1
|
Komikawa T, Okochi M, Tanaka M. Exploration and analytical techniques for membrane curvature-sensing proteins in bacteria. J Bacteriol 2025; 207:e0048224. [PMID: 40135904 PMCID: PMC12004969 DOI: 10.1128/jb.00482-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025] Open
Abstract
The mechanism by which cells regulate protein localization is an important topic in the field of bacterial biology. In certain instances, the morphology of the biological membrane has been demonstrated to function as a spatial cue for the subcellular localization of proteins. These proteins are capable of sensing membrane curvature and are involved in a number of physiological functions such as cytokinesis and the formation of membrane-bound organelles. This review presents recent advances in the in vitro evaluation of curvature-sensing properties using artificially controlled membranes and purified proteins, as well as microscopic live cell assays. However, these evaluation methodologies often require sophisticated experiments, and the number of identified curvature sensors remains limited. Thus, we present a comprehensive exploration of recently reported curvature-sensing proteins. Subsequently, we summarize the known curvature-sensing proteins in bacteria, in conjunction with the analytical methodologies employed in this field. Finally, future prospects and further requirements in the study of curvature-sensing proteins are discussed.
Collapse
Affiliation(s)
- Takumi Komikawa
- School of Materials and Chemical Technology, Institute of Science Tokyo, Yokohama, Kanagawa, Japan
| | - Mina Okochi
- School of Materials and Chemical Technology, Institute of Science Tokyo, Meguro, Tokyo, Japan
| | - Masayoshi Tanaka
- School of Materials and Chemical Technology, Institute of Science Tokyo, Yokohama, Kanagawa, Japan
| |
Collapse
|
2
|
Patro M, Grünberger F, Sivabalasarma S, Gfrerer S, Rodriguez-Franco M, Nußbaum P, Grohmann D, Ithurbide S, Albers SV. MinD2 modulates cell shape and motility in the archaeon Haloferax volcanii. Front Microbiol 2024; 15:1474570. [PMID: 39600568 PMCID: PMC11588486 DOI: 10.3389/fmicb.2024.1474570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/02/2024] [Indexed: 11/29/2024] Open
Abstract
In bacteria and archaea, proteins of the ParA/MinD family of ATPases regulate the spatiotemporal organization of various cellular cargoes, including cell division proteins, motility structures, chemotaxis systems, and chromosomes. In bacteria, such as Escherichia coli, MinD proteins are crucial for the correct placement of the Z-ring at mid-cell during cell division. However, previous studies have shown that none of the 4 MinD homologs present in the archaeon Haloferax volcanii have a role in cell division, suggesting that these proteins regulate different cellular processes in haloarchaea. Here, we show that while deletion of MinD2 in H. volcanii (∆minD2) does not affect cell growth or division, it impacts cell shape and motility by mispositioning the chemotaxis arrays and archaellum motors. Finally, we explore the links between MinD2 and MinD4, which has been previously shown to modulate the localization of chemosensory arrays and archaella in H. volcanii, finding that the two MinD homologues have synergistic effects in regulating the positioning of the motility machinery. Collectively, our findings identify MinD2 as an important link between cell shape and motility in H. volcanii and further our understanding of the mechanisms by which multiple MinD proteins regulate cellular functions in haloarchaea.
Collapse
Affiliation(s)
- Megha Patro
- Molecular Biology of Archaea, Institute of Biology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Felix Grünberger
- Institute of Biochemistry Genetics and Microbiology, Institute of Microbiology and Archaea Centre, Single-Molecule Biochemistry Lab & Biochemistry Centre Regensburg, University of Regensburg, Regensburg, Germany
| | - Shamphavi Sivabalasarma
- Molecular Biology of Archaea, Institute of Biology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Sabrina Gfrerer
- Molecular Biology of Archaea, Institute of Biology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Marta Rodriguez-Franco
- Cell Biology, Institute of Biology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Phillip Nußbaum
- Molecular Biology of Archaea, Institute of Biology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Dina Grohmann
- Institute of Biochemistry Genetics and Microbiology, Institute of Microbiology and Archaea Centre, Single-Molecule Biochemistry Lab & Biochemistry Centre Regensburg, University of Regensburg, Regensburg, Germany
| | - Solenne Ithurbide
- Molecular Biology of Archaea, Institute of Biology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| |
Collapse
|
3
|
Pandey S, Wohland T. EGFR does not directly interact with cortical actin: A SRRF'n'TIRF study. Biophys J 2024; 123:3736-3749. [PMID: 39340155 PMCID: PMC11560307 DOI: 10.1016/j.bpj.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024] Open
Abstract
The epidermal growth factor receptor (EGFR) governs pivotal signaling pathways in cell proliferation and survival, with mutations implicated in numerous cancers. The organization of EGFR on the plasma membrane (PM) is influenced by the lipids and the cortical actin (CA) cytoskeleton. Despite the presence of a putative actin-binding domain (ABD) spanning 13 residues, a direct interaction between EGFR and CA has not been definitively established. While disrupting the cytoskeleton can impact EGFR behavior, suggesting a connection, the influence of the static actin cytoskeleton has been found to be indirect. Here, we investigate the potential interaction between EGFR and CA, as well as the extent to which CA regulates EGFR's distribution on the PM using SRRF'n'TIRF, a spatiotemporal super-resolution microscopy technique that provides sub-100 nm resolution and ms-scale dynamics from the same data set. To label CA, we constructed PMT-mEGFP-F-tractin, which combines an inner leaflet targeting domain PMT, fluorescent probe mEGFP, and the actin-binding protein F-tractin. In addition to EGFR-mEGFP, we included two control constructs: 1) an ABD deletion mutant, EGFRΔABD-mEGFP serving as a negative control and 2) EGFR-mApple-F-tractin, where F-tractin is fused to the C-terminus of EGFR-mApple, serving as the positive control. We find that EGFR-mEGFP and EGFRΔABD-mEGFP show similar membrane dynamics, implying that EGFR-mEGFP dynamics and organization are independent of CA. EGFR dynamics show CA dependence when F-tractin is anchored to the cytoplasmic tail. Together, our results demonstrate that EGFR does not directly interact with the CA in its resting and activated state.
Collapse
Affiliation(s)
- Shambhavi Pandey
- Centre for Bio-Imaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Thorsten Wohland
- Centre for Bio-Imaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore, Singapore; Department of Chemistry, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
4
|
Patro M, Sivabalasarma S, Gfrerer S, Rodriguez-Franco M, Nußbaum P, Ithurbide S, Albers SV. MinD2 modulates cell shape and motility in the archaeon Haloferax volcanii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.606218. [PMID: 39131313 PMCID: PMC11312570 DOI: 10.1101/2024.08.01.606218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
In bacteria and archaea, proteins of the ParA/MinD family of ATPases regulate the spatiotemporal organization of various cellular cargoes, including cell division proteins, motility structures, chemotaxis systems, and chromosomes. In bacteria, such as Escherichia coli, MinD proteins are crucial for the correct placement of the Z-ring at mid-cell during cell division. However, previous studies have shown that none of the 4 MinD homologs present in the archaeon Haloferax volcanii have a role in cell division, suggesting that these proteins regulate different cellular processes in haloarchaea. Here, we show that while deletion of MinD2 in H. volcanii (ΔminD2) does not affect cell growth or division, it impacts cell shape and motility by mispositioning the chemotaxis arrays and archaellum motors. Finally, we explore the links between MinD2 and MinD4, which has been previously shown to modulate the localization of chemosensory arrays and archaella in H. volcanii, finding that the two MinD homologues have synergistic effects in regulating the positioning of the motility machinery. Collectively, our findings identify MinD2 as an important link between cell shape and motility in H. volcanii and further our understanding of the mechanisms by which multiple MinD proteins regulate cellular functions in haloarchaea.
