin and granzyme B-was markedly increased in the combination treatment group. These findings suggest that ACM enhances the anti-leukemic activity of allogeneic NK cells through the ICD pathway. Discussion These results demonstrated that allogeneic NK cells had enhanced functional responses when stimulated with ACM in vitro, exhibiting superior effector cytokine production and cytotoxicity compared to the control, which contained conventional NK cells. In conclusion, the present study suggested that the combination of ACM and allogeneic NK cells is a promising therapeutic strategy against AML.
Collapse
MESH Headings
- Humans
- Killer Cells, Natural/immunology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/metabolism
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Aclarubicin/pharmacology
- Apoptosis/drug effects
- Apoptosis/immunology
- Immunogenic Cell Death/drug effects
- Immunogenic Cell Death/immunology
- Cytotoxicity, Immunologic/drug effects
- Cell Line, Tumor
- HL-60 Cells
- Cell Survival/drug effects
- Antibiotics, Antineoplastic/pharmacology
Collapse
Affiliation(s)
- Yongbin Ye
- Department of Hematology, Zhongshan Hospital Affiliated to Sun Yat-Sen University, Zhongshan, Guangdong, China
| | - Ning Liu
- Department of Hematology, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Yunxin Zeng
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Ziwen Guo
- Department of Hematology, Zhongshan Hospital Affiliated to Sun Yat-Sen University, Zhongshan, Guangdong, China
| | - Xiaobo Wang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
- Internal Medicine Department, Tianyang People’s Hospital of Baise City, Baise, China
| | - Xiaojun Xu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| |
Collapse
|
9
|
Wu F, Xu H, Zhang B. Transcription factor KLF2 is associated with the dysfunctional status of NK cells and the prognosis of pediatric B-ALL patients. Front Oncol 2025; 14:1456004. [PMID: 39906661 PMCID: PMC11791537 DOI: 10.3389/fonc.2024.1456004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/25/2024] [Indexed: 02/06/2025] Open
Abstract
Background Natural killer cells, an important component of the innate immune system, can directly recognize and lyse virally infected or transformed cells. However, NK cells fail to restrain the growth of malignancies, such as B-cell acute lymphoblastic leukemia (B-ALL). The molecular genetics of NK cells in the B-ALL bone marrow microenvironment and the mechanisms underlying the inhibited function of NK cells at the single-cell level remain largely elusive. Methods In this study, we studied the frequency and absolute number of NK cells in peripheral blood samples collected from 43 healthy volunteers and 104 pediatric B-ALL patients diagnosed at Hunan Children's Hospital. We also analyzed published single-cell RNA sequencing (scRNAseq) data from B-ALL and normal bone marrow samples using unsupervised clustering. Our findings were further validated using bulk transcriptomic data and clinical data from a cohort of 139 B-ALL bone marrow samples. Results We found that the frequency and number of NK cells were significantly decreased in the bone marrow and peripheral blood of B-ALL patients. In-depth analysis of scRNAseq data identified 12 NK cell clusters. Among them, the C2 cluster, which is present in healthy bone marrow but reduced in B-ALL bone marrow, displays overexpression of a transcription factor KLF2 and a significant downregulation of the "leukocyte proliferation" pathway. Furthermore, we found that the expression of KLF2 in B-ALL at diagnosis was positively correlated with the percentage of leukemia cells and the positive rate of minimal residual disease (MRD), indicating that KLF2 is a marker of poor prognosis. Conclusion There are dramatic differences at the single-cell level in the transcriptomics of NK cells between healthy donors and B-ALL patients. A transcription factor, KLF2, which is enriched in the C2 cluster of NK cells, has been suggested to regulate the proliferation of NK cells and is associated with poor prognosis of pediatric B-ALL.
Collapse
Affiliation(s)
| | | | - Benshan Zhang
- Department of Hematology and Oncology, The Affiliated Children’s Hospital of Xiangya School of Medicine, Central South University (Hunan Children’s Hospital), Changsha, Hunan, China
| |
Collapse
|
10
|
Zhang J, Deng YT, Liu J, Gan L, Jiang Y. Role of transforming growth factor-β1 pathway in angiogenesis induced by chronic stress in colorectal cancer. Cancer Biol Ther 2024; 25:2366451. [PMID: 38857055 PMCID: PMC11168221 DOI: 10.1080/15384047.2024.2366451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/06/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND Chronic stress can induce stress-related hormones; norepinephrine (NE) is considered to have the highest potential in cancer. NE can stimulate the expression of hypoxia-inducible factor-1α (HIF-1α), which is associated with vascular endothelial growth factor (VEGF) secretion and tumor angiogenesis. However, the underlying mechanisms are poorly understood. METHODS Tumor-bearing mice were subjected to chronic restraint stress and treated with normal saline, human monoclonal VEGF-A neutralizing antibody bevacizumab, or β-adrenergic receptor (β-AR) antagonist (propranolol). Tumor growth and vessel density were also evaluated. Human colorectal adenocarcinoma cells were treated with NE, propranolol, or the inhibitor of transforming growth factor-β (TGF-β) receptor Type I kinase (Ly2157299) in vitro. TGF-β1 in mouse serum and cell culture supernatants was quantified using ELISA. The expression of HIF-1α was measured using Real time-PCR and western blotting. Cell migration and invasion were tested. RESULTS Chronic restraint stress attenuated the efficacy of bevacizumab and promoted tumor growth and angiogenesis in a colorectal tumor model. Propranolol blocked this effect and inhibited TGF-β1 elevation caused by chronic restraint stress or NE. NE upregulated HIF-1α expression, which was reversed by propranolol or Ly2157299. Propranolol and Ly2157199 blocked NE-stimulated cancer cell migration and invasion. CONCLUSIONS Our results demonstrate the effect of NE on tumor angiogenesis and the critical role of TGF-β1 signaling during this process. In addition, β-AR/TGF-β1 signaling/HIF-1α/VEGF is a potential signaling pathway. This study also indicates that psychosocial stress might be a risk factor which weakens the efficacy of anti-angiogenic therapy.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yao-Tiao Deng
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Jie Liu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Lu Gan
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yu Jiang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
11
|
Zhang S, Chen J, Cheng F, Zheng F. The Emerging Role of Schwann Cells in the Tumor Immune Microenvironment and Its Potential Clinical Application. Int J Mol Sci 2024; 25:13722. [PMID: 39769484 PMCID: PMC11679251 DOI: 10.3390/ijms252413722] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/15/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
As the primary glial cells in the peripheral nervous system (PNS), Schwann cells (SCs) have been proven to influence the behavior of cancer cells profoundly and are involved in cancer progression through extensive interactions with cancer cells and other stromal cells. Indeed, the tumor microenvironment (TME) is a critical factor that can significantly limit the efficacy of immunotherapeutic approaches. The TME promotes tumor progression in part by reshaping an immunosuppressive state. The immunosuppressive TME is the result of the crosstalk between the tumor cells and the different immune cell subsets, including macrophages, natural killer (NK) cells, dendritic cells (DCs), lymphocytes, myeloid-derived suppressor cells (MDSCs), etc. They are closely related to the anti-tumor immune status and the clinical prognosis of cancer patients. Increasing research demonstrates that SCs influence these immune cells and reshape the formation of the immunosuppressive TME via the secretion of various cytokines, chemokines, and other effector molecules, eventually facilitating immune evasion and tumor progression. In this review, we summarize the SC reprogramming in TME, the emerging role of SCs in tumor immune microenvironment, and the underlying mechanisms involved. We also discuss the possible therapeutic strategies to selectively target SCs, providing insights and perspectives for future research and clinical studies involving SC-targeted treatment.
Collapse
Affiliation(s)
- Shan Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fanjun Cheng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fang Zheng
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
12
|
Zhu X, Xue J, Jiang H, Xue D. CAR-NK cells for gastrointestinal cancer immunotherapy: from bench to bedside. Mol Cancer 2024; 23:237. [PMID: 39443938 PMCID: PMC11515662 DOI: 10.1186/s12943-024-02151-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Gastrointestinal (GI) cancers represent a significant health burden worldwide. Their incidence continues to increase, and their management remains a clinical challenge. Chimeric antigen receptor (CAR) natural killer (NK) cells have emerged as a promising alternative to CAR-T cells for immunotherapy of GI cancers. Notably, CAR-NK cells offer several advantages, including reduced risk of graft-versus-host disease, lower cytokine release syndrome, and the ability to target cancer cells through both CAR-dependent and natural cytotoxic mechanisms. MAIN BODY This review comprehensively discusses the development and applications of CAR-NK cells in the treatment of GI cancers. We explored various sources of NK cells, CAR design strategies, and the current state of CAR-NK cell therapy for GI cancers, highlighting recent preclinical and clinical trials. Additionally, we addressed existing challenges and propose potential strategies to enhance the efficacy and safety of CAR-NK cell therapy. CONCLUSIONS Our findings highlight the potential of CAR-NK cells to revolutionize GI cancer treatment and pave the way for future clinical applications.
Collapse
Affiliation(s)
- Xingwang Zhu
- Department of Urinary Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110032, P.R. China
| | - Jieyun Xue
- China Medical University, Shenyang, Liaoning Province, 110000, P.R. China
| | - Hongzhou Jiang
- Department of Neurosurgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110032, P.R. China
| | - Dongwei Xue
- Department of Urinary Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110032, P.R. China.
| |
Collapse
|
13
|
Guo Y, Xu J, Jia Y, Tian Y, Zhang Y, Zhang J, Wang Y, Chen L. Asiaticoside modulates human NK cell functional fate by mediating metabolic flexibility in the tumor microenvironment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155921. [PMID: 39121533 DOI: 10.1016/j.phymed.2024.155921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/04/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Transforming growth factor-beta (TGF-β), an immunosuppressive cytokine, is often elevated in various tumors and inhibits the immune system's ability to combat tumor cells. Despite promising results from TGF-β inhibitor therapies, their clinical efficacy remains limited. PURPOSE This study aimed to enhance the antitumor capabilities of natural killer (NK) cells in the presence of TGF-β by exploring the potential of asiaticoside, a natural compound with established clinical safety. STUDY DESIGN The effects of asiaticoside on NK cells were investigated to determine its potential to counteract TGF-β-induced immunosuppression and elucidate the underlying mechanisms. METHODS Natural compounds were screened using a Luminex assay to identify those promoting Interferon-γ (IFN-γ) secretion from NK cells. Asiaticoside-pretreated NK cells' cytotoxicity was assessed against K562, OVCAR8, and A2780 cells using organoids from ascites-derived ovarian cancer (OC) cells. In vivo efficacy was evaluated with B16 melanoma lung metastasis and subcutaneous tumor models in C57BL/6 mice, using asiaticoside as a 50 mg/kg injection. The compound's ability to enhance NK cell-driven anti-neoplastic responses was further assessed in an OC murine model. Effects on TGF-β/SMAD pathways and mitochondrial functions were examined through various microscopy and metabolomic techniques. The involvement of the mTOR/DRP1 axis in asiaticoside-mediated restoration of mitochondrial oxidation in NK cells after TGF-β suppression was determined using the mTOR inhibitor rapamycin and the DRP1 inhibitor Mdivi-1. RESULTS Asiaticoside-treated NK cells retained their ability to suppress tumor growth and metastasis despite TGF-β presence. Asiaticoside downregulated TGF-β receptors 1 (TGFBR1) expression, impaired the protein stability of TGFBR1 and TGF-β receptors 2 (TGFBR2), and reduced SMAD2 phosphorylation, preventing SMAD2 translocation from the mitochondria. This preserved mitochondrial respiration and maintained NK cell antitumor activity. CONCLUSION The study concludes that asiaticoside has significant potential as a strategy for "priming" NK cells in cellular immunotherapy. By demonstrating that asiaticoside degrades the TGF-β receptor, leading to reduced phosphorylation of SMAD2 and preventing its mitochondrial translocation, thereby maintaining mitochondrial integrity. Meantime, asiaticoside counteracts TGF-β-induced suppression of mitochondrial oxidative and aerobic respiration through the mTOR/DRP1 pathways. The research uncovers a previously unreported pathway for preserving mitochondrial respiration and NK cell functionality. A detailed mechanistic insight into how asiaticoside functions at the molecular level was explored. Its ability to counteract the immunosuppressive effects of TGF-β makes it a valuable candidate for enhancing the effectiveness of immunotherapies in treating a variety of tumors with elevated TGF-β levels.