Collapse
Affiliation(s)
- Megha Patro
- Molecular Biology of Archaea, Institute of Biology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Shamphavi Sivabalasarma
- Molecular Biology of Archaea, Institute of Biology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Sabrina Gfrerer
- Molecular Biology of Archaea, Institute of Biology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Marta Rodriguez-Franco
- Cell Biology, Institute of Biology, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Phillip Nußbaum
- Molecular Biology of Archaea, Institute of Biology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Solenne Ithurbide
- Molecular Biology of Archaea, Institute of Biology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| |
Collapse
|
5
|
Cino EA, Tieleman DP. Curvature Footprints of Transmembrane Proteins in Simulations with the Martini Force Field. J Phys Chem B 2024; 128:5987-5994. [PMID: 38860934 PMCID: PMC11216194 DOI: 10.1021/acs.jpcb.4c01385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/14/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024]
Abstract
Membranes play essential roles in biological systems and are tremendously diverse in the topologies and chemical and elastic properties that define their functions. In many cases, a given membrane may display considerable heterogeneity, with localized clusters of lipids and proteins exhibiting distinct characteristics compared to adjoining regions. These lipid-protein assemblies can span nanometers to micrometers and are associated with cellular processes such as transport and signaling. While lipid-protein assemblages are dynamic, they can be stabilized by coupling between local membrane composition and shape. Due to the inherent difficulty in resolving atomistic details of membrane proteins in their native lipid environments, these complexes are notoriously challenging to study experimentally; however, molecular dynamics (MD) simulations might be a viable alternative. Here, we aim to assess the utility of coarse-grained (CG) MD simulations with the Martini force field for studying membrane curvature induced by transmembrane (TM) proteins that are reported to generate local curvature. The direction and magnitude of curvature induced by five different TM proteins, as well as certain lipid-protein and protein-protein interactions, were found to be in good agreement with available reference data.
Collapse
Affiliation(s)
- Elio A. Cino
- Centre for Molecular Simulation
and Department of Biological Sciences, University
of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - D. Peter Tieleman
- Centre for Molecular Simulation
and Department of Biological Sciences, University
of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
6
|
Dharan R, Vaknin A, Sorkin R. Extracellular domain 2 of TSPAN4 governs its functions. BIOPHYSICAL REPORTS 2024; 4:100149. [PMID: 38562622 PMCID: PMC10982557 DOI: 10.1016/j.bpr.2024.100149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/01/2024] [Indexed: 04/04/2024]
Abstract
Tetraspanin 4, a protein with four transmembrane helices and three connecting loops, senses membrane curvature and localizes to membrane tubes. This enrichment in tubular membranes enhances its diverse interactions. While the transmembrane part of the protein likely contributes to curvature sensitivity, the possible roles of the ectodomains in curvature sensitivity of tetraspanin 4 are still unknown. Here, using micropipette aspiration combined with confocal microscopy and optical tweezers, we show that the extracellular loop 2 contributes to the curvature sensitivity and curvature-induced interactions of tetraspanin 4. To this end, we created truncated tetraspanin 4 mutants by deleting each of the connecting loops. Subsequently, we pulled membrane tubes from giant plasma membrane vesicles containing tetraspanin 4-GFP or its mutants while maintaining controllable membrane tension and curvature. Among the mutations tested, the removal of the extracellular loop 2 had the most significant impact on both the curvature sensitivity and interactions of tetraspanin 4. Based on the results, we suggest that the extracellular loop 2 regulates the affinity of tetraspanin 4 towards curved membranes and affects its lateral interactions.
Collapse
Affiliation(s)
- Raviv Dharan
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel
| | - Alisa Vaknin
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel
| | - Raya Sorkin
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
7
|
Daniel M, Eleršič Filipič K, Filová E, Judl T, Fojt J. Modelling the role of membrane mechanics in cell adhesion on titanium oxide nanotubes. Comput Methods Biomech Biomed Engin 2023; 26:281-290. [PMID: 35380071 DOI: 10.1080/10255842.2022.2058875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Titanium surface treated with titanium oxide nanotubes was used in many studies to quantify the effect of surface topography on cell fate. However, the predicted optimal diameter of nanotubes considerably differs among studies. We propose a model that explains cell adhesion to a nanostructured surface by considering the deformation energy of cell protrusions into titanium nanotubes and the adhesion to the surface. The optimal surface topology is defined as a geometry that gives the membrane a minimum energy shape. A dimensionless parameter, the cell interaction index, was proposed to describe the interplay between the cell membrane bending, the intrinsic curvature, and the strength of cell adhesion. Model simulation shows that an optimal nanotube diameter ranging from 20 nm to 100 nm (cell interaction index between 0.2 and 1, respectively) is feasible within a certain range of parameters describing cell membrane adhesion and bending. The results indicate a possibility to tune the topology of a nanostructural surface in order to enhance the proliferation and differentiation of cells mechanically compatible with the given surface geometry while suppressing the growth of other mechanically incompatible cells.
Collapse
Affiliation(s)
- Matej Daniel
- Faculty of Mechanical Engineering, Czech Technical University in Prague, Prague, Czechia
| | | | - Eva Filová
- Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | | | - Jaroslav Fojt
- Faculty of Chemical Technology, University of Chemistry and Technology Prague, Prague, Czechia
| |
Collapse
|
8
|
Dutta P, Roy P, Sengupta N. Effects of External Perturbations on Protein Systems: A Microscopic View. ACS OMEGA 2022; 7:44556-44572. [PMID: 36530249 PMCID: PMC9753117 DOI: 10.1021/acsomega.2c06199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Protein folding can be viewed as the origami engineering of biology resulting from the long process of evolution. Even decades after its recognition, research efforts worldwide focus on demystifying molecular factors that underlie protein structure-function relationships; this is particularly relevant in the era of proteopathic disease. A complex co-occurrence of different physicochemical factors such as temperature, pressure, solvent, cosolvent, macromolecular crowding, confinement, and mutations that represent realistic biological environments are known to modulate the folding process and protein stability in unique ways. In the current review, we have contextually summarized the substantial efforts in unveiling individual effects of these perturbative factors, with major attention toward bottom-up approaches. Moreover, we briefly present some of the biotechnological applications of the insights derived from these studies over various applications including pharmaceuticals, biofuels, cryopreservation, and novel materials. Finally, we conclude by summarizing the challenges in studying the combined effects of multifactorial perturbations in protein folding and refer to complementary advances in experiment and computational techniques that lend insights to the emergent challenges.
Collapse
Affiliation(s)
- Pallab Dutta
- Department
of Biological Sciences, Indian Institute
of Science Education and Research (IISER) Kolkata, Mohanpur741246, India
| | - Priti Roy
- Department
of Biological Sciences, Indian Institute
of Science Education and Research (IISER) Kolkata, Mohanpur741246, India
- Department
of Chemistry, Oklahoma State University, Stillwater, Oklahoma74078, United States
| | - Neelanjana Sengupta
- Department
of Biological Sciences, Indian Institute
of Science Education and Research (IISER) Kolkata, Mohanpur741246, India
| |
Collapse
|
9
|
Membrane Lipid Reshaping Underlies Oxidative Stress Sensing by the Mitochondrial Proteins UCP1 and ANT1. Antioxidants (Basel) 2022; 11:antiox11122314. [PMID: 36552523 PMCID: PMC9774536 DOI: 10.3390/antiox11122314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Oxidative stress and ROS are important players in the pathogenesis of numerous diseases. In addition to directly altering proteins, ROS also affects lipids with negative intrinsic curvature such as phosphatidylethanolamine (PE), producing PE adducts and lysolipids. The formation of PE adducts potentiates the protonophoric activity of mitochondrial uncoupling proteins, but the molecular mechanism remains unclear. Here, we linked the ROS-mediated change in lipid shape to the mechanical properties of the membrane and the function of uncoupling protein 1 (UCP1) and adenine nucleotide translocase 1 (ANT1). We show that the increase in the protonophoric activity of both proteins occurs due to the decrease in bending modulus in lipid bilayers in the presence of lysophosphatidylcholines (OPC and MPC) and PE adducts. Moreover, MD simulations showed that modified PEs and lysolipids change the lateral pressure profile of the membrane in the same direction and by the similar amplitude, indicating that modified PEs act as lipids with positive intrinsic curvature. Both results indicate that oxidative stress decreases stored curvature elastic stress (SCES) in the lipid bilayer membrane. We demonstrated that UCP1 and ANT1 sense SCES and proposed a novel regulatory mechanism for the function of these proteins. The new findings should draw the attention of the scientific community to this important and unexplored area of redox biochemistry.
Collapse
|
10
|
Koh A, Strahl H, Murray H. Regulation of DNA replication initiation by ParA is independent of parS location in Bacillus subtilis. MICROBIOLOGY (READING, ENGLAND) 2022; 168:10.1099/mic.0.001259. [PMID: 36301085 PMCID: PMC7614844 DOI: 10.1099/mic.0.001259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Replication and segregation of the genetic information is necessary for a cell to proliferate. In Bacillus subtilis, the Par system (ParA/Soj, ParB/Spo0J and parS) is required for segregation of the chromosome origin (oriC) region and for proper control of DNA replication initiation. ParB binds parS sites clustered near the origin of replication and assembles into sliding clamps that interact with ParA to drive origin segregation through a diffusion-ratchet mechanism. As part of this dynamic process, ParB stimulates ParA ATPase activity to trigger its switch from an ATP-bound dimer to an ADP-bound monomer. In addition to its conserved role in DNA segregation, ParA is also a regulator of the master DNA replication initiation protein DnaA. We hypothesized that in B. subtilis the location of the Par system proximal to oriC would be necessary for ParA to properly regulate DnaA. To test this model, we constructed a range of genetically modified strains with altered numbers and locations of parS sites, many of which perturbed chromosome origin segregation as expected. Contrary to our hypothesis, the results show that regulation of DNA replication initiation by ParA is maintained when a parS site is separated from oriC. Because a single parS site is sufficient for proper control of ParA, the results are consistent with a model where ParA is efficiently regulated by ParB sliding clamps following loading at parS.
Collapse
Affiliation(s)
- Alan Koh
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, NE2 4AX, UK
| | - Henrik Strahl
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, NE2 4AX, UK
| | - Heath Murray
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, NE2 4AX, UK
| |
Collapse
|
11
|
Bashkirov PV, Kuzmin PI, Vera Lillo J, Frolov VA. Molecular Shape Solution for Mesoscopic Remodeling of Cellular Membranes. Annu Rev Biophys 2022; 51:473-497. [PMID: 35239417 PMCID: PMC10787580 DOI: 10.1146/annurev-biophys-011422-100054] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cellular membranes self-assemble from and interact with various molecular species. Each molecule locally shapes the lipid bilayer, the soft elastic core of cellular membranes. The dynamic architecture of intracellular membrane systems is based on elastic transformations and lateral redistribution of these elementary shapes, driven by chemical and curvature stress gradients. The minimization of the total elastic stress by such redistribution composes the most basic, primordial mechanism of membrane curvature-composition coupling (CCC). Although CCC is generally considered in the context of dynamic compositional heterogeneity of cellular membrane systems, in this article we discuss a broader involvement of CCC in controlling membrane deformations. We focus specifically on the mesoscale membrane transformations in open, reservoir-governed systems, such as membrane budding, tubulation, and the emergence of highly curved sites of membrane fusion and fission. We reveal that the reshuffling of molecular shapes constitutes an independent deformation mode with complex rheological properties.This mode controls effective elasticity of local deformations as well as stationary elastic stress, thus emerging as a major regulator of intracellular membrane remodeling.
Collapse
Affiliation(s)
- Pavel V Bashkirov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
- Department of Molecular and Biological Physics, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Peter I Kuzmin
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Javier Vera Lillo
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain;
| | - Vadim A Frolov
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain;
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
12
|
Kluge C, Pöhnl M, Böckmann RA. Spontaneous local membrane curvature induced by transmembrane proteins. Biophys J 2022; 121:671-683. [PMID: 35122737 PMCID: PMC8943716 DOI: 10.1016/j.bpj.2022.01.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/13/2022] [Accepted: 01/28/2022] [Indexed: 11/26/2022] Open
Abstract
The (local) curvature of cellular membranes acts as a driving force for the targeting of membrane-associated proteins to specific membrane domains, as well as a sorting mechanism for transmembrane proteins, e.g., by accumulation in regions of matching spontaneous curvature. The latter measure was previously experimentally employed to study the curvature induced by the potassium channel KvAP and by aquaporin AQP0. However, the direction of the reported spontaneous curvature levels as well as the molecular driving forces governing the membrane curvature induced by these integral transmembrane proteins could not be addressed experimentally. Here, using both coarse-grained and atomistic molecular dynamics (MD) simulations, we report induced spontaneous curvature values for the homologous potassium channel Kv 1.2/2.1 Chimera (KvChim) and AQP0 embedded in unrestrained lipid bicelles that are in very good agreement with experiment. Importantly, the direction of curvature could be directly assessed from our simulations: KvChim induces a strong positive membrane curvature (≈0.036 nm-1) whereas AQP0 causes a comparably small negative curvature (≈-0.019 nm-1). Analyses of protein-lipid interactions within the bicelle revealed that the potassium channel shapes the surrounding membrane via structural determinants. Differences in shape of the protein-lipid interface of the voltage-gating domains between the extracellular and cytosolic membrane leaflets induce membrane stress and thereby promote a protein-proximal membrane curvature. In contrast, the water pore AQP0 displayed a high structural stability and an only faint effect on the surrounding membrane environment that is connected to its wedge-like shape.
Collapse
Affiliation(s)
- Christoph Kluge
- Computational Biology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Matthias Pöhnl
- Computational Biology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Rainer A. Böckmann
- Computational Biology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany,National Center for High-Performance Computing Erlangen (NHR@FAU), Erlangen, Germany,Corresponding author
| |
Collapse
|
13
|
Whitley KD, Middlemiss S, Jukes C, Dekker C, Holden S. High-resolution imaging of bacterial spatial organization with vertical cell imaging by nanostructured immobilization (VerCINI). Nat Protoc 2022; 17:847-869. [DOI: 10.1038/s41596-021-00668-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/19/2021] [Indexed: 11/09/2022]
|
14
|
Tavares D, van der Meer JR. Subcellular Localization Defects Characterize Ribose-Binding Mutant Proteins with New Ligand Properties in Escherichia coli. Appl Environ Microbiol 2022; 88:e0211721. [PMID: 34757821 PMCID: PMC8788693 DOI: 10.1128/aem.02117-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/04/2021] [Indexed: 11/20/2022] Open
Abstract
Periplasmic binding proteins have been previously proclaimed as a general scaffold to design sensor proteins with new recognition specificities for nonnatural compounds. Such proteins can be integrated in bacterial bioreporter chassis with hybrid chemoreceptors to produce a concentration-dependent signal after ligand binding to the sensor cell. However, computationally designed new ligand-binding properties ignore the more general properties of periplasmic binding proteins, such as their periplasmic translocation, dynamic transition of open and closed forms, and interactions with membrane receptors. In order to better understand the roles of such general properties in periplasmic signaling behavior, we studied the subcellular localization of ribose-binding protein (RbsB) in Escherichia coli in comparison to a recently evolved set of mutants designed to bind 1,3-cyclohexanediol. As proxies for localization, we calibrated and deployed C-terminal end mCherry fluorescent protein fusions. Whereas RbsB-mCherry coherently localized to the periplasmic space and accumulated in (periplasmic) polar regions depending on chemoreceptor availability, mutant RbsB-mCherry expression resulted in high fluorescence cell-to-cell variability. This resulted in higher proportions of cells devoid of clear polar foci and of cells with multiple fluorescent foci elsewhere, suggesting poorer translocation, periplasmic autoaggregation, and mislocalization. Analysis of RbsB mutants and mutant libraries at different stages of directed evolution suggested overall improvement to more RbsB-wild-type-like characteristics, which was corroborated by structure predictions. Our results show that defects in periplasmic localization of mutant RbsB proteins partly explain their poor sensing performance. Future efforts should be directed to predicting or selecting secondary mutations outside computationally designed binding pockets, taking folding, translocation, and receptor interactions into account. IMPORTANCE Biosensor engineering relies on transcription factors or signaling proteins to provide the actual sensory functions for the target chemicals. Since for many compounds there are no natural sensory proteins, there is a general interest in methods that could unlock routes to obtaining new ligand-binding properties. Bacterial periplasmic binding proteins (PBPs) form an interesting family of proteins to explore for this purpose, because there is a large natural variety suggesting evolutionary trajectories to bind new ligands. PBPs are conserved and amenable to accurate computational binding pocket predictions. However, studying ribose-binding protein in Escherichia coli, we discovered that designed variants have defects in their proper localization in the cell, which can impair appropriate sensor signaling. This indicates that functional sensing capacity of PBPs cannot be obtained solely through computational design of the ligand-binding pocket but must take other properties of the protein into account, which are currently very difficult to predict.