Collapse
Affiliation(s)
- Yantong Guo
- Cancer Institute, First Hospital of Jilin University, Changchun, 130012, PR China
| | - Jianting Xu
- Cancer Center, First Hospital of Jilin University, Changchun 130012, PR China
| | - Yiyang Jia
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130021, PR China
| | - Yuan Tian
- School of clinical medicine, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Yongfei Zhang
- Cancer Center, First Hospital of Jilin University, Changchun 130012, PR China
| | - Jinjin Zhang
- Obstetrics and Gynecology Center, First Hospital of Jilin University, Changchun 130012, PR China
| | - Yufeng Wang
- Cancer Institute, First Hospital of Jilin University, Changchun, 130012, PR China; International Center of Future Science, Jilin University, Changchun 130012, PR China.
| | - Lichao Chen
- Cancer Institute, First Hospital of Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
14
|
Peng L, Sferruzza G, Yang L, Zhou L, Chen S. CAR-T and CAR-NK as cellular cancer immunotherapy for solid tumors. Cell Mol Immunol 2024; 21:1089-1108. [PMID: 39134804 PMCID: PMC11442786 DOI: 10.1038/s41423-024-01207-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/22/2024] [Indexed: 10/02/2024] Open
Abstract
In the past decade, chimeric antigen receptor (CAR)-T cell therapy has emerged as a promising immunotherapeutic approach for combating cancers, demonstrating remarkable efficacy in relapsed/refractory hematological malignancies in both pediatric and adult patients. CAR-natural killer (CAR-NK) cell complements CAR-T cell therapy by offering several distinct advantages. CAR-NK cells do not require HLA compatibility and exhibit low safety concerns. Moreover, CAR-NK cells are conducive to "off-the-shelf" therapeutics, providing significant logistic advantages over CAR-T cells. Both CAR-T and CAR-NK cells have shown consistent and promising results in hematological malignancies. However, their efficacy against solid tumors remains limited due to various obstacles including limited tumor trafficking and infiltration, as well as an immuno-suppressive tumor microenvironment. In this review, we discuss the recent advances and current challenges of CAR-T and CAR-NK cell immunotherapies, with a specific focus on the obstacles to their application in solid tumors. We also analyze in depth the advantages and drawbacks of CAR-NK cells compared to CAR-T cells and highlight CAR-NK CAR optimization. Finally, we explore future perspectives of these adoptive immunotherapies, highlighting the increasing contribution of cutting-edge biotechnological tools in shaping the next generation of cellular immunotherapy.
Collapse
Affiliation(s)
- Lei Peng
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- System Biology Institute, Yale University, West Haven, CT, USA.
| | - Giacomo Sferruzza
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
| | - Luojia Yang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
| | - Liqun Zhou
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA
- Immunobiology Program, Yale University, New Haven, CT, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- System Biology Institute, Yale University, West Haven, CT, USA.
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA.
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA.
- Immunobiology Program, Yale University, New Haven, CT, USA.
- Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA.
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Liver Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Center for Biomedical Data Science, Yale University School of Medicine, New Haven, CT, USA.
- Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
15
|
Sandhu S, Keyworth M, Karimi-Jashni S, Alomar D, Smith BJ, Kozbenko T, Doty S, Hocking R, Hamada N, Reynolds RJ, Scott RT, Costes SV, Beheshti A, Yauk C, Wilkins RC, Chauhan V. AOP Report: Development of an adverse outcome pathway for deposition of energy leading to bone loss. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65 Suppl 3:85-111. [PMID: 39387375 DOI: 10.1002/em.22631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 10/15/2024]
Abstract
Bone loss, commonly seen in osteoporosis, is a condition that entails a progressive decline of bone mineral density and microarchitecture, often seen in post-menopausal women. Bone loss has also been widely reported in astronauts exposed to a plethora of stressors and in patients with osteoporosis following radiotherapy for cancer. Studies on mechanisms are well documented but the causal connectivity of events to bone loss development remains incompletely understood. Herein, the adverse outcome pathway (AOP) framework was used to organize data and develop a qualitative AOP beginning from deposition of energy (the molecular initiating event) to bone loss (the adverse outcome). This qualitative AOP was developed in collaboration with bone loss research experts to aggregate relevant findings, supporting ongoing efforts to understand and mitigate human system risks associated with radiation exposures. A literature review was conducted to compile and evaluate the state of knowledge based on the modified Bradford Hill criteria. Following review of 2029 studies, an empirically supported AOP was developed, showing the progression to bone loss through many factors affecting the activities of bone-forming osteoblasts and bone-resorbing osteoclasts. The structural, functional, and quantitative basis of each proposed relationship was defined, for inference of causal changes between key events. Current knowledge and its gaps relating to dose-, time- and incidence-concordance across the key events were identified, as well as modulating factors that influence linkages. The new priorities for research informed by the AOP highlight areas for improvement to enable development of a quantitative AOP used to support risk assessment strategies for space travel or cancer radiotherapy.
Collapse
Affiliation(s)
- Snehpal Sandhu
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Mitchell Keyworth
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Syna Karimi-Jashni
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Dalya Alomar
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Benjamin J Smith
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Tatiana Kozbenko
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Stephen Doty
- Hospital for Special Surgery Research Institute, New York City, New York, USA
| | - Robyn Hocking
- Learning and Knowledge and Library Services, Health Canada, Ottawa, Ontario, Canada
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Substantiable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba, Japan
| | | | - Ryan T Scott
- KBR, NASA Ames Research Center, Moffett Field, California, USA
| | - Sylvain V Costes
- NASA Ames Research Center, Space Biosciences Research Branch, Mountain View, California, USA
| | - Afshin Beheshti
- McGowan Institute for Regenerative Medicine - Center for Space Biomedicine, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Carole Yauk
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Ruth C Wilkins
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Vinita Chauhan
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
16
|
Syrimi E, Khan N, Murray P, Willcox C, Haigh T, Willcox B, Masand N, Bowen C, Dimakou DB, Zuo J, Barone SM, Irish JM, Kearns P, Taylor GS. Defects in NK cell immunity of pediatric cancer patients revealed by deep immune profiling. iScience 2024; 27:110837. [PMID: 39310750 PMCID: PMC11416690 DOI: 10.1016/j.isci.2024.110837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/21/2023] [Accepted: 08/24/2024] [Indexed: 09/25/2024] Open
Abstract
Systemic immunity plays an important role in cancer immune surveillance and response to therapy, but little is known about the immune status of children with solid cancers. We performed a high-dimensional single-cell analysis of systemic immunity in 50 treatment-naive pediatric cancer patients, comparing them to age-matched healthy children. Children with cancer had a lower frequency of peripheral NK cells, which was not due to tumor sequestration, had lower surface levels of activating receptors and increased levels of the inhibitory NKG2A receptor. Furthermore, the natural killer (NK) cells of pediatric cancer patients were less mature and less cytotoxic when tested in vitro. Culture of these NK cells with interleukin-2 restored their cytotoxicity. Collectively, our data show that NK cells in pediatric cancer patients are impaired through multiple mechanisms and identify rational strategies to restore their functionality.
Collapse
Affiliation(s)
- Eleni Syrimi
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Naeem Khan
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Clinical Immunology Service, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Paul Murray
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Health research Institute, University of Limerick, Limerick, Ireland
| | - Carrie Willcox
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Tracey Haigh
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Benjamin Willcox
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Navta Masand
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Claire Bowen
- Pathology department, Birmingham Children’s Hospital, Birmingham, UK
| | - Danai B. Dimakou
- Clinical Immunology Service, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Jianmin Zuo
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Sierra M. Barone
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jonathan M. Irish
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Pamela Kearns
- Cancer Research UK Clinical Trials Unit, National Institute for Health Research Birmingham Biomedical Research Centre, Birmingham, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Graham S. Taylor
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| |
Collapse
|
17
|
Rahmatallah Y, Glazko G. Improving data interpretability with new differential sample variance gene set tests. RESEARCH SQUARE 2024:rs.3.rs-4888767. [PMID: 39315246 PMCID: PMC11419169 DOI: 10.21203/rs.3.rs-4888767/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Background Gene set analysis methods have played a major role in generating biological interpretations from omics data such as gene expression datasets. However, most methods focus on detecting homogenous pattern changes in mean expression and methods detecting pattern changes in variance remain poorly explored. While a few studies attempted to use gene-level variance analysis, such approach remains under-utilized. When comparing two phenotypes, gene sets with distinct changes in subgroups under one phenotype are overlooked by available methods although they reflect meaningful biological differences between two phenotypes. Multivariate sample-level variance analysis methods are needed to detect such pattern changes. Results We use ranking schemes based on minimum spanning tree to generalize the Cramer-Von Mises and Anderson-Darling univariate statistics into multivariate gene set analysis methods to detect differential sample variance or mean. We characterize these methods in addition to two methods developed earlier using simulation results with different parameters. We apply the developed methods to microarray gene expression dataset of prednisolone-resistant and prednisolone-sensitive children diagnosed with B-lineage acute lymphoblastic leukemia and bulk RNA-sequencing gene expression dataset of benign hyperplastic polyps and potentially malignant sessile serrated adenoma/polyps. One or both of the two compared phenotypes in each of these datasets have distinct molecular subtypes that contribute to heterogeneous differences. Our results show that methods designed to detect differential sample variance are able to detect specific hallmark signaling pathways associated with the two compared phenotypes as documented in available literature. Conclusions The results in this study demonstrate the usefulness of methods designed to detect differential sample variance in providing biological interpretations when biologically relevant but heterogeneous changes between two phenotypes are prevalent in specific signaling pathways. Software implementation of the developed methods is available with detailed documentation from Bioconductor package GSAR. The available methods are applicable to gene expression datasets in a normalized matrix form and could be used with other omics datasets in a normalized matrix form with available collection of feature sets.
Collapse
Affiliation(s)
- Yasir Rahmatallah
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Galina Glazko
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
18
|
Gallardo-Zapata J, Pérez-Figueroa E, Olivar-López V, Medina-Sansón A, Jiménez-Hernández E, Ortega E, Maldonado-Bernal C. TLR Agonists Modify NK Cell Activation and Increase Its Cytotoxicity in Acute Lymphoblastic Leukemia. Int J Mol Sci 2024; 25:7500. [PMID: 39000607 PMCID: PMC11242025 DOI: 10.3390/ijms25137500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 07/16/2024] Open
Abstract
Natural killer (NK) cells play a crucial role in innate immunity, particularly in combating infections and tumors. However, in hematological cancers, NK cells often exhibit impaired functions. Therefore, it is very important to activate its endosomal Toll-like receptors (TLRs) as a potential strategy to restore its antitumor activity. We stimulated NK cells from the peripheral blood mononuclear cells from children with acute lymphoblastic leukemia and NK cells isolated, and the NK cells were stimulated with specific TLR ligands (Poly I:C, Imiquimod, R848, and ODN2006) and we evaluated changes in IFN-γ, CD107a, NKG2D, NKp44 expression, Granzyme B secretion, cytokine/chemokine release, and cytotoxic activity. Results revealed that Poly I:C and Imiquimod enhanced the activation of both immunoregulatory and cytotoxic NK cells, increasing IFN-γ, CD107a, NKG2D, and NKp44 expression. R848 activated immunoregulatory NK cells, while ODN2006 boosted CD107a, NKp44, NKG2D, and IFN-γ secretion in cytotoxic NK cells. R848 also increased the secretion of seven cytokines/chemokines. Importantly, R848 and ODN 2006 significantly improved cytotoxicity against leukemic cells. Overall, TLR stimulation enhances NK cell activation, suggesting TLR8 (R848) and TLR9 (ODN 2006) ligands as promising candidates for antitumor immunotherapy.