Collapse
Affiliation(s)
- Diogo Tavares
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Jan R. van der Meer
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
15
|
Ecker M, Schregle R, Kapoor-Kaushik N, Rossatti P, Betzler VM, Kempe D, Biro M, Ariotti N, Redpath GMI, Rossy J. SNX9-induced membrane tubulation regulates CD28 cluster stability and signalling. eLife 2022; 11:e67550. [PMID: 35050850 PMCID: PMC8786313 DOI: 10.7554/elife.67550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
T cell activation requires engagement of a cognate antigen by the T cell receptor (TCR) and the co-stimulatory signal of CD28. Both TCR and CD28 aggregate into clusters at the plasma membrane of activated T cells. While the role of TCR clustering in T cell activation has been extensively investigated, little is known about how CD28 clustering contributes to CD28 signalling. Here, we report that upon CD28 triggering, the BAR-domain protein sorting nexin 9 (SNX9) is recruited to CD28 clusters at the immunological synapse. Using three-dimensional correlative light and electron microscopy, we show that SNX9 generates membrane tubulation out of CD28 clusters. Our data further reveal that CD28 clusters are in fact dynamic structures and that SNX9 regulates their stability as well as CD28 phosphorylation and the resulting production of the cytokine IL-2. In summary, our work suggests a model in which SNX9-mediated tubulation generates a membrane environment that promotes CD28 triggering and downstream signalling events.
Collapse
Affiliation(s)
- Manuela Ecker
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South WalesSydneyAustralia
| | - Richard Schregle
- Biotechnology Institute Thurgau (BITg) at the University of KonstanzKreuzlingenSwitzerland
- Department of Biology, University of KonstanzKonstanzGermany
| | - Natasha Kapoor-Kaushik
- Electron Microscopy Unit, Mark Wainwright Analytical Centre, University of New South WalesSydneyAustralia
| | - Pascal Rossatti
- Biotechnology Institute Thurgau (BITg) at the University of KonstanzKreuzlingenSwitzerland
| | - Verena M Betzler
- Biotechnology Institute Thurgau (BITg) at the University of KonstanzKreuzlingenSwitzerland
| | - Daryan Kempe
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South WalesSydneyAustralia
| | - Maté Biro
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South WalesSydneyAustralia
| | - Nicholas Ariotti
- Electron Microscopy Unit, Mark Wainwright Analytical Centre, University of New South WalesSydneyAustralia
- Institute for Molecular Bioscience (IMB), University of QueenslandBrisbaneAustralia
| | - Gregory MI Redpath
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South WalesSydneyAustralia
| | - Jeremie Rossy
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South WalesSydneyAustralia
- Biotechnology Institute Thurgau (BITg) at the University of KonstanzKreuzlingenSwitzerland
- Department of Biology, University of KonstanzKonstanzGermany
| |
Collapse
|
16
|
Lujan P, Campelo F. Should I stay or should I go? Golgi membrane spatial organization for protein sorting and retention. Arch Biochem Biophys 2021; 707:108921. [PMID: 34038703 DOI: 10.1016/j.abb.2021.108921] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/12/2021] [Accepted: 05/03/2021] [Indexed: 12/23/2022]
Abstract
The Golgi complex is the membrane-bound organelle that lies at the center of the secretory pathway. Its main functions are to maintain cellular lipid homeostasis, to orchestrate protein processing and maturation, and to mediate protein sorting and export. These functions are not independent of one another, and they all require that the membranes of the Golgi complex have a well-defined biochemical composition. Importantly, a finely-regulated spatiotemporal organization of the Golgi membrane components is essential for the correct performance of the organelle. In here, we review our current mechanistic and molecular understanding of how Golgi membranes are spatially organized in the lateral and axial directions to fulfill their functions. In particular, we highlight the current evidence and proposed models of intra-Golgi transport, as well as the known mechanisms for the retention of Golgi residents and for the sorting and export of transmembrane cargo proteins. Despite the controversies, conflicting evidence, clashes between models, and technical limitations, the field has moved forward and we have gained extensive knowledge in this fascinating topic. However, there are still many important questions that remain to be completely answered. We hope that this review will help boost future investigations on these issues.
Collapse
Affiliation(s)
- Pablo Lujan
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Barcelona, Spain.
| | - Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Barcelona, Spain.
| |
Collapse
|
17
|
Wenzel M, Dekker MP, Wang B, Burggraaf MJ, Bitter W, van Weering JRT, Hamoen LW. A flat embedding method for transmission electron microscopy reveals an unknown mechanism of tetracycline. Commun Biol 2021; 4:306. [PMID: 33686188 PMCID: PMC7940657 DOI: 10.1038/s42003-021-01809-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/05/2021] [Indexed: 12/20/2022] Open
Abstract
Transmission electron microscopy of cell sample sections is a popular technique in microbiology. Currently, ultrathin sectioning is done on resin-embedded cell pellets, which consumes milli- to deciliters of culture and results in sections of randomly orientated cells. This is problematic for rod-shaped bacteria and often precludes large-scale quantification of morphological phenotypes due to the lack of sufficient numbers of longitudinally cut cells. Here we report a flat embedding method that enables observation of thousands of longitudinally cut cells per single section and only requires microliter culture volumes. We successfully applied this technique to Bacillus subtilis, Escherichia coli, Mycobacterium bovis, and Acholeplasma laidlawii. To assess the potential of the technique to quantify morphological phenotypes, we monitored antibiotic-induced changes in B. subtilis cells. Surprisingly, we found that the ribosome inhibitor tetracycline causes membrane deformations. Further investigations showed that tetracycline disturbs membrane organization and localization of the peripheral membrane proteins MinD, MinC, and MreB. These observations are not the result of ribosome inhibition but constitute a secondary antibacterial activity of tetracycline that so far has defied discovery.
Collapse
Affiliation(s)
- Michaela Wenzel
- Bacterial Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands.
- Department of Medical Microbiology and Infection Control, Amsterdam University Medical Centers - Location VUMC, 1081 HZ, Amsterdam, The Netherlands.
- Chemical Biology, Department for Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
| | - Marien P Dekker
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam, Amsterdam University Medical Centers - Location VUMC, 1081 HZ, Amsterdam, The Netherlands
| | - Biwen Wang
- Bacterial Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - Maroeska J Burggraaf
- Department of Medical Microbiology and Infection Control, Amsterdam University Medical Centers - Location VUMC, 1081 HZ, Amsterdam, The Netherlands
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Control, Amsterdam University Medical Centers - Location VUMC, 1081 HZ, Amsterdam, The Netherlands
- Department of Molecular Cell Biology, Amsterdam Institute for Molecules, Medicines, and Systems, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HZ, Amsterdam, The Netherlands
| | - Jan R T van Weering
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam, Amsterdam University Medical Centers - Location VUMC, 1081 HZ, Amsterdam, The Netherlands.
| | - Leendert W Hamoen
- Bacterial Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Shukla S, Baumgart T. Enzymatic trans-bilayer lipid transport: Mechanisms, efficiencies, slippage, and membrane curvature. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2021; 1863:183534. [PMID: 33340491 PMCID: PMC8351443 DOI: 10.1016/j.bbamem.2020.183534] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022]
Abstract
The eukaryotic plasma membrane's lipid composition is found to be ubiquitously asymmetric comparing inner and outer leaflets. This membrane lipid asymmetry plays a crucial role in diverse cellular processes critical for cell survival. A specialized set of transmembrane proteins called translocases, or flippases, have evolved to maintain this membrane lipid asymmetry in an energy-dependent manner. One potential consequence of local variations in membrane lipid asymmetry is membrane remodeling, which is essential for cellular processes such as intracellular trafficking. Recently, there has been a surge in the identification and characterization of flippases, which has significantly advanced the understanding of their functional mechanisms. Furthermore, there are intriguing possibilities for a coupling between membrane curvature and flippase activity. In this review we highlight studies that link membrane shape and remodeling to differential stresses generated by the activity of lipid flippases with an emphasis on data obtained through model membrane systems. We review the common mechanistic models of flippase-mediated lipid flipping and discuss common techniques used to test lipid flippase activity. We then compare the existing data on lipid translocation rates by flippases and conclude with potential future directions for this field.
Collapse
Affiliation(s)
- Sankalp Shukla
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Tobias Baumgart
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
19
|
How an unusual chemosensory system forms arrays on the bacterial nucleoid. Biochem Soc Trans 2021; 48:347-356. [PMID: 32129822 DOI: 10.1042/bst20180450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 11/17/2022]
Abstract
Chemosensory systems are signaling pathways elegantly organized in hexagonal arrays that confer unique functional features to these systems such as signal amplification. Chemosensory arrays adopt different subcellular localizations from one bacterial species to another, yet keeping their supramolecular organization unmodified. In the gliding bacterium Myxococcus xanthus, a cytoplasmic chemosensory system, Frz, forms multiple clusters on the nucleoid through the direct binding of the FrzCD receptor to DNA. A small CheW-like protein, FrzB, might be responsible for the formation of multiple (instead of just one) Frz arrays. In this review, we summarize what is known on Frz array formation on the bacterial chromosome and discuss hypotheses on how FrzB might contribute to the nucleation of multiple clusters. Finally, we will propose some possible biological explanations for this type of localization pattern.
Collapse
|
20
|
Nußbaum P, Ithurbide S, Walsh JC, Patro M, Delpech F, Rodriguez-Franco M, Curmi PMG, Duggin IG, Quax TEF, Albers SV. An Oscillating MinD Protein Determines the Cellular Positioning of the Motility Machinery in Archaea. Curr Biol 2020; 30:4956-4972.e4. [PMID: 33125862 DOI: 10.1016/j.cub.2020.09.073] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/28/2020] [Accepted: 09/23/2020] [Indexed: 01/14/2023]
Abstract
MinD proteins are well studied in rod-shaped bacteria such as E. coli, where they display self-organized pole-to-pole oscillations that are important for correct positioning of the Z-ring at mid-cell for cell division. Archaea also encode proteins belonging to the MinD family, but their functions are unknown. MinD homologous proteins were found to be widespread in Euryarchaeota and form a sister group to the bacterial MinD family, distinct from the ParA and other related ATPase families. We aimed to identify the function of four archaeal MinD proteins in the model archaeon Haloferax volcanii. Deletion of the minD genes did not cause cell division or size defects, and the Z-ring was still correctly positioned. Instead, one of the deletions (ΔminD4) reduced swimming motility and hampered the correct formation of motility machinery at the cell poles. In ΔminD4 cells, there is reduced formation of the motility structure and chemosensory arrays, which are essential for signal transduction. In bacteria, several members of the ParA family can position the motility structure and chemosensory arrays via binding to a landmark protein, and consequently these proteins do not oscillate along the cell axis. However, GFP-MinD4 displayed pole-to-pole oscillation and formed polar patches or foci in H. volcanii. The MinD4 membrane-targeting sequence (MTS), homologous to the bacterial MinD MTS, was essential for the oscillation. Surprisingly, mutant MinD4 proteins failed to form polar patches. Thus, MinD4 from H. volcanii combines traits of different bacterial ParA/MinD proteins.
Collapse
Affiliation(s)
- Phillip Nußbaum
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Solenne Ithurbide
- The ithree institute, University of Technology, Sydney, Ultimo, NSW 2007, Australia
| | - James C Walsh
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, NSW 2052, Australia
| | - Megha Patro
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Floriane Delpech
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Marta Rodriguez-Franco
- Cell Biology, Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Paul M G Curmi
- School of Physics, University of New South Wales, Sydney, NSW 2052, Australia
| | - Iain G Duggin
- The ithree institute, University of Technology, Sydney, Ultimo, NSW 2007, Australia.
| | - Tessa E F Quax
- Archaeal Virus-Host Interactions, Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany.
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany.
| |
Collapse
|
21
|
Orbach R, Su X. Surfing on Membrane Waves: Microvilli, Curved Membranes, and Immune Signaling. Front Immunol 2020; 11:2187. [PMID: 33013920 PMCID: PMC7516127 DOI: 10.3389/fimmu.2020.02187] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/11/2020] [Indexed: 01/22/2023] Open
Abstract
Microvilli are finger-like membrane protrusions, supported by the actin cytoskeleton, and found on almost all cell types. A growing body of evidence suggests that the dynamic lymphocyte microvilli, with their highly curved membranes, play an important role in signal transduction leading to immune responses. Nevertheless, challenges in modulating local membrane curvature and monitoring the high dynamicity of microvilli hampered the investigation of the curvature-generation mechanism and its functional consequences in signaling. These technical barriers have been partially overcome by recent advancements in adapted super-resolution microscopy. Here, we review the up-to-date progress in understanding the mechanisms and functional consequences of microvillus formation in T cell signaling. We discuss how the deformation of local membranes could potentially affect the organization of signaling proteins and their biochemical activities. We propose that curved membranes, together with the underlying cytoskeleton, shape microvilli into a unique compartment that sense and process signals leading to lymphocyte activation.
Collapse
Affiliation(s)
- Ron Orbach
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, United States
| | - Xiaolei Su
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, United States
- Yale Cancer Center, Yale University, New Haven, CT, United States
| |
Collapse
|
22
|
Choukate K, Gupta A, Basu B, Virk K, Ganguli M, Chaudhuri B. Higher order assembling of the mycobacterial polar growth factor DivIVA/Wag31. J Struct Biol 2019; 209:107429. [PMID: 31778770 DOI: 10.1016/j.jsb.2019.107429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/04/2019] [Accepted: 11/21/2019] [Indexed: 12/26/2022]
Abstract
DivIVA or Wag31, which is an essential pole organizing protein in mycobacteria, can self-assemble at the negatively curved side of the membrane at the growing pole to form a higher order structural scaffold for maintaining cellular morphology and localizing various target proteins for cell-wall biogenesis. The structural organization of polar scaffold formed by polymerization of coiled-coil rich Wag31, which is implicated in the anti-tubercular activities of amino-pyrimidine sulfonamides, remains to be determined. A single-site phosphorylation in Wag31 regulates peptidoglycan biosynthesis in mycobacteria. We report biophysical characterizations of filaments formed by mycobacterial Wag31 using circular dichroism, atomic force microscopy and small angle solution X-ray scattering. Atomic force microscopic images of the wild-type, a phospho-mimetic (T73E) and a phospho-ablative (T73A) form of Wag31 show mostly linear filament formation with occasional curving, kinking and apparent branching. Solution X-ray scattering data indicates that the phospho-mimetic forms of the Wag31 polymers are on average more compact than their phospho-ablative counterparts, which is likely due to the extent of bending/branching. Observed structural features in this first view of Wag31 filaments suggest a basis for higher order Wag31 scaffold formation at the pole.