Collapse
Affiliation(s)
- Janet Gallardo-Zapata
- Immunology and Proteomics Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
- Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City 04360, Mexico
| | - Erandi Pérez-Figueroa
- Immunology and Proteomics Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Víctor Olivar-López
- Emergency Service, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Aurora Medina-Sansón
- Hemato-Oncology Department, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | | | - Enrique Ortega
- Department of Immunology, Institute of Biomedical Research, Universidad Nacional Autónoma de México, Mexico City 4510, Mexico
| | - Carmen Maldonado-Bernal
- Immunology and Proteomics Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| |
Collapse
|
19
|
Eichhorn JS, Petrik J. Thetumor microenvironment'sinpancreatic cancer:Effects onimmunotherapy successandnovel strategiestoovercomethehostile environment. Pathol Res Pract 2024; 259:155370. [PMID: 38815507 DOI: 10.1016/j.prp.2024.155370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 05/26/2024] [Indexed: 06/01/2024]
Abstract
Cancer is a significant global health issue that poses a considerable burden on both patients and healthcare systems. Many different types of cancers exist that often require unique treatment approaches and therapies. A hallmark of tumor progression is the creation of an immunosuppressive environment, which poses complex challenges for current treatments. Amongst the most explored characteristics is a hypoxic environment, high interstitial pressure, and immunosuppressive cells and cytokines. Traditional cancer treatments involve radiotherapy, chemotherapy, and surgical procedures. The advent of immunotherapies was regarded as a promising approach with hopes of greatly increasing patients' survival and outcome. Although some success is seen with various immunotherapies, the vast majority of monotherapies are unsuccessful. This review examines how various aspects of the tumor microenvironment (TME) present challenges that impede the success of immunotherapies. Subsequently, we review strategies to manipulate the TME to facilitate the success of immunotherapies.
Collapse
Affiliation(s)
- Jan Sören Eichhorn
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, N1G 2W1 Canada
| | - Jim Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, N1G 2W1 Canada.
| |
Collapse
|
20
|
Yang R, Yang Y, Liu R, Wang Y, Yang R, He A. Advances in CAR-NK cell therapy for hematological malignancies. Front Immunol 2024; 15:1414264. [PMID: 39007146 PMCID: PMC11239349 DOI: 10.3389/fimmu.2024.1414264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024] Open
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy has revolutionized the treatment of hematological malignancies, demonstrably improving patient outcomes and prognosis. However, its application has introduced new challenges, such as safety concerns, off-target toxicities, and significant costs. Natural killer (NK) cells are crucial components of the innate immune system, capable of eliminating tumor cells without prior exposure to specific antigens or pre-activation. This inherent advantage complements the limitations of T cells, making CAR-NK cell therapy a promising avenue for hematological tumor immunotherapy. In recent years, preclinical and clinical studies have yielded preliminary evidence supporting the safety and efficacy of CAR-NK cell therapy in hematological malignancies, paving the way for future advancements in immunotherapy. This review aims to succinctly discuss the characteristics, significant therapeutic progress, and potential challenges associated with CAR-NK cell therapy.
Collapse
Affiliation(s)
- Rui Yang
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yun Yang
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Xi’an Key Laboratory of Hematological Diseases, Xi’an, Shaanxi, China
| | - Rui Liu
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yiwen Wang
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Ruoyu Yang
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Aili He
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Xi’an Key Laboratory of Hematological Diseases, Xi’an, Shaanxi, China
| |
Collapse
|
21
|
Vaughan J, Patel M, Suchard M, Gededzha M, Ranchod H, Howard W, Snyman T, Wiggill T. Derangements of immunological proteins in HIV-associated diffuse large B-cell lymphoma: the frequency and prognostic impact. Front Cell Infect Microbiol 2024; 14:1340096. [PMID: 38633747 PMCID: PMC11021765 DOI: 10.3389/fcimb.2024.1340096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/12/2024] [Indexed: 04/19/2024] Open
Abstract
Introduction Diffuse large B-cell lymphoma (DLBCL) is an aggressive malignancy of B-cells frequently encountered among people living with HIV. Immunological abnormalities are common in immunocompetent individuals with DLBCL, and are often associated with poorer outcomes. Currently, data on derangements of immunological proteins, such as cytokines and acute phase reactants, and their impact on outcomes in HIV-associated DLBCL (HIV-DLBCL) is lacking. This study assessed the levels and prognostic relevance of interleukin (IL)-6, IL-10 and Transforming Growth Factor Beta (TGFβ), the acute phase proteins C-reactive protein (CRP) and ferritin; serum free light chains (SFLC) (elevation of which reflects a prolonged pro-inflammatory state); and the activity of the immunosuppressive enzyme Indoleamine 2,3-dioxygenase (IDO)in South African patients with DLBCL. Methods Seventy-six patients with incident DLBCL were enrolled, and peripheral blood IL-6, IL-10, TGFβ, SFLC and IDO-activity measured in selected patients. Additional clinical and laboratory findings (including ferritin and CRP) were recorded from the hospital records. Results Sixty-one (80.3%) of the included patients were people living with HIV (median CD4-count = 148 cells/ul), and survival rates were poor (12-month survival rate 30.0%). The majority of the immunological proteins, except for TGFβ and ferritin, were significantly higher among the people living with HIV. Elevation of IL-6, SFLC and IDO-activity were not associated with survival in HIV-DLBCL, while raised IL-10, CRP, ferritin and TGFβ were. On multivariate analysis, immunological proteins associated with survival independently from the International Prognostic Index (IPI) included TGFβ, ferritin and IL-10. Conclusion Derangements of immunological proteins are common in HIV-DLBCL, and have a differential association with survival compared to that reported elsewhere. Elevation of TGFβ, IL-10 and ferritin were associated with survival independently from the IPI. In view of the poor survival rates in this cohort, investigation of the directed targeting of these cytokines would be of interest in our setting.
Collapse
Affiliation(s)
- Jenifer Vaughan
- Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- National Health Laboratory Services, Johannesburg, South Africa
| | - Moosa Patel
- Department of Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Clinical Haematology Unit, Chris Hani Baragwanath Academic Hospital, Johannesburg, South Africa
| | - Melinda Suchard
- Department of Chemical Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Maemu Gededzha
- National Health Laboratory Services, Johannesburg, South Africa
- Department of Immunology, University of the Witwatersrand, Johannesburg, South Africa
| | - Heena Ranchod
- Department of Chemical Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases, Centre for Vaccines and Immunology, Johannesburg, South Africa
| | - Wayne Howard
- Department of Chemical Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases, Centre for Vaccines and Immunology, Johannesburg, South Africa
| | - Tracy Snyman
- National Health Laboratory Services, Johannesburg, South Africa
| | - Tracey Wiggill
- Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- National Health Laboratory Services, Johannesburg, South Africa
| |
Collapse
|
22
|
Tu C, Buckle I, Leal Rojas I, Rossi GR, Sester DP, Moore AS, Radford K, Guillerey C, Souza‐Fonseca‐Guimaraes F. Exploring NK cell receptor dynamics in paediatric leukaemias: implications for immunotherapy and prognosis. Clin Transl Immunology 2024; 13:e1501. [PMID: 38525380 PMCID: PMC10960520 DOI: 10.1002/cti2.1501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/11/2024] [Accepted: 03/13/2024] [Indexed: 03/26/2024] Open
Abstract
Objectives Immunotherapies targeting natural killer (NK) cell receptors have shown promise against leukaemia. Unfortunately, cancer immunosuppressive mechanisms that alter NK cell phenotype prevent such approaches from being successful. The study utilises advanced cytometry to examine how cancer immunosuppressive pathways affect NK cell phenotypic changes in clinical samples. Methods In this study, we conducted a high-dimensional examination of the cell surface expression of 16 NK cell receptors in paediatric patients with acute myeloid leukaemia and acute lymphoblastic leukaemia, as well as in samples of non-age matched adult peripheral blood (APB) and umbilical cord blood (UCB). An unsupervised analysis was carried out in order to identify NK cell populations present in paediatric leukaemias. Results We observed that leukaemia NK cells clustered together with UCB NK cells and expressed relatively higher levels of the NKG2A receptor compared to APB NK cells. In addition, CD56dimCD16+CD57- NK cells lacking NKG2A expression were mainly absent in paediatric leukaemia patients. However, CD56br NK cell populations expressing high levels of NKG2A were highly represented in paediatric leukaemia patients. NKG2A expression on leukaemia NK cells was found to be positively correlated with the expression of its ligand, suggesting that the NKG2A-HLA-E interaction may play a role in modifying NK cell responses to leukaemia cells. Conclusion We provide an in-depth analysis of NK cell populations in paediatric leukaemia patients. These results support the development of immunotherapies targeting immunosuppressive receptors, such as NKG2A, to enhance innate immunity against paediatric leukaemia.
Collapse
Affiliation(s)
- Cui Tu
- Cancer Immunotherapies Laboratory, Mater Research Institute, Translational Research InstituteUniversity of QueenslandBrisbaneQLDAustralia
- Frazer Institute, The University of QueenslandWoolloongabbaQLDAustralia
| | - Irina Buckle
- Cancer Immunotherapies Laboratory, Mater Research Institute, Translational Research InstituteUniversity of QueenslandBrisbaneQLDAustralia
| | - Ingrid Leal Rojas
- Cancer Immunotherapies Laboratory, Mater Research Institute, Translational Research InstituteUniversity of QueenslandBrisbaneQLDAustralia
| | | | - David P Sester
- TRI Flow Cytometry SuiteTranslational Research InstituteWoolloongabbaQLDAustralia
- Translational Research InstituteQueensland University of TechnologyBrisbaneQLDAustralia
| | - Andrew S Moore
- Oncology ServiceChildren's Health Queensland Hospital & Health ServiceSouth BrisbaneQLDAustralia
- Child Health Research CentreThe University of QueenslandSouth BrisbaneQLDAustralia
| | - Kristen Radford
- Cancer Immunotherapies Laboratory, Mater Research Institute, Translational Research InstituteUniversity of QueenslandBrisbaneQLDAustralia
| | - Camille Guillerey
- Cancer Immunotherapies Laboratory, Mater Research Institute, Translational Research InstituteUniversity of QueenslandBrisbaneQLDAustralia
| | | |
Collapse
|
23
|
Ulvmoen A, Greiff V, Bechensteen AG, Inngjerdingen M. NKG2A discriminates natural killer cells with a suppressed phenotype in pediatric acute leukemia. J Leukoc Biol 2024; 115:334-343. [PMID: 37738462 DOI: 10.1093/jleuko/qiad112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/09/2023] [Accepted: 09/05/2023] [Indexed: 09/24/2023] Open
Abstract
Natural killer (NK) cells are important for early tumor immune surveillance. In patients with hematological cancers, NK cells are generally functional deficient and display dysregulations in their receptor repertoires. Acute leukemia is the most common cancer in children, and we here performed a comparative phenotypic profiling of NK cells from B-cell precursor acute lymphoblastic leukemia (BCP-ALL) patients to identify aberrant NK cell phenotypes. NK cell phenotypes, maturation, and function were analyzed in matched bone marrow and blood NK cells from BCP-ALL patients at diagnosis, during treatment, and at end of treatment and compared with age-matched pediatric control subjects. Expression of several markers were skewed in patients, but with large interindividual variations. Undertaking a multiparameter approach, we found that high expression levels of NKG2A was the single predominant marker distinguishing NK cells in BCP-ALL patients compared with healthy control subjects. Moreover, naïve CD57-NKG2A NK cells dominated in BCP-ALL patients at diagnosis. Further, we found dysregulated expression of the activating receptor DNAM-1 in resident bone marrow CXCR6+ NK cells. CXCR6+ NK cells lacking DNAM-1 expressed NKG2A and had a tendency for lower degranulation activity. In conclusion, high expression of NKG2A dominates NK cell phenotypes from pediatric BCP-ALL patients, indicating that NKG2A could be targeted in therapies for this patient group.