Collapse
Affiliation(s)
- Komal Choukate
- CSIR Institute of Microbial Technology, Chandigarh, India
| | - Aanchal Gupta
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110001, India
| | - Brohmomoy Basu
- CSIR Institute of Microbial Technology, Chandigarh, India
| | - Karman Virk
- CSIR Institute of Microbial Technology, Chandigarh, India
| | - Munia Ganguli
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110001, India
| | - Barnali Chaudhuri
- CSIR Institute of Microbial Technology, Chandigarh, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110001, India.
| |
Collapse
|
23
|
Belessiotis-Richards A, Higgins SG, Butterworth B, Stevens MM, Alexander-Katz A. Single-Nanometer Changes in Nanopore Geometry Influence Curvature, Local Properties, and Protein Localization in Membrane Simulations. NANO LETTERS 2019; 19:4770-4778. [PMID: 31241342 DOI: 10.1021/acs.nanolett.9b01990] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanoporous surfaces are used in many applications in intracellular sensing and drug delivery. However, the effects of such nanostructures on cell membrane properties are still far from understood. Here, we use coarse-grained molecular dynamics simulations to show that nanoporous substrates can stimulate membrane-curvature effects and that this curvature-sensing effect is much more sensitive than previously thought. We define a series of design parameters for inducing a nanoscale membrane curvature and show that nanopore taper plays a key role in membrane deformation, elucidating a previously unexplored fabrication parameter applicable to many nanostructured biomaterials. We report significant changes in the membrane area per lipid and thickness at regions of curvature. Finally, we demonstrate that regions of the nanopore-induced membrane curvature act as local hotspots for an increased bioactivity. We show spontaneous binding and localization of the epsin N-terminal homology (ENTH) domain to the regions of curvature. Understanding this interplay between the membrane curvature and nanoporosity at the biointerface helps both explain recent biological results and suggests a pathway for developing the next generation of cell-active substrates.
Collapse
Affiliation(s)
- Alexis Belessiotis-Richards
- Department of Materials , Imperial College London , Exhibition Road , London SW7 2AZ , United Kingdom
- Department of Bioengineering , Imperial College London , Exhibition Road , London SW7 2AZ , United Kingdom
- Institute of Biomedical Engineering , Imperial College London , Exhibition Road , London SW7 2AZ , United Kingdom
| | - Stuart G Higgins
- Department of Materials , Imperial College London , Exhibition Road , London SW7 2AZ , United Kingdom
- Department of Bioengineering , Imperial College London , Exhibition Road , London SW7 2AZ , United Kingdom
- Institute of Biomedical Engineering , Imperial College London , Exhibition Road , London SW7 2AZ , United Kingdom
| | - Ben Butterworth
- Department of Materials , Imperial College London , Exhibition Road , London SW7 2AZ , United Kingdom
| | - Molly M Stevens
- Department of Materials , Imperial College London , Exhibition Road , London SW7 2AZ , United Kingdom
- Department of Bioengineering , Imperial College London , Exhibition Road , London SW7 2AZ , United Kingdom
- Institute of Biomedical Engineering , Imperial College London , Exhibition Road , London SW7 2AZ , United Kingdom
| | - Alfredo Alexander-Katz
- Department of Materials Science & Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
24
|
Bhaskara RM, Grumati P, Garcia-Pardo J, Kalayil S, Covarrubias-Pinto A, Chen W, Kudryashev M, Dikic I, Hummer G. Curvature induction and membrane remodeling by FAM134B reticulon homology domain assist selective ER-phagy. Nat Commun 2019; 10:2370. [PMID: 31147549 PMCID: PMC6542808 DOI: 10.1038/s41467-019-10345-3] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 04/25/2019] [Indexed: 02/06/2023] Open
Abstract
FAM134B/RETREG1 is a selective ER-phagy receptor that regulates the size and shape of the endoplasmic reticulum. The structure of its reticulon-homology domain (RHD), an element shared with other ER-shaping proteins, and the mechanism of membrane shaping remain poorly understood. Using molecular modeling and molecular dynamics (MD) simulations, we assemble a structural model for the RHD of FAM134B. Through MD simulations of FAM134B in flat and curved membranes, we relate the dynamic RHD structure with its two wedge-shaped transmembrane helical hairpins and two amphipathic helices to FAM134B functions in membrane-curvature induction and curvature-mediated protein sorting. FAM134B clustering, as expected to occur in autophagic puncta, amplifies the membrane-shaping effects. Electron microscopy of in vitro liposome remodeling experiments support the membrane remodeling functions of the different RHD structural elements. Disruption of the RHD structure affects selective autophagy flux and leads to disease states. FAM134B/RETREG1 is a selective ER-phagy receptor that regulates the size and shape of the endoplasmic reticulum. Here authors use molecular modeling and molecular dynamics simulations to assemble a structural model for the reticulon-homology domain of FAM134B.
Collapse
Affiliation(s)
- Ramachandra M Bhaskara
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue Straße 3, 60438, Frankfurt am Main, Germany
| | - Paolo Grumati
- Institute of Biochemistry II, School of Medicine, Goethe University Frankfurt, Theoder-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Javier Garcia-Pardo
- Buchmann Institute of Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue Straße 15, 60438, Frankfurt am Main, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology, Division for Translational Medicine and Pharmacology, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Sissy Kalayil
- Buchmann Institute of Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue Straße 15, 60438, Frankfurt am Main, Germany
| | - Adriana Covarrubias-Pinto
- Institute of Biochemistry II, School of Medicine, Goethe University Frankfurt, Theoder-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Wenbo Chen
- Buchmann Institute of Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue Straße 15, 60438, Frankfurt am Main, Germany.,Max Planck Institute of Biophysics, Max-von-Laue Straße 3, 60438, Frankfurt am Main, Germany
| | - Mikhail Kudryashev
- Buchmann Institute of Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue Straße 15, 60438, Frankfurt am Main, Germany.,Max Planck Institute of Biophysics, Max-von-Laue Straße 3, 60438, Frankfurt am Main, Germany
| | - Ivan Dikic
- Institute of Biochemistry II, School of Medicine, Goethe University Frankfurt, Theoder-Stern-Kai 7, 60590, Frankfurt am Main, Germany. .,Buchmann Institute of Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue Straße 15, 60438, Frankfurt am Main, Germany.
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue Straße 3, 60438, Frankfurt am Main, Germany. .,Institute for Biophysics, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
25
|
Abstract
Archaea are ubiquitous single cellular microorganisms that play important ecological roles in nature. The intracellular organization of archaeal cells is among the unresolved mysteries of archaeal biology. With this work, we show that cells of haloarchaea are polarized. The cellular positioning of proteins involved in chemotaxis and motility is spatially and temporally organized in these cells. This suggests the presence of a specific mechanism responsible for the positioning of macromolecular protein complexes in archaea. Bacteria and archaea exhibit tactical behavior and can move up and down chemical gradients. This tactical behavior relies on a motility structure, which is guided by a chemosensory system. Environmental signals are sensed by membrane-inserted chemosensory receptors that are organized in large ordered arrays. While the cellular positioning of the chemotaxis machinery and that of the flagellum have been studied in detail in bacteria, we have little knowledge about the localization of such macromolecular assemblies in archaea. Although the archaeal motility structure, the archaellum, is fundamentally different from the flagellum, archaea have received the chemosensory machinery from bacteria and have connected this system with the archaellum. Here, we applied a combination of time-lapse imaging and fluorescence and electron microscopy using the model euryarchaeon Haloferax volcanii and found that archaella were specifically present at the cell poles of actively dividing rod-shaped cells. The chemosensory arrays also had a polar preference, but in addition, several smaller arrays moved freely in the lateral membranes. In the stationary phase, rod-shaped cells became round and chemosensory arrays were disassembled. The positioning of archaella and that of chemosensory arrays are not interdependent and likely require an independent form of positioning machinery. This work showed that, in the rod-shaped haloarchaeal cells, the positioning of the archaellum and of the chemosensory arrays is regulated in time and in space. These insights into the cellular organization of H. volcanii suggest the presence of an active mechanism responsible for the positioning of macromolecular protein complexes in archaea.