Collapse
Affiliation(s)
- Aina Ulvmoen
- Department of Pediatrics, Oslo University Hospital, Sognsvannsveien 20, Oslo 0372, Norway
| | - Victor Greiff
- Department of Immunology, Oslo University Hospital and University of Oslo, Sognsvannsveien 20, Oslo 0372, Norway
| | - Anne G Bechensteen
- Department of Pediatrics, Oslo University Hospital, Sognsvannsveien 20, Oslo 0372, Norway
| | - Marit Inngjerdingen
- Department of Pharmacology, Oslo University Hospital and University of Oslo, Sognsvannsveien 20, Oslo 0372, Norway
| |
Collapse
|
24
|
Poveda-Garavito N, Combita AL. Contribution of the TIME in BCP-ALL: the basis for novel approaches therapeutics. Front Immunol 2024; 14:1325255. [PMID: 38299154 PMCID: PMC10827891 DOI: 10.3389/fimmu.2023.1325255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/28/2023] [Indexed: 02/02/2024] Open
Abstract
The bone marrow (BM) niche is a microenvironment where both immune and non-immune cells functionally interact with hematopoietic stem cells (HSC) and more differentiated progenitors, contributing to the regulation of hematopoiesis. It is regulated by various signaling molecules such as cytokines, chemokines, and adhesion molecules in its microenvironment. However, despite the strict regulation of BM signals to maintain their steady state, accumulating evidence in B-cell precursor acute lymphoblastic leukemia (BCP-ALL) indicates that leukemic cells can disrupt the physiological hematopoietic niche in the BM, creating a new leukemia-supportive microenvironment. This environment favors immunological evasion mechanisms and the interaction of these cells with the development and progression of BCP-ALL. With a growing understanding of the tumor immune microenvironment (TIME) in the development and progression of BCP-ALL, current strategies focused on "re-editing" TIME to promote antitumor immunity have been developed. In this review, we summarize how TIME cells are disrupted by the presence of leukemic cells, evading immunosurveillance mechanisms in the BCP-ALL model. We also explore the crosstalk between TIME and leukemic cells that leads to treatment resistance, along with the most promising immuno-therapy strategies. Understanding and further research into the role of the BM microenvironment in leukemia progression and relapse are crucial for developing more effective treatments and reducing patient mortality.
Collapse
Affiliation(s)
- Nathaly Poveda-Garavito
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología (INC), Bogotá, Colombia
- Grupo de Investigación Traslacional en Oncología, Instituto Nacional de Cancerología (INC), Bogotá, Colombia
- Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Alba Lucía Combita
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología (INC), Bogotá, Colombia
- Grupo de Investigación Traslacional en Oncología, Instituto Nacional de Cancerología (INC), Bogotá, Colombia
- Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
25
|
Petersen SH, Al Badawy K, Hopkins R, Vu DL, Rahmani M, Maia SM, Connolly JE. A novel GPI-anchored dominant-negative TGF-β receptor II renders T cells unresponsive to TGF-β signaling. Mol Ther Oncolytics 2023; 31:100730. [PMID: 37829123 PMCID: PMC10565558 DOI: 10.1016/j.omto.2023.100730] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023] Open
Abstract
Transforming growth factor β (TGF-β) is a pleiotropic cytokine expressed by a wide range of cell types and is known for hampering the effectiveness of cancer immune cell therapeutic approaches. We have designed a novel construct containing the extracellular domain of the TGF-β receptor II linked to a glycosylphosphatidylinositol (GPI) anchor (GPI-ecto-TβRII) lacking the transmembrane and cytoplasmic signaling domain of TGF-β receptor II (TβRII). T cells transduced with lentivirus expressing the GPI-ecto-TβRII construct show 5 to 15 times higher membrane expression compared with a previously established dominant-negative receptor carrying a truncated signaling domain. GPI-ecto-TβRII expression renders T cells unresponsive to TGF-β-induced signaling seen by a lack of SMAD phosphorylation upon exogeneous TGF-β treatment. Transduced T cells continue to express high levels of IFNγ and granulocyte-macrophage colony-stimulating factor (GM-CSF), among other cytokines, in the presence of TGF-β while cytokine expression in untransduced T cells is being markedly suppressed. Furthermore, T cells expressing GPI-ecto-TβRII constructs have been shown to efficiently capture and inactivate TGF-β from their environment. These results indicate the potential benefits of GPI-ecto-TβRII expressing cytotoxic T cells (CTLs) in future cell therapies.
Collapse
Affiliation(s)
| | | | | | - Dang L. Vu
- Tessa Therapeutics, Singapore, Singapore
- Program in Translational Immunology, Institute of Molecular and Cell Biology, A∗STAR, Singapore, Singapore
| | | | - Sonia M.P. Maia
- Tessa Therapeutics, Singapore, Singapore
- Program in Translational Immunology, Institute of Molecular and Cell Biology, A∗STAR, Singapore, Singapore
| | - John E. Connolly
- Tessa Therapeutics, Singapore, Singapore
- Program in Translational Immunology, Institute of Molecular and Cell Biology, A∗STAR, Singapore, Singapore
- Department of Microbiology and Immunity, National University of Singapore, Singapore, Singapore
- Institute of Biomedical Studies, Baylor University Medical Center, Waco, TX, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| |
Collapse
|
26
|
Schober S, Rottenberger JM, Hilz J, Schmid E, Ebinger M, Feuchtinger T, Handgretinger R, Lang P, Queudeville M. Th1 cytokines in pediatric acute lymphoblastic leukemia. Cancer Immunol Immunother 2023; 72:3621-3634. [PMID: 37610672 PMCID: PMC10576712 DOI: 10.1007/s00262-023-03512-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/29/2023] [Indexed: 08/24/2023]
Abstract
Immune milieus play an important role in various types of cancer. The present study focuses on the effect of Th1 cytokines on pediatric acute lymphoblastic leukemia (ALL). The reaction of ALL cell lines and patient-derived xenografts (PDX) to the most important Th1 cytokines TNF-α (tumor necrosis factor alpha) and IFN-γ (interferon gamma) is analyzed and correlated with the respective cytokine receptors and the intracellular signaling molecules. ALL cell lines and ALL PDX display a great heterogeneity in cell death after incubation with TNF-α and IFN-γ. Several samples show a dose-dependent and additive induction of cell death by both cytokines; others do not react at all or even display an increased viability. Apoptosis is the main type of cell death induced by Th1 cytokines in ALL cells. Over all leukemia cells analyzed, IFN-γ receptor (IFNGR) shows a higher expression than both TNF-receptors, resulting in higher phosphorylation of STAT1 (signal transducer and activator of transcription) compared to phosphorylation of NF-κB (nuclear factor kappa-light-chain-enhancer of activated B-cells) in the TNF pathway. The activation of STAT1 correlates with the amount of cell death after stimulation with Th1 cytokines. TNF-α and IFN-γ lead to heterogeneous reactions in ALL cell lines and ALL PDX but are able to induce cell death by apoptosis in the majority of ALL blasts. The correlation of a high expression of IFNGR and following activation of STAT1 with cell death indicates an important role for IFN-γ signaling in this setting.
Collapse
Affiliation(s)
- Sarah Schober
- Department I - General Pediatrics, Hematology/Oncology, University Children's Hospital, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Jennifer M Rottenberger
- Department I - General Pediatrics, Hematology/Oncology, University Children's Hospital, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Johannes Hilz
- Department I - General Pediatrics, Hematology/Oncology, University Children's Hospital, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Evi Schmid
- Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Martin Ebinger
- Department I - General Pediatrics, Hematology/Oncology, University Children's Hospital, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | | | - Rupert Handgretinger
- Department I - General Pediatrics, Hematology/Oncology, University Children's Hospital, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Peter Lang
- Department I - General Pediatrics, Hematology/Oncology, University Children's Hospital, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Manon Queudeville
- Department I - General Pediatrics, Hematology/Oncology, University Children's Hospital, Eberhard Karls University Tuebingen, Tuebingen, Germany.
- Division for Pediatric Stem Cell Transplantation and Immunology, Clinic for Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
27
|
Zhang Y, Zhou W, Yang J, Yang J, Wang W. Chimeric antigen receptor engineered natural killer cells for cancer therapy. Exp Hematol Oncol 2023; 12:70. [PMID: 37563648 PMCID: PMC10413722 DOI: 10.1186/s40164-023-00431-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023] Open
Abstract
Natural killer (NK) cells, a unique component of the innate immune system, are inherent killers of stressed and transformed cells. Based on their potent capacity to kill cancer cells and good tolerance of healthy cells, NK cells have been successfully employed in adoptive cell therapy to treat cancer patients. In recent years, the clinical success of chimeric antigen receptor (CAR)-T cells has proven the vast potential of gene-manipulated immune cells as the main force to fight cancer. Following the lessons learned from mature gene-transfer technologies and advanced strategies in CAR-T therapy, NK cells have been rapidly explored as a promising candidate for CAR-based therapy. An exponentially growing number of studies have employed multiple sources of CAR-NK cells to target a wide range of cancer-related antigens, showing remarkable outcomes and encouraging safety profiles. Clinical trials of CAR-NK cells have also shown their impressive therapeutic efficacy in the treatment of hematological tumors, but CAR-NK cell therapy for solid tumors is still in the initial stages. In this review, we present the favorable profile of NK cells as a potential platform for CAR-based engineering and then summarize the outcomes and strategies of CAR-NK therapies in up-to-date preclinical and clinical investigations. Finally, we evaluate the challenges remaining in CAR-NK therapy and describe existing strategies that can assist us in devising future prospective solutions.
Collapse
Affiliation(s)
- Yalan Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Weilin Zhou
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Jiangping Yang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041, People's Republic of China
- Department of Head and Neck Oncology and Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Jinrong Yang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041, People's Republic of China
- Hematology Research Laboratory, Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Wei Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
28
|
Le Floch AC, Rouvière MS, Salem N, Ben Amara A, Orlanducci F, Vey N, Gorvel L, Chretien AS, Olive D. Prognostic Immune Effector Signature in Adult Acute Lymphoblastic Leukemia Patients Is Dominated by γδ T Cells. Cells 2023; 12:1693. [PMID: 37443727 PMCID: PMC10340700 DOI: 10.3390/cells12131693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
The success of immunotherapy has highlighted the critical role of the immune microenvironment in acute lymphoblastic leukemia (ALL); however, the immune landscape in ALL remains incompletely understood and most studies have focused on conventional T cells or NK cells. This study investigated the prognostic impact of circulating γδ T-cell alterations using high-dimensional analysis in a cohort of newly diagnosed adult ALL patients (10 B-ALL; 9 Philadelphia+ ALL; 9 T-ALL). Our analysis revealed common alterations in CD8+ T cells and γδ T cells of relapsed patients, including accumulation of early stage differentiation and increased expression of BTLA and CD73. We demonstrated that the circulating γδ T-cell signature was the most discriminating between relapsed and disease-free groups. In addition, Vδ2 T-cell alterations strongly discriminated patients by relapse status. Taken together, these data highlight the role of ɣδ T cells in adult ALL patients, among whom Vδ2 T cells may be a pivotal contributor to T-cell immunity in ALL. Our findings provide a strong rationale for further monitoring and potentiating Vδ2 T cells in ALL, including in the autologous setting.
Collapse
Affiliation(s)
- Anne-Charlotte Le Floch
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM 105, 13009 Marseille, France; (A.-C.L.F.)
- Plateforme d’Immunomonitoring, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Marie-Sarah Rouvière
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM 105, 13009 Marseille, France; (A.-C.L.F.)
- Plateforme d’Immunomonitoring, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Nassim Salem
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM 105, 13009 Marseille, France; (A.-C.L.F.)
- Plateforme d’Immunomonitoring, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Amira Ben Amara
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM 105, 13009 Marseille, France; (A.-C.L.F.)
- Plateforme d’Immunomonitoring, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Florence Orlanducci
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM 105, 13009 Marseille, France; (A.-C.L.F.)
- Plateforme d’Immunomonitoring, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Norbert Vey
- Département d’Hématologie, CRCM, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM 105, 13009 Marseille, France
| | - Laurent Gorvel
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM 105, 13009 Marseille, France; (A.-C.L.F.)
- Plateforme d’Immunomonitoring, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Anne-Sophie Chretien
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM 105, 13009 Marseille, France; (A.-C.L.F.)
- Plateforme d’Immunomonitoring, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Daniel Olive
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM 105, 13009 Marseille, France; (A.-C.L.F.)