Collapse
|
26
|
Petit JD, Immel F, Lins L, Bayer EM. Lipids or Proteins: Who Is Leading the Dance at Membrane Contact Sites? FRONTIERS IN PLANT SCIENCE 2019; 10:198. [PMID: 30846999 PMCID: PMC6393330 DOI: 10.3389/fpls.2019.00198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/05/2019] [Indexed: 05/19/2023]
Abstract
Understanding the mode of action of membrane contact sites (MCSs) across eukaryotic organisms at the near-atomic level to infer function at the cellular and tissue levels is a challenge scientists are currently facing. These peculiar systems dedicated to inter-organellar communication are perfect examples of cellular processes where the interplay between lipids and proteins is critical. In this mini review, we underline the link between membrane lipid environment, the recruitment of proteins at specialized membrane domains and the function of MCSs. More precisely, we want to give insights on the crucial role of lipids in defining the specificity of plant endoplasmic reticulum (ER)-plasma membrane (PM) MCSs and we further propose approaches to study them at multiple scales. Our goal is not so much to go into detailed description of MCSs, as there are numerous focused reviews on the subject, but rather try to pinpoint the critical elements defining those structures and give an original point of view by considering the subject from a near-atomic angle with a focus on lipids. We review current knowledge as to how lipids can define MCS territories, play a role in the recruitment and function of the MCS-associated proteins and in turn, how the lipid environment can be modified by proteins.
Collapse
Affiliation(s)
- Jules D. Petit
- UMR5200 CNRS, Laboratory of Membrane Biogenesis, University of Bordeaux, Villenave d’Ornon, France
- Laboratoire de Biophysique Moléculaire aux Interfaces, TERRA Research Centre, GX ABT, Université de Liège, Liège, Belgium
| | - Françoise Immel
- UMR5200 CNRS, Laboratory of Membrane Biogenesis, University of Bordeaux, Villenave d’Ornon, France
| | - Laurence Lins
- Laboratoire de Biophysique Moléculaire aux Interfaces, TERRA Research Centre, GX ABT, Université de Liège, Liège, Belgium
| | - Emmanuelle M. Bayer
- UMR5200 CNRS, Laboratory of Membrane Biogenesis, University of Bordeaux, Villenave d’Ornon, France
| |
Collapse
|
27
|
Affiliation(s)
- Xiaolin Cheng
- Division of Medicinal Chemistry and Pharmacognosy, Biophysics Graduate Program, Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jeremy C. Smith
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6309, United States
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
28
|
Abstract
Spatial organization is a hallmark of all living systems. Even bacteria, the smallest forms of cellular life, display defined shapes and complex internal organization, showcasing a highly structured genome, cytoskeletal filaments, localized scaffolding structures, dynamic spatial patterns, active transport, and occasionally, intracellular organelles. Spatial order is required for faithful and efficient cellular replication and offers a powerful means for the development of unique biological properties. Here, we discuss organizational features of bacterial cells and highlight how bacteria have evolved diverse spatial mechanisms to overcome challenges cells face as self-replicating entities.
Collapse
|
29
|
Omardien S, Drijfhout JW, Vaz FM, Wenzel M, Hamoen LW, Zaat SA, Brul S. Bactericidal activity of amphipathic cationic antimicrobial peptides involves altering the membrane fluidity when interacting with the phospholipid bilayer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2404-2415. [DOI: 10.1016/j.bbamem.2018.06.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 12/22/2022]
|
30
|
Koler M, Peretz E, Aditya C, Shimizu TS, Vaknin A. Long-term positioning and polar preference of chemoreceptor clusters in E. coli. Nat Commun 2018; 9:4444. [PMID: 30361683 PMCID: PMC6202326 DOI: 10.1038/s41467-018-06835-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 09/26/2018] [Indexed: 11/09/2022] Open
Abstract
The bacterial chemosensory arrays are a notable model for studying the basic principles of receptor clustering and cellular organization. Here, we provide a new perspective regarding the long-term dynamics of these clusters in growing E. coli cells. We demonstrate that pre-existing lateral clusters tend to avoid translocation to pole regions and, therefore, continually shuttle between the cell poles for many generations while being static relative to the local cell-wall matrix. We also show that the polar preference of clusters results fundamentally from reduced clustering efficiency in the lateral region, rather than a developmental-like progression of clusters. Furthermore, polar preference is surprisingly robust to structural alterations designed to probe preference due to curvature sorting, perturbing the cell envelope physiology affects the cluster-size distribution, and the size-dependent mobility of receptor complexes differs between polar and lateral regions. Thus, distinct envelope physiology in the polar and lateral cell regions may contribute to polar preference. Bacterial chemoreceptors form clusters, preferably at the cell poles. Here, Koler et al. show that polar and lateral clusters exhibit distinct long-term positional dynamics and that polar bias may be due to differences in mobility of receptor complexes between the polar and lateral cell regions.
Collapse
Affiliation(s)
- Moriah Koler
- The Racah Institute of Physics, The Hebrew University, Jerusalem, 91904, Israel
| | - Eliran Peretz
- The Racah Institute of Physics, The Hebrew University, Jerusalem, 91904, Israel
| | | | | | - Ady Vaknin
- The Racah Institute of Physics, The Hebrew University, Jerusalem, 91904, Israel.
| |
Collapse
|
31
|
Omardien S, Drijfhout JW, Zaat SA, Brul S. Cationic Amphipathic Antimicrobial Peptides Perturb the Inner Membrane of Germinated Spores Thus Inhibiting Their Outgrowth. Front Microbiol 2018; 9:2277. [PMID: 30319583 PMCID: PMC6168669 DOI: 10.3389/fmicb.2018.02277] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/06/2018] [Indexed: 11/13/2022] Open
Abstract
The mode of action of four cationic amphipathic antimicrobial peptides (AMPs) was evaluated against the non-pathogenic, Gram-positive, spore-forming bacterium, Bacillus subtilis. The AMPs were TC19, TC84, BP2, and the lantibiotic Nisin A. TC19 and TC84 were derived from the human thrombocidin-1. Bactericidal peptide 2 (BP2) was derived from the human bactericidal permeability increasing protein (BPI). We employed structured illumination microscopy (SIM), fluorescence microscopy, Alexa 488-labeled TC84, B. subtilis mutants producing proteins fused to the green fluorescent protein (GFP) and single-cell live imaging to determine the effects of the peptides against spores. TC19, TC84, BP2, and Nisin A showed to be bactericidal against germinated spores by perturbing the inner membrane, thus preventing outgrowth to vegetative cells. Single cell live imaging showed that the AMPs do not affect the germination process, but the burst time and subsequent generation time of vegetative cells. Alexa 488-labeled TC84 suggested that the TC84 might be binding to the dormant spore-coat. Therefore, dormant spores were also pre-coated with the AMPs and cultured on AMP-free culture medium during single-cell live imaging. Pre-coating of the spores with TC19, TC84, and BP2 had no effect on the germination process, and variably affected the burst time and generation time. However, the percentage of spores that burst and grew out into vegetative cells was drastically lower when pre-coated with Nisin A, suggesting a novel application potential of this lantibiotic peptide against spores. Our findings contribute to the understanding of AMPs and show the potential of AMPs as eventual therapeutic agents against spore-forming bacteria.
Collapse
Affiliation(s)
- Soraya Omardien
- Swammerdam Institute for Life Sciences, Department of Molecular Biology and Microbial Food Safety, University of Amsterdam, Amsterdam, Netherlands
| | | | - Sebastian A Zaat
- Department of Medical Microbiology, Centre for Infection and Immunity Amsterdam (CINIMA), Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Stanley Brul
- Swammerdam Institute for Life Sciences, Department of Molecular Biology and Microbial Food Safety, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
32
|
Santamarï A-Gï Mez J, Mariscal V, Luque I. Mechanisms for Protein Redistribution in Thylakoids of Anabaena During Cell Differentiation. PLANT & CELL PHYSIOLOGY 2018; 59:1860-1873. [PMID: 29878163 DOI: 10.1093/pcp/pcy103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/25/2018] [Indexed: 06/08/2023]
Abstract
Thylakoid membranes are far from being homogeneous in composition. On the contrary, compositional heterogeneity of lipid and protein content is well known to exist in these membranes. The mechanisms for the confinement of proteins at a particular membrane domain have started to be unveiled, but we are far from a thorough understanding, and many issues remain to be elucidated. During the differentiation of heterocysts in filamentous cyanobacteria of the Anabaena and Nostoc genera, thylakoids undergo a complete reorganization, separating into two membrane domains of different appearance and subcellular localization. Evidence also indicates different functionality and protein composition for these two membrane domains. In this work, we have addressed the mechanisms that govern the specific localization of proteins at a particular membrane domain. Two classes of proteins were distinguished according to their distribution in the thylakoids. Our results indicate that the specific accumulation of proteins of the CURVATURE THYLAKOID 1 (CURT1) family and proteins containing the homologous CAAD domain at subpolar honeycomb thylakoids is mediated by multiple mechanisms including a previously unnoticed phenomenon of thylakoid membrane migration.