- Plateforme d’Immunomonitoring, Institut Paoli-Calmettes, 13009 Marseille, France
| |
Collapse
|
29
|
Wong DP, Fritz CE, Feinberg D, Huang AY, Parameswaran R. p35 is a Crucial Player in NK-cell Cytotoxicity and TGFβ-mediated NK-cell Dysfunction. CANCER RESEARCH COMMUNICATIONS 2023; 3:793-806. [PMID: 37377891 PMCID: PMC10162136 DOI: 10.1158/2767-9764.crc-22-0497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/14/2023] [Accepted: 04/14/2023] [Indexed: 06/29/2023]
Abstract
Natural killer (NK) cells are innate lymphocytes with cytotoxic activity. Understanding the factors regulating cytotoxicity is crucial for improving NK-cell adoptive therapies. Here, we studied a previously unknown role of p35 (CDK5R1), a coactivator of cyclin-dependent kinase 5 (CDK5) in NK-cell function. p35 expression was thought to be neuronal-specific and the majority of studies are still focused on neuronal cells. Here, we show that CDK5 and p35 are expressed in NK cells and are kinase-active. NK cells from p35 knockout mice were analyzed and showed significantly increased cytotoxicity against murine cancer cells, while they did not show any differences in cell numbers or maturation stages. We confirmed this using human NK cells transduced with p35 short hairpin RNA (shRNA), showing similar increase in cytotoxicity against human cancer cells. Overexpression of p35 in NK cells resulted in moderate decrease in cytotoxicity, while expressing a kinase-dead mutant of CDK5 displayed increased cytotoxicity. Together, these data suggest that p35 negatively regulates NK-cell cytotoxicity. Surprisingly, we found that TGFβ, a known negative regulator of NK-cell cytotoxicity, induces p35 expression in NK cells. NK cells cultured with TGFβ exhibit reduced cytotoxicity, while NK cells transduced with p35 shRNA or mutant CDK5 expression exhibited partial reversal of this inhibitory effect pointing to an interesting hypothesis that p35 plays an important role in TGFβ-mediated NK-cell exhaustion. Significance This study reports a role for p35 in NK-cell cytotoxicity and this might help to improve NK-cell adoptive therapy.
Collapse
Affiliation(s)
- Derek P. Wong
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Claire E. Fritz
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Daniel Feinberg
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Alex Y. Huang
- Pediatric Hematology and Oncology, The Angie Fowler Adolescent & Young Adult Cancer Institute, University Hospitals Rainbow Babies & Children's Hospital, Cleveland, Ohio
- The Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Reshmi Parameswaran
- The Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Division of Hematology/Oncology, Department of Medicine, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
30
|
Early Stage Professionals Committee Proceedings from the International Society for Cell & Gene Therapy 2022 Annual Meeting. Cytotherapy 2023; 25:590-597. [PMID: 36906481 DOI: 10.1016/j.jcyt.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 03/12/2023]
Abstract
In this Committee Proceedings, representatives from the Early Stage Professional (ESP) committee highlight the innovative discoveries and key take-aways from oral presentations at the 2022 International Society for Cell and Gene Therapy (ISCT) Annual Meeting that cover the following subject categories: Immunotherapy, Exosomes and Extracellular Vesicles, HSC/Progenitor Cells and Engineering, Mesenchymal Stromal Cells, and ISCT Late-Breaking Abstracts.
Collapse
|
31
|
Ali S, Rehman MU, Yatoo AM, Arafah A, Khan A, Rashid S, Majid S, Ali A, Ali MN. TGF-β signaling pathway: Therapeutic targeting and potential for anti-cancer immunity. Eur J Pharmacol 2023; 947:175678. [PMID: 36990262 DOI: 10.1016/j.ejphar.2023.175678] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/07/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Transforming growth factor-β (TGFβ) is a pleiotropic secretory cytokine exhibiting both cancer-inhibitory and promoting properties. It transmits its signals via Suppressor of Mother against Decapentaplegic (SMAD) and non-SMAD pathways and regulates cell proliferation, differentiation, invasion, migration, and apoptosis. In non-cancer and early-stage cancer cells, TGFβ signaling suppresses cancer progression via inducing apoptosis, cell cycle arrest, or anti-proliferation, and promoting cell differentiation. On the other hand, TGFβ may also act as an oncogene in advanced stages of tumors, wherein it develops immune-suppressive tumor microenvironments and induces the proliferation of cancer cells, invasion, angiogenesis, tumorigenesis, and metastasis. Higher TGFβ expression leads to the instigation and development of cancer. Therefore, suppressing TGFβ signals may present a potential treatment option for inhibiting tumorigenesis and metastasis. Different inhibitory molecules, including ligand traps, anti-sense oligo-nucleotides, small molecule receptor-kinase inhibitors, small molecule inhibitors, and vaccines, have been developed and clinically trialed for blocking the TGFβ signaling pathway. These molecules are not pro-oncogenic response-specific but block all signaling effects induced by TGFβ. Nonetheless, targeting the activation of TGFβ signaling with maximized specificity and minimized toxicity can enhance the efficacy of therapeutic approaches against this signaling pathway. The molecules that are used to target TGFβ are non-cytotoxic to cancer cells but designed to curtail the over-activation of invasion and metastasis driving TGFβ signaling in stromal and cancer cells. Here, we discussed the critical role of TGFβ in tumorigenesis, and metastasis, as well as the outcome and the promising achievement of TGFβ inhibitory molecules in the treatment of cancer.
Collapse
|
32
|
Ghasemi M, Abbasi L, Ghanbari Naeini L, Kokabian P, Nameh Goshay Fard N, Givtaj N. Dendritic cells and natural killer cells: The road to a successful oncolytic virotherapy. Front Immunol 2023; 13:950079. [PMID: 36703982 PMCID: PMC9871831 DOI: 10.3389/fimmu.2022.950079] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 09/02/2022] [Indexed: 01/11/2023] Open
Abstract
Every type of cancer tissue is theoretically more vulnerable to viral infection. This natural proclivity has been harnessed as a new anti-cancer therapy by employing oncolytic viruses (OVs) to selectively infect and destroy cancer cells while providing little or no harm with no toxicity to the host. Whereas the primary oncolytic capabilities of OVs initially sparked the greatest concern, the predominant focus of research is on the association between OVs and the host immune system. Numerous OVs are potent causal agents of class I MHC pathway-related chemicals, enabling early tumor/viral immune recognition and cytokine-mediated response. The modified OVs have been studied for their ability to bind to dendritic cells (DCs) by expressing growth factors, chemokines, cytokines, and defensins inside the viral genome. OVs, like reovirus, can directly infect DCs, causing them to release chemokines and cytokines that attract and excite natural killer (NK) cells. In addition, OVs can directly alter cancer cells' sensitivity to NK by altering the expression levels of NK cell activators and inhibitors on cancerous cells. Therefore, NK cells and DCs in modulating the therapeutic response should be considered when developing and improving future OV-based therapeutics, whether modified to express transgenes or used in combination with other drugs/immunotherapies. Concerning the close relationship between NK cells and DCs in the potential of OVs to kill tumor cells, we explore how DCs and NK cells in tumor microenvironment affect oncolytic virotherapy and summarize additional information about the interaction mentioned above in detail in this work.
Collapse
Affiliation(s)
- Matin Ghasemi
- Faculty of Medicine, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Laleh Abbasi
- Guilan University of Medical Sciences, Rasht, Iran
| | | | - Pajman Kokabian
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Najmeh Nameh Goshay Fard
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nozar Givtaj
- Rajaei Cardiovascular, Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran,*Correspondence: Nozar Givtaj,
| |
Collapse
|
33
|
Leveraging Natural Killer Cell Innate Immunity against Hematologic Malignancies: From Stem Cell Transplant to Adoptive Transfer and Beyond. Int J Mol Sci 2022; 24:ijms24010204. [PMID: 36613644 PMCID: PMC9820370 DOI: 10.3390/ijms24010204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Numerous recent advancements in T-cell based immunotherapies have revolutionized the treatment of hematologic malignancies. In the race towards the first approved allogeneic cellular therapy product, there is growing interest in utilizing natural killer (NK) cells as a platform for off-the-shelf cellular therapies due to their scalable manufacturing potential, potent anti-tumor efficacy, and superior safety profile. Allogeneic NK cell therapies are now being actively explored in the setting of hematopoietic stem cell transplantation and adoptive transfer. Increasingly sophisticated gene editing techniques have permitted the engineering of chimeric antigen receptors, ectopic cytokine expression, and tumor recognition signals to improve the overall cytotoxicity of NK cell therapies. Furthermore, the enhancement of antibody-dependent cellular cytotoxicity has been achieved through the use of NK cell engagers and combination regimens with monoclonal antibodies that act synergistically with CD16-expressing NK cells. Finally, a greater understanding of NK cell biology and the mechanisms of resistance have allowed the preclinical development of NK checkpoint blockade and methods to modulate the tumor microenvironment, which have been evaluated in early phase trials. This review will discuss the recent clinical advancements in NK cell therapies in hematologic malignancies as well as promising avenues of future research.
Collapse
|
34
|
Valenzuela-Vázquez L, Nuñez-Enriquez JC, Sánchez-Herrera J, Medina-Sanson A, Pérez-Saldivar ML, Jiménez-Hernández E, Martiín-Trejo JA, Del Campo-Martínez MDLÁ, Flores-Lujano J, Amador-Sánchez R, Mora-Ríos FG, Peñaloza-González JG, Duarte-Rodríguez DA, Torres-Nava JR, Espinosa-Elizondo RM, Cortés-Herrera B, Flores-Villegas LV, Merino-Pasaye LE, Almeida-Hernández C, Ramírez-Colorado R, Solís-Labastida KA, Medrano-López F, Pérez-Gómez JA, Velázquez-Aviña MM, Martínez-Ríos A, Aguilar-De los Santos A, Santillán-Juárez JD, Gurrola-Silva A, García-Velázquez AJ, Mata-Rocha M, Hernández-Echáurregui GA, Sepúlveda-Robles OA, Rosas-Vargas H, Mancilla-Herrera I, Jimenez-Morales S, Hidalgo-Miranda A, Martinez-Duncker I, Waight JD, Hance KW, Madauss KP, Mejía-Aranguré JM, Cruz-Munoz ME. NK cells with decreased expression of multiple activating receptors is a dominant phenotype in pediatric patients with acute lymphoblastic leukemia. Front Oncol 2022; 12:1023510. [PMID: 36419901 PMCID: PMC9677112 DOI: 10.3389/fonc.2022.1023510] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
NK cells have unique attributes to react towards cells undergoing malignant transformation or viral infection. This reactivity is regulated by activating or inhibitory germline encoded receptors. An impaired NK cell function may result from an aberrant expression of such receptors, a condition often seen in patients with hematological cancers. Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer worldwide and NK cells have emerged as crucial targets for developing immunotherapies. However, there are important gaps concerning the phenotype and behavior of NK cells during emergence of ALL. In this study we analyze the phenotype and function of NK cells from peripheral blood in pediatric patients with ALL at diagnosis. Our results showed that NK cells exhibited an altered phenotype highlighted by a significant reduction in the overall expression and percent representation of activating receptors compared to age-matched controls. No significant differences were found for the expression of inhibitory receptors. Moreover, NK cells with a concurrent reduced expression in various activating receptors, was the dominant phenotype among patients. An alteration in the relative frequencies of NK cells expressing NKG2A and CD57 within the mature NK cell pool was also observed. In addition, NK cells from patients displayed a significant reduction in the ability to sustain antibody-dependent cellular cytotoxicity (ADCC). Finally, an aberrant expression of activating receptors is associated with the phenomenon of leukemia during childhood.
Collapse
Affiliation(s)
- Lucero Valenzuela-Vázquez
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Juan Carlos Nuñez-Enriquez
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Jacqueline Sánchez-Herrera
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Aurora Medina-Sanson
- Servicio de Oncología Pediátrica, Hospital Infantil de México, “Dr. Federico Gómez Sántos”, Secretaria de Salud, Ciudad de México, Mexico
| | - María Luisa Pérez-Saldivar
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Elva Jiménez-Hernández
- Servicio de Hematología Pediátrica, Hospital General “Gaudencio González Garza”, Centro Médico Nacional (CMN) “La Raza”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Jorge Alfonso Martiín-Trejo
- Servicio de Hematología Pediátrica, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - María de Los Ángeles Del Campo-Martínez
- Servicio de Hematología Pediátrica, Hospital General “Gaudencio González Garza”, Centro Médico Nacional (CMN) “La Raza”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Janet Flores-Lujano
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Raquel Amador-Sánchez
- Hospital General Regional No. 1 “Carlos McGregor Sánchez Navarro”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Félix Gustavo Mora-Ríos
- Departamento de Hematología, Hospital General Regional Ignacio Zaragoza del Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | | | - David Aldebarán Duarte-Rodríguez
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - José Refugio Torres-Nava
- Servicio de Oncología, Hospital Pediátrico de Moctezuma, Secretaría de Salud de la Ciudad de México (CDMX), Mexico City, Mexico
| | | | - Beatriz Cortés-Herrera
- Servicio de Hematología Pediátrica, Hospital General de México, Secretaria de Salud (SS), Mexico City, Mexico
| | - Luz Victoria Flores-Villegas
- Servicio de Hematología Pediátrica, Centro Médico Nacional (CMN) “20 de Noviembre”, Instituto de Seguridad Social al Servicio de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Laura Elizabeth Merino-Pasaye
- Servicio de Hematología Pediátrica, Centro Médico Nacional (CMN) “20 de Noviembre”, Instituto de Seguridad Social al Servicio de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Carolina Almeida-Hernández
- Hospital General de Ecatepec “Las Américas”, Instituto de Salud del Estado de México (ISEM), Mexico City, Mexico
| | - Rosario Ramírez-Colorado
- Hospital Pediátrico La Villa, Secretaría de Salud de la Ciudad de México (SSCDMX), Mexico City, Mexico
| | - Karina Anastacia Solís-Labastida
- Servicio de Hematología Pediátrica, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Francisco Medrano-López
- Hospital General Regional (HGR) No. 72 “Dr. Vicente Santos Guajardo”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Jessica Arleet Pérez-Gómez
- Hospital General Regional (HGR) No. 72 “Dr. Vicente Santos Guajardo”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | | | - Annel Martínez-Ríos
- Departamento de Hematología, Hospital General Regional Ignacio Zaragoza del Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | | | - Jessica Denisse Santillán-Juárez
- Servicio de Hemato-oncología Pediátrica, Hospital Regional No. 1° de Octubre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Alma Gurrola-Silva
- Hospital Regional Tipo B de Alta Especialidad Bicentenario de la Independencia, Instituto de Seguridad Social al Servicio de los Trabajadores del Estado, Mexico City, Mexico
| | - Alejandra Jimena García-Velázquez
- Servicio de Hemato-oncología Pediátrica, Hospital Regional No. 1° de Octubre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Minerva Mata-Rocha
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | | | - Omar Alejandro Sepúlveda-Robles
- Unidad de Investigación Médica en Genética Humana, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Haydeé Rosas-Vargas
- Unidad de Investigación Médica en Genética Humana, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Ismael Mancilla-Herrera
- Departamento de Infectología e Inmunología, Instituto Nacional de Perinatología, Mexico City, Mexico
| | - Silvia Jimenez-Morales
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Ivan Martinez-Duncker
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | | | | | | | - Juan Manuel Mejía-Aranguré
- Unidad de Investigación Médica en Genética Humana, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
- *Correspondence: Juan Manuel Mejía-Aranguré, ; Mario Ernesto Cruz-Munoz,
| | - Mario Ernesto Cruz-Munoz
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
- *Correspondence: Juan Manuel Mejía-Aranguré, ; Mario Ernesto Cruz-Munoz,
| |
Collapse
|
35
|
Wang S, Sun J, Dastgheyb RM, Li Z. Tumor-derived extracellular vesicles modulate innate immune responses to affect tumor progression. Front Immunol 2022; 13:1045624. [PMID: 36405712 PMCID: PMC9667034 DOI: 10.3389/fimmu.2022.1045624] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/18/2022] [Indexed: 04/23/2024] Open
Abstract
Immune cells are capable of influencing tumor progression in the tumor microenvironment (TME). Meanwhile, one mechanism by which tumor modulate immune cells function is through extracellular vesicles (EVs), which are cell-derived extracellular membrane vesicles. EVs can act as mediators of intercellular communication and can deliver nucleic acids, proteins, lipids, and other signaling molecules between cells. In recent years, studies have found that EVs play a crucial role in the communication between tumor cells and immune cells. Innate immunity is the first-line response of the immune system against tumor progression. Therefore, tumor cell-derived EVs (TDEVs) which modulate the functional change of innate immune cells serve important functions in the context of tumor progression. Emerging evidence has shown that TDEVs dually enhance or suppress innate immunity through various pathways. This review aims to summarize the influence of TDEVs on macrophages, dendritic cells, neutrophils, and natural killer cells. We also summarize their further effects on the progression of tumors, which may provide new ideas for developing novel tumor therapies targeting EVs.
Collapse
Affiliation(s)
- Siqi Wang
- Scientific Research Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Jiaxin Sun
- Scientific Research Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Raha M. Dastgheyb
- School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Zhigang Li
- Scientific Research Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
36
|
Xiao J, Li Y, Liu Y, Chen Y, He Z, Peng S, Yin Y. The involvement of homeobox-C 4 in predicting prognosis and unraveling immune landscape across multiple cancers via integrated analysis. Front Genet 2022; 13:1021473. [DOI: 10.3389/fgene.2022.1021473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background: There has been growing evidence that the aberrantly expressed Homeobox-C 4 (HOXC4) plays crucial roles in the development of some cancer types. However, it remains unclear as far as its expression patterns and prognostic significance are concerned, as is tumor immunity.Methods: To investigate the expression levels and prognostic implications of HOXC4, multiple data sources were used in conjunction with quantitative real-time polymerase chain reaction (qRT-PCR) verification. Afterward, diverse immunological-related analyses, along with anti-cancer drug sensitivity, were performed in a number of cancer types. A further exploration of the underlying mechanisms of HOXC4 in tumorigenesis and immunity was carried out using the Gene Set Enrichment Analysis (GSEA) and the Gene Set Variation Analysis (GSVA).Results: Based on extensive database mining, HOXC4 was ubiquitously expressed across 21 tumor cell lines and significantly higher than that of normal tissues in 21 tumor types. The outcome of survival analysis including overall survival (OS), disease-free interval (DFI), disease-specific survival (DSS) and progression-free interval (PFI) revealed that upregulation of HOXC4 expression in several cancers was associated with worse prognosis. Additionally, HOXC4 was observed to correlate closely with colon adenocarcinoma (COAD), head and neck squamous cell carcinoma (HNSC), lower grade glioma (LGG), liver hepatocellular carcinoma (LIHC), rectum adenocarcinoma (READ), and thyroid carcinoma (THCA) in terms of tumor immune cells infiltration. As a result of our comprehensive pan-cancer study, we have identified a significant link between the expression of HOXC4 and the efficacy of immunotherapy-related treatments, together with anti-cancer drug sensitivity. As a final note, HOXC4 was found to modulate multiple signaling pathways involved in tumorigenesis and immunity.Conclusion: HOXC4 has been implicated in our study for the first time as an oncogene in cancers with a poor prognosis, potentially laying the groundwork for promising clinical biomarkers and immunotherapy approaches.
Collapse
|
37
|
Pedersen RS, Nissen NI, Jensen C, Thorlacius-Ussing J, Manon-Jensen T, Olesen ML, Langholm LL, Diab HMH, Jorgensen LN, Hansen CP, Chen IM, Johansen JS, Karsdal MA, Willumsen N. Plasma Kallikrein-Activated TGF-β Is Prognostic for Poor Overall Survival in Patients with Pancreatic Ductal Adenocarcinoma and Associates with Increased Fibrogenesis. Biomolecules 2022; 12:biom12091315. [PMID: 36139154 PMCID: PMC9496221 DOI: 10.3390/biom12091315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a hard-to-treat cancer due to the collagen-rich (fibrotic) and immune-suppressed microenvironment. A major driver of this phenomenon is transforming growth factor beta (TGF-β). TGF-β is produced in an inactive complex with a latency-associated protein (LAP) that can be cleaved by plasma kallikrein (PLK), hereby releasing active TGF-β. The aim of this study was to evaluate LAP cleaved by PLK as a non-invasive biomarker for PDAC and tumor fibrosis. An ELISA was developed for the quantification of PLK-cleaved LAP-TGF-β in the serum of 34 patients with PDAC (stage 1−4) and 20 healthy individuals. Biomarker levels were correlated with overall survival (OS) and compared to serum type III collagen (PRO-C3) and type VI collagen (PRO-C6) pro-peptides. PLK-cleaved LAP-TGF-β was higher in patients with PDAC compared to healthy individuals (p < 0.0001). High levels (>median) of PLK-cleaved LAP-TGF-β were associated with poor OS in patients with PDAC independent of age and stage (HR 2.57, 95% CI: 1.22−5.44, p = 0.0135). High levels of PLK-cleaved LAP-TGF-β were associated with high PRO-C3 and PRO-C6, indicating a relationship between the PLK-cleaved LAP-TGF-β fragment, TGF-β activity, and tumor fibrosis. If these preliminary results are validated, circulating PLK-cleaved LAP-TGF-β may be a biomarker for future clinical trials.
Collapse
Affiliation(s)
- Rasmus S. Pedersen
- Nordic Bioscience, 2730 Herlev, Denmark
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Correspondence:
| | | | | | | | | | | | | | - Hadi M. H. Diab
- Digestive Disease Center, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, 2400 Copenhagen, Denmark
| | - Lars N. Jorgensen
- Digestive Disease Center, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, 2400 Copenhagen, Denmark
| | - Carsten P. Hansen
- Department of Surgery, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Inna M. Chen
- Department of Oncology, Herlev and Gentofte Hospital, University of Copenhagen, 2730 Herlev, Denmark
| | - Julia S. Johansen
- Department of Oncology, Herlev and Gentofte Hospital, University of Copenhagen, 2730 Herlev, Denmark
- Department of Medicine, Herlev and Gentofte Hospital, University of Copenhagen, 2730 Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | | |
Collapse
|
38
|
Circular EZH2-encoded EZH2-92aa mediates immune evasion in glioblastoma via inhibition of surface NKG2D ligands. Nat Commun 2022; 13:4795. [PMID: 35970825 PMCID: PMC9378736 DOI: 10.1038/s41467-022-32311-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma (GBM) is a highly aggressive primary brain tumour and is resistant to nearly all available treatments, including natural killer (NK) cell immunotherapy. However, the factors mediating NK cell evasion in GBM remain largely unclear. Here, we report that EZH2-92aa, a protein encoded by circular EZH2, is overexpressed in GBM and induces the immune evasion of GBM stem cells (GSCs) from NK cells. Positively regulated by DEAD-box helicase 3 (DDX3), EZH2-92aa directly binds the major histocompatibility complex class I polypeptide-related sequence A/B (MICA/B) promoters and represses their transcription; it also indirectly represses UL16-binding protein (ULBP) transcription by stabilizing EZH2. The downregulation of NK group 2D ligands (NKG2DLs, including MICA/B and ULBPs) in GSCs mediates NK cell resistance. Moreover, stable EZH2-92aa knockdown enhances NK cell-mediated GSC eradication in vitro and in vivo and synergizes with anti-PD1 therapy. Our results highlight the immunosuppressive function of EZH2-92aa in inhibiting the NK cell response in GBM and the clinical potential of targeting EZH2-92aa for NK-cell-directed immune therapy. Glioblastoma (GBM) is a highly aggressive brain tumor, frequently resistant to therapies, including natural killer (NK) cell based immunotherapy. Here, the authors show that the circular RNA EZH2 is highly expressed in GBM and encodes the peptide EZH2-92aa, whose expression is associated with inhibition of NK cell cytotoxicity.
Collapse
|
39
|
Marley AR, Ryder JR, Turcotte LM, Spector LG. Maternal obesity and acute lymphoblastic leukemia risk in offspring: A summary of trends, epidemiological evidence, and possible biological mechanisms. Leuk Res 2022; 121:106924. [PMID: 35939888 DOI: 10.1016/j.leukres.2022.106924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/13/2022] [Accepted: 08/01/2022] [Indexed: 10/16/2022]
Abstract
Acute lymphoblastic leukemia, a heterogenous malignancy characterized by uncontrolled proliferation of lymphoid progenitors and generally initiated in utero, is the most common pediatric cancer. Although incidence of ALL has been steadily increasing in recent decades, no clear reason for this trend has been identified. Rising concurrently with ALL incidence, increasing maternal obesity rates may be partially contributing to increasing ALL prevelance. Epidemiological studies, including a recent meta-analysis, have found an association between maternal obesity and leukemogenesis in offspring, although mechanisms underlying this association remain unknown. Therefore, the purpose of this review is to propose possible mechanisms connecting maternal obesity to ALL risk in offspring, including changes to fetal/neonatal epigenetics, altered insulin-like growth factor profiles and insulin resistance, modified adipokine production and secretion, changes to immune cell populations, and impacts on birthweight and childhood obesity/adiposity. We describe how each proposed mechanism is biologically plausible due to their connection with maternal obesity, presence in neonatal and/or fetal tissue, observation in pediatric ALL patients at diagnosis, and association with leukemogenesis, A description of ALL and maternal obesity trends, a summary of epidemiological evidence, a discussion of the pathway from intrauterine environment to subsequent malignancy, and propositions for future directions are also presented.
Collapse
Affiliation(s)
- Andrew R Marley
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, 420 Delaware St SE MMC 715, Minneapolis, MN 55455, USA.
| | - Justin R Ryder
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, 420 Delaware St SE MMC 715, Minneapolis, MN 55455, USA; Center for Pediatric Obesity Medicine, Department of Pediatrics, University of Minnesota, 2450 Riverside Ave S AO-102, Minneapolis, MN 55454, USA
| | - Lucie M Turcotte
- Division of Hematology/Oncology, Department of Pediatrics, University of Minnesota, 420 Delaware St SE MMC 484, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, 425 East River Parkway, Minneapolis, MN 55455, USA
| | - Logan G Spector
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, 420 Delaware St SE MMC 715, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, 425 East River Parkway, Minneapolis, MN 55455, USA
| |
Collapse
|
40
|
Valeri A, García-Ortiz A, Castellano E, Córdoba L, Maroto-Martín E, Encinas J, Leivas A, Río P, Martínez-López J. Overcoming tumor resistance mechanisms in CAR-NK cell therapy. Front Immunol 2022; 13:953849. [PMID: 35990652 PMCID: PMC9381932 DOI: 10.3389/fimmu.2022.953849] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Despite the impressive results of autologous CAR-T cell therapy in refractory B lymphoproliferative diseases, CAR-NK immunotherapy emerges as a safer, faster, and cost-effective approach with no signs of severe toxicities as described for CAR-T cells. Permanently scrutinized for its efficacy, recent promising data in CAR-NK clinical trials point out the achievement of deep, high-quality responses, thus confirming its potential clinical use. Although CAR-NK cell therapy is not significantly affected by the loss or downregulation of its CAR tumor target, as in the case of CAR-T cell, a plethora of common additional tumor intrinsic or extrinsic mechanisms that could also disable NK cell function have been described. Therefore, considering lessons learned from CAR-T cell therapy, the emergence of CAR-NK cell therapy resistance can also be envisioned. In this review we highlight the processes that could be involved in its development, focusing on cytokine addiction and potential fratricide during manufacturing, poor tumor trafficking, exhaustion within the tumor microenvironment (TME), and NK cell short in vivo persistence on account of the limited expansion, replicative senescence, and rejection by patient’s immune system after lymphodepletion recovery. Finally, we outline new actively explored alternatives to overcome these resistance mechanisms, with a special emphasis on CRISPR/Cas9 mediated genetic engineering approaches, a promising platform to optimize CAR-NK cell function to eradicate refractory cancers.
Collapse
Affiliation(s)
- Antonio Valeri
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Almudena García-Ortiz
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Eva Castellano
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Laura Córdoba
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Elena Maroto-Martín
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Jessica Encinas
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Alejandra Leivas
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Paula Río
- Division of Hematopoietic Innovative Therapies, Biomedical Innovation Unit, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) and Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Joaquín Martínez-López
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- *Correspondence: Joaquín Martínez-López,
| |
Collapse
|
41
|
Liu C, He D, Li L, Zhang S, Wang L, Fan Z, Wang Y. Extracellular vesicles in pancreatic cancer immune escape: Emerging roles and mechanisms. Pharmacol Res 2022; 183:106364. [PMID: 35901939 DOI: 10.1016/j.phrs.2022.106364] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 11/25/2022]
Abstract
Pancreatic cancer (PC) is the most lethal malignancy worldwide due to its delayed diagnosis and limited treatment options. Despite great progress in clinical trials of immunotherapies for various cancers, their effectiveness in PC is very low, indicating that immune evasion is still a major obstacle to immunotherapy in PC. However, the mechanism of immune escape in PC is not fully understood, which substantially restricts the development of immunotherapy. As an important component of intercellular communication networks, extracellular vesicles (EVs) have attracted increasing attention in relation to immune escape. This review aims to provide a better understanding of the roles of EVs in tumor immune escape and the potential to expand their application in cancer immunotherapy. The relationship between PC and the tumor immune microenvironment is briefly introduced. Then, the mechanism by which EVs are involved in immune regulation is summarized, and the latest progress in determining the role of EVs in regulating PC immune escape is highlighted.
Collapse
Affiliation(s)
- Chunping Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Dongyue He
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Longmei Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shihui Zhang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhijin Fan
- School of Medicine, South China University of Technology, Guangzhou, China.
| | - Yichao Wang
- Department of Clinical Laboratory Medicine, Tai Zhou Central Hospital (Taizhou University Hospital), No.999 Donghai Road, Jiaojiang District, Taizhou, Zhejiang 318000, China.
| |
Collapse
|
42
|
Souza-Fonseca Guimaraes F, Rossi GR, Dagley LF, Foroutan M, McCulloch TR, Yousef J, Park HY, Gunter JH, Beavis PA, Lin CY, Hediyeh-Zadeh S, Camilleri T, Davis MJ, Huntington ND. TGF-β and CIS inhibition overcomes NK cell suppression to restore anti-tumor immunity. Cancer Immunol Res 2022; 10:1047-1054. [PMID: 35759796 DOI: 10.1158/2326-6066.cir-21-1052] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/21/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022]
Abstract
Antibodies targeting "immune checkpoints" have revolutionized cancer therapy by reactivating tumor-resident cytotoxic lymphocytes, primarily CD8+ T cells. Interest in targeting analogous pathways in other cytotoxic lymphocytes is growing. Natural killer (NK) cells are key to cancer immunosurveillance by eradicating metastases and driving solid tumor inflammation. NK cell anti-tumor function is dependent on the cytokine interleukin (IL)-15. Ablation of the IL-15 signaling inhibitor CIS (Cish) enhances NK cell anti-tumor immunity by increasing NK cell metabolism and persistence within the tumor microenvironment (TME). The TME has also been shown to impair NK cell fitness via the production of immunosuppressive TGF-β, a suppression which occurs even in the presence of high IL-15 signaling. Here, we identified an unexpected interaction between CIS and the TGF-β signaling pathway in NK cells. Independently, Cish- and Tgfbr2-deficient NK cells are both hyper-responsive to IL-15 and hypo-responsive to TGF-β, with dramatically enhanced anti-tumor immunity. Remarkably, when both these immunosuppressive genes are simultaneously deleted in NK cells, mice are largely resistant to tumor development, suggesting that combining suppression of these two pathways might represent a novel therapeutic strategy to enhance innate anti-cancer immunity.
Collapse
Affiliation(s)
| | | | - Laura F Dagley
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | | | | | - Jumana Yousef
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | | | | | - Paul A Beavis
- Peter MacCallum Cancer Research Centre, Melbourne, Victoria, Australia
| | - Cheng-Yu Lin
- University of Queensland, Woolloongabba, QLD, Australia
| | | | | | - Melissa J Davis
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | | |
Collapse
|
43
|
Chen B, Mu C, Zhang Z, He X, Liu X. The Love-Hate Relationship Between TGF-β Signaling and the Immune System During Development and Tumorigenesis. Front Immunol 2022; 13:891268. [PMID: 35720407 PMCID: PMC9204485 DOI: 10.3389/fimmu.2022.891268] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/25/2022] [Indexed: 11/20/2022] Open
Abstract
Since TGF-β was recognized as an essential secreted cytokine in embryogenesis and adult tissue homeostasis a decade ago, our knowledge of the role of TGF-β in mammalian development and disease, particularly cancer, has constantly been updated. Mounting evidence has confirmed that TGF-β is the principal regulator of the immune system, as deprivation of TGF-β signaling completely abrogates adaptive immunity. However, enhancing TGF-β signaling constrains the immune response through multiple mechanisms, including boosting Treg cell differentiation and inducing CD8+ T-cell apoptosis in the disease context. The love-hate relationship between TGF-β signaling and the immune system makes it challenging to develop effective monotherapies targeting TGF-β, especially for cancer treatment. Nonetheless, recent work on combination therapies of TGF-β inhibition and immunotherapy have provide insights into the development of TGF-β-targeted therapies, with favorable outcomes in patients with advanced cancer. Hence, we summarize the entanglement between TGF-β and the immune system in the developmental and tumor contexts and recent progress on hijacking crucial TGF-β signaling pathways as an emerging area of cancer therapy.
Collapse
Affiliation(s)
- Baode Chen
- Department of Laboratory Medicine, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chenglin Mu
- Institute for Intelligent Bio/Chem Manufacturing (iBCM), Zhejiang University (ZJU)-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Zhiwei Zhang
- Institute for Intelligent Bio/Chem Manufacturing (iBCM), Zhejiang University (ZJU)-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Xuelin He
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xia Liu
- Institute for Intelligent Bio/Chem Manufacturing (iBCM), Zhejiang University (ZJU)-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| |
Collapse
|
44
|
Corvino D, Kumar A, Bald T. Plasticity of NK cells in Cancer. Front Immunol 2022; 13:888313. [PMID: 35619715 PMCID: PMC9127295 DOI: 10.3389/fimmu.2022.888313] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/12/2022] [Indexed: 12/19/2022] Open
Abstract
Natural killer (NK) cells are crucial to various facets of human immunity and function through direct cytotoxicity or via orchestration of the broader immune response. NK cells exist across a wide range of functional and phenotypic identities. Murine and human studies have revealed that NK cells possess substantial plasticity and can alter their function and phenotype in response to external signals. NK cells also play a critical role in tumor immunity and form the basis for many emerging immunotherapeutic approaches. NK cells can directly target and lyse malignant cells with their inherent cytotoxic capabilities. In addition to direct targeting of malignant cells, certain subsets of NK cells can mediate antibody-dependent cellular cytotoxicity (ADCC) which is integral to some forms of immune checkpoint-blockade immunotherapy. Another important feature of various NK cell subsets is to co-ordinate anti-tumor immune responses by recruiting adaptive and innate leukocytes. However, given the diverse range of NK cell identities it is unsurprising that both pro-tumoral and anti-tumoral NK cell subsets have been described. Here, NK cell subsets have been shown to promote angiogenesis, drive inflammation and immune evasion in the tumor microenvironment. To date, the signals that drive tumor-infiltrating NK cells towards the acquisition of a pro- or anti-tumoral function are poorly understood. The notion of tumor microenvironment-driven NK cell plasticity has substantial implications for the development of NK-based immunotherapeutics. This review will highlight the current knowledge of NK cell plasticity pertaining to the tumor microenvironment. Additionally, this review will pose critical and relevant questions that need to be addressed by the field in coming years.
Collapse
Affiliation(s)
- Dillon Corvino
- Tumor-Immunobiology, Institute for Experimental Oncology, University Hospital Bonn, Bonn, Germany
| | - Ananthi Kumar
- Tumor-Immunobiology, Institute for Experimental Oncology, University Hospital Bonn, Bonn, Germany
| | - Tobias Bald
- Tumor-Immunobiology, Institute for Experimental Oncology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
45
|
Li X, Zhang Y, He F, Gao D, Che B, Cao X, Huang S, Zheng M, Han H. miR-582 Suppresses the Proliferation of B-Cell Precursor Acute Lymphoblastic Leukemia (BCP-ALL) Cells and Protects Them From Natural Killer Cell-Mediated Cytotoxicity. Front Immunol 2022; 13:853094. [PMID: 35514986 PMCID: PMC9065596 DOI: 10.3389/fimmu.2022.853094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/16/2022] [Indexed: 12/02/2022] Open
Abstract
B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is a malignancy characterized by the aberrant accumulation of immature B-cell precursors in bone marrow and other lymphoid organs. Although several intrinsic regulatory signals participating in BCP-ALL have been clarified, detailed intrinsic and extrinsic mechanisms that regulate BCP-ALL progression have not been fully understood. In the current study, we report that miR-582 is downregulated in BCP-ALL cells compared with normal B cells. Forced overexpression of miR-582 attenuated BCP-ALL cell proliferation and survival. We found that miR-582 overexpression disturbed the mitochondrial metabolism of BCP-ALL cells, leading to less ATP but more ROS production. Mechanistically, we identified PPTC7 as a direct target of miR-582. MiR-582 overexpression inhibited the activity of CoQ10, which is downstream of PPTC7 and played an important positive regulatory role in mitochondrial electron transportation. Finally, we found that overexpression of miR-582 upregulated the expression of immune checkpoint molecule CD276 and reduced NK cell-mediated cytotoxicity against BCP-ALL cells. CD276 blockade significantly increased NK cell-mediated cytotoxicity against miR-582-overexpressing BCP-ALL cells. Together, our research demonstrates that miR-582 acts as a negative regulator of BCP-ALL cells by reducing proliferation and survival, but protects BCP-ALL cells from NK cell-mediated cytotoxicity, suggesting that miR-582 may be a new therapeutic biomarker for BCP-ALL with CD276 blocker.
Collapse
Affiliation(s)
- Xinxin Li
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China.,Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China
| | - Yufei Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Fei He
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Dan Gao
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Bo Che
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Xiuli Cao
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Siyong Huang
- Department of Hematology, Xi'an International Medical Center Hospital, Xi'an, China
| | - Minhua Zheng
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Hua Han
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
46
|
Timmins MA, Ringshausen I. Transforming Growth Factor-Beta Orchestrates Tumour and Bystander Cells in B-Cell Non-Hodgkin Lymphoma. Cancers (Basel) 2022; 14:1772. [PMID: 35406544 PMCID: PMC8996985 DOI: 10.3390/cancers14071772] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/23/2022] [Indexed: 12/15/2022] Open
Abstract
Transforming growth factor-beta (TGFB) is a critical regulator of normal haematopoiesis. Dysregulation of the TGFB pathway is associated with numerous haematological malignancies including myelofibrosis, acute myeloid leukaemia, and lymphoid disorders. TGFB has classically been seen as a negative regulator of proliferation in haematopoiesis whilst stimulating differentiation and apoptosis, as required to maintain homeostasis. Tumours frequently develop intrinsic resistant mechanisms to homeostatic TGFB signalling to antagonise its tumour-suppressive functions. Furthermore, elevated levels of TGFB enhance pathogenesis through modulation of the immune system and tumour microenvironment. Here, we review recent advances in the understanding of TGFB signalling in B-cell malignancies with a focus on the tumour microenvironment. Malignant B-cells harbour subtype-specific alterations in TGFB signalling elements including downregulation of surface receptors, modulation of SMAD signalling proteins, as well as genetic and epigenetic aberrations. Microenvironmental TGFB generates a protumoural niche reprogramming stromal, natural killer (NK), and T-cells. Increasingly, evidence points to complex bi-directional cross-talk between cells of the microenvironment and malignant B-cells. A greater understanding of intercellular communication and the context-specific nature of TGFB signalling may provide further insight into disease pathogenesis and future therapeutic strategies.
Collapse
Affiliation(s)
- Matthew A. Timmins
- Wellcome Trust/MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AH, UK;
- Department of Haematology, Addenbrooke’s Hospital, Cambridge University Hospital, Cambridge CB2 0AH, UK
| | - Ingo Ringshausen
- Wellcome Trust/MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AH, UK;
- Department of Haematology, Addenbrooke’s Hospital, Cambridge University Hospital, Cambridge CB2 0AH, UK
| |
Collapse
|
47
|
Zoine JT, Moore SE, Velasquez MP. Leukemia's Next Top Model? Syngeneic Models to Advance Adoptive Cellular Therapy. Front Immunol 2022; 13:867103. [PMID: 35401520 PMCID: PMC8990900 DOI: 10.3389/fimmu.2022.867103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/07/2022] [Indexed: 01/24/2023] Open
Abstract
In recent years, there has been an emphasis on harnessing the immune system for therapeutic interventions. Adoptive cell therapies (ACT) have emerged as an effective option for B-cell derived hematological malignancies. Despite remarkable successes with ACT, immune dysregulation and the leukemia microenvironment can critically alter clinical responses. Therefore, preclinical modeling can contribute to the advancement of ACT for leukemias. Human xenografts, the current mainstay of ACT in vivo models, cannot evaluate the impact of the immunosuppressive leukemia microenvironment on adoptively transferred cells. Syngeneic mouse models utilize murine tumor models and implant them into immunocompetent mice. This provides an alternative model, reducing the need for complicated breeding strategies while maintaining a matched immune system, stromal compartment, and leukemia burden. Syngeneic models that evaluate ACT have analyzed the complexity of cytotoxic T lymphocytes, T cell receptor transgenics, and chimeric antigen receptors. This review examines the immunosuppressive features of the leukemia microenvironment, discusses how preclinical modeling helps predict ACT associated toxicities and dysfunction, and explores publications that have employed syngeneic modeling in ACT studies for the improvement of therapy for leukemias.
Collapse
Affiliation(s)
- Jaquelyn T. Zoine
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Sarah E. Moore
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN, United States
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - M. Paulina Velasquez
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN, United States
| |
Collapse
|
48
|
Ruppel KE, Fricke S, Köhl U, Schmiedel D. Taking Lessons from CAR-T Cells and Going Beyond: Tailoring Design and Signaling for CAR-NK Cells in Cancer Therapy. Front Immunol 2022; 13:822298. [PMID: 35371071 PMCID: PMC8971283 DOI: 10.3389/fimmu.2022.822298] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/18/2022] [Indexed: 12/21/2022] Open
Abstract
Cancer immunotherapies utilize the capabilities of the immune system to efficiently target malignant cells. In recent years, chimeric antigen receptor (CAR) equipped T cells showed promising results against B cell lymphomas. Autologous CAR-T cells require patient-specific manufacturing and thus extensive production facilities, resulting in high priced therapies. Along with potentially severe side effects, these are the major drawbacks of CAR-T cells therapies. Natural Killer (NK) cells pose an alternative for CAR equipped immune cells. Since NK cells can be safely transferred from healthy donors to cancer patients, they present a suitable platform for an allogeneic “off-the-shelf” immunotherapy. However, administration of activated NK cells in cancer therapy has until now shown poor anti-cancer responses, especially in solid tumors. Genetic modifications such as CARs promise to enhance recognition of tumor cells, thereby increasing anti-tumor effects and improving clinical efficacy. Although the cell biology of T and NK cells deviates in many aspects, the development of CAR-NK cells frequently follows within the footsteps of CAR-T cells, meaning that T cell technologies are simply adopted to NK cells. In this review, we underline the unique properties of NK cells and their potential in CAR therapies. First, we summarize the characteristics of NK cell biology with a focus on signaling, a fine-tuned interaction of activating and inhibitory receptors. We then discuss why tailored NK cell-specific CAR designs promise superior efficacy compared to designs developed for T cells. We summarize current findings and developments in the CAR-NK landscape: different CAR formats and modifications to optimize signaling, to target a broader pool of antigens or to increase in vivo persistence. Finally, we address challenges beyond NK cell engineering, including expansion and manufacturing, that need to be addressed to pave the way for CAR-NK therapies from the bench to the clinics.
Collapse
Affiliation(s)
- Katharina Eva Ruppel
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Department for GMP Process Development & ATMP Design, Leipzig, Germany
| | - Stephan Fricke
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Department for GMP Process Development & ATMP Design, Leipzig, Germany
| | - Ulrike Köhl
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
- Institute for Clinical Immunology, University of Leipzig, Leipzig, Germany
- Institute of Cellular Therapeutics, Hannover Medical School, Hannover, Germany
| | - Dominik Schmiedel
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Department for GMP Process Development & ATMP Design, Leipzig, Germany
- *Correspondence: Dominik Schmiedel,
| |
Collapse
|
49
|
Hosseini R, Sarvnaz H, Arabpour M, Ramshe SM, Asef-Kabiri L, Yousefi H, Akbari ME, Eskandari N. Cancer exosomes and natural killer cells dysfunction: biological roles, clinical significance and implications for immunotherapy. Mol Cancer 2022; 21:15. [PMID: 35031075 PMCID: PMC8759167 DOI: 10.1186/s12943-021-01492-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/26/2021] [Indexed: 12/16/2022] Open
Abstract
Tumor-derived exosomes (TDEs) play pivotal roles in several aspects of cancer biology. It is now evident that TDEs also favor tumor growth by negatively affecting anti-tumor immunity. As important sentinels of immune surveillance system, natural killer (NK) cells can recognize malignant cells very early and counteract the tumor development and metastasis without a need for additional activation. Based on this rationale, adoptive transfer of ex vivo expanded NK cells/NK cell lines, such as NK-92 cells, has attracted great attention and is widely studied as a promising immunotherapy for cancer treatment. However, by exploiting various strategies, including secretion of exosomes, cancer cells are able to subvert NK cell responses. This paper reviews the roles of TDEs in cancer-induced NK cells impairments with mechanistic insights. The clinical significance and potential approaches to nullify the effects of TDEs on NK cells in cancer immunotherapy are also discussed.
Collapse
Affiliation(s)
- Reza Hosseini
- Department of Immunology School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Hamzeh Sarvnaz
- Department of Immunology School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maedeh Arabpour
- Department of Medical Genetics School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Molaei Ramshe
- Student Research Committee, Department of Medical Genetics, School of Medicine Shahid, Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Asef-Kabiri
- Surgical Oncologist Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hassan Yousefi
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, USA
| | - Mohammad Esmaeil Akbari
- Surgical Oncologist Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nahid Eskandari
- Department of Immunology School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
50
|
Del Gaizo M, Sergio I, Lazzari S, Cialfi S, Pelullo M, Screpanti I, Felli MP. MicroRNAs as Modulators of the Immune Response in T-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2022; 23:829. [PMID: 35055013 PMCID: PMC8776227 DOI: 10.3390/ijms23020829] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/23/2021] [Accepted: 01/10/2022] [Indexed: 02/05/2023] Open
Abstract
Acute lymphoblastic leukaemia (ALL) is an aggressive haematological tumour driven by the malignant transformation and expansion of B-cell (B-ALL) or T-cell (T-ALL) progenitors. The evolution of T-ALL pathogenesis encompasses different master developmental pathways, including the main role played by Notch in cell fate choices during tissue differentiation. Recently, a growing body of evidence has highlighted epigenetic changes, particularly the altered expression of microRNAs (miRNAs), as a critical molecular mechanism to sustain T-ALL. The immune response is emerging as key factor in the complex multistep process of cancer but the role of miRNAs in anti-leukaemia response remains elusive. In this review we analyse the available literature on miRNAs as tuners of the immune response in T-ALL, focusing on their role in Natural Killer, T, T-regulatory and Myeloid-derived suppressor cells. A better understanding of this molecular crosstalk may provide the basis for the development of potential immunotherapeutic strategies in the leukemia field.
Collapse
Affiliation(s)
- Martina Del Gaizo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Roma, Italy; (M.D.G.); (S.L.); (S.C.)
| | - Ilaria Sergio
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Roma, Italy;
| | - Sara Lazzari
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Roma, Italy; (M.D.G.); (S.L.); (S.C.)
| | - Samantha Cialfi
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Roma, Italy; (M.D.G.); (S.L.); (S.C.)
| | - Maria Pelullo
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, 00161 Rome, Italy;
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Roma, Italy; (M.D.G.); (S.L.); (S.C.)
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Roma, Italy;
| |
Collapse
|