Collapse
Affiliation(s)
- Javier Santamarï A-Gï Mez
- Instituto de Bioqu�mica Vegetal y Fotos�ntesis, CSIC and Universidad de Sevilla, Avda Am�rico Vespucio 49, Seville E-41092, Spain
| | - Vicente Mariscal
- Instituto de Bioqu�mica Vegetal y Fotos�ntesis, CSIC and Universidad de Sevilla, Avda Am�rico Vespucio 49, Seville E-41092, Spain
| | - Ignacio Luque
- Instituto de Bioqu�mica Vegetal y Fotos�ntesis, CSIC and Universidad de Sevilla, Avda Am�rico Vespucio 49, Seville E-41092, Spain
| |
Collapse
|
33
|
Kondo S, Imura Y, Mizuno A, Homma M, Kojima S. Biochemical analysis of GTPase FlhF which controls the number and position of flagellar formation in marine Vibrio. Sci Rep 2018; 8:12115. [PMID: 30108243 PMCID: PMC6092412 DOI: 10.1038/s41598-018-30531-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/01/2018] [Indexed: 11/18/2022] Open
Abstract
FlhF controls the number and position of the polar flagellar formation of Vibrio species. FlhF, is a paralog of FtsY, a GTPase acting in the Sec membrane transport system of bacteria, and localizes at the cell pole. Mutations in the conserved GTPase motif of FlhF lost polar localization capability and flagellar formation. Vibrio FlhF has not, until now, been purified as soluble protein. Here, we report that addition of MgCl2 and GTP or GDP at the step of cell lysis greatly improved the solubility of FlhF, allowing us to purify it in homogeneity. Purified FlhF showed GTPase activity only in the presence of FlhG. Of twelve FlhF GTPase motif mutants showing reduced function, eleven were recovered as precipitate after the cell disruption. The E440K substitution could be purified and showed no GTPase activity even in the presence of FlhG. Interestingly an FlhF substitution in the putative catalytic residue for GTP hydrolysis, R334A, allowed normal flagellar formation although GTPase activity of FlhF was completely abolished. Furthermore, size exclusion chromatography of purified FlhF revealed that it forms dimers in the presence of GTP but exists as monomer in the presence of GDP. We speculate that the GTP binding allows FlhF to dimerize and localize at the pole where it initiates flagellar formation, and the GDP-bound form diffuses as monomer.
Collapse
Affiliation(s)
- Shota Kondo
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Yoshino Imura
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Akira Mizuno
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan.
| | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
| |
Collapse
|
34
|
Membrane Curvature and the Tol-Pal Complex Determine Polar Localization of the Chemoreceptor Tar in Escherichia coli. J Bacteriol 2018; 200:JB.00658-17. [PMID: 29463603 DOI: 10.1128/jb.00658-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/13/2018] [Indexed: 01/15/2023] Open
Abstract
Chemoreceptors are localized at the cell poles of Escherichia coli and other rod-shaped bacteria. Over the years, different mechanisms have been put forward to explain this polar localization, including stochastic clustering, membrane curvature-driven localization, interactions with the Tol-Pal complex, and nucleoid exclusion. To evaluate these mechanisms, we monitored the cellular localization of the aspartate chemoreceptor Tar in different deletion mutants. We did not find any indication for either stochastic cluster formation or nucleoid exclusion. However, the presence of a functional Tol-Pal complex appeared to be essential to retain Tar at the cell poles. Interestingly, Tar still accumulated at midcell in tol and in pal deletion mutants. In these mutants, the protein appears to gather at the base of division septa, a region characterized by strong membrane curvature. Chemoreceptors, like Tar, form trimers of dimers that bend the cell membrane due to a rigid tripod structure. The curvature approaches the curvature of the cell membrane generated during cell division, and localization of chemoreceptor tripods at curved membrane areas is therefore energetically favorable, as it lowers membrane tension. Indeed, when we introduced mutations in Tar that abolish the rigid tripod structure, the protein was no longer able to accumulate at midcell or the cell poles. These findings favor a model where chemoreceptor localization in E. coli is driven by strong membrane curvature and association with the Tol-Pal complex.IMPORTANCE Bacteria have exquisite mechanisms to sense and adapt to the environment they live in. One such mechanism involves the chemotaxis signal transduction pathway, in which chemoreceptors specifically bind certain attracting or repelling molecules and transduce the signals to the cell. In different rod-shaped bacteria, these chemoreceptors localize specifically to cell poles. Here, we examined the polar localization of the aspartate chemoreceptor Tar in E. coli and found that membrane curvature at cell division sites and the Tol-Pal protein complex localize Tar at cell division sites, the future cell poles. This study shows how membrane curvature can guide localization of proteins in a cell.
Collapse
|
35
|
Govindarajan S, Albocher N, Szoke T, Nussbaum-Shochat A, Amster-Choder O. Phenotypic Heterogeneity in Sugar Utilization by E. coli Is Generated by Stochastic Dispersal of the General PTS Protein EI from Polar Clusters. Front Microbiol 2018; 8:2695. [PMID: 29387047 PMCID: PMC5776091 DOI: 10.3389/fmicb.2017.02695] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 12/26/2017] [Indexed: 11/13/2022] Open
Abstract
Although the list of proteins that localize to the bacterial cell poles is constantly growing, little is known about their temporal behavior. EI, a major protein of the phosphotransferase system (PTS) that regulates sugar uptake and metabolism in bacteria, was shown to form clusters at the Escherichia coli cell poles. We monitored the localization of EI clusters, as well as diffuse molecules, in space and time during the lifetime of E. coli cells. We show that EI distribution and cluster dynamics varies among cells in a population, and that the cluster speed inversely correlates with cluster size. In growing cells, EI is not assembled into clusters in almost 40% of the cells, and the clusters in most remaining cells dynamically relocate within the pole region or between the poles. In non-growing cells, the fraction of cells that contain EI clusters is significantly higher, and dispersal of these clusters is often observed shortly after exiting quiescence. Later, during growth, EI clusters stochastically re-form by assembly of pre-existing dispersed molecules at random time points. Using a fluorescent glucose analog, we found that EI function inversely correlates with clustering and with cluster size. Thus, activity is exerted by dispersed EI molecules, whereas the polar clusters serve as a reservoir of molecules ready to act when needed. Taken together our findings highlight the spatiotemporal distribution of EI as a novel layer of regulation that contributes to the population phenotypic heterogeneity with regard to sugar metabolism, seemingly conferring a survival benefit.
Collapse
Affiliation(s)
- Sutharsan Govindarajan
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nitsan Albocher
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamar Szoke
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Anat Nussbaum-Shochat
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Orna Amster-Choder
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
36
|
Pollard AM, Sourjik V. Transmembrane region of bacterial chemoreceptor is capable of promoting protein clustering. J Biol Chem 2017; 293:2149-2158. [PMID: 29259129 DOI: 10.1074/jbc.m117.796722] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 12/06/2017] [Indexed: 11/06/2022] Open
Abstract
Many membrane proteins are known to form higher-order oligomers, but the degree to which membrane regions could facilitate protein complex assembly remains largely unclear. Clusters of chemotaxis receptors are among the most prominent structures in the bacterial cell membrane, and they play important functions in processing of chemotactic signals. Although much work has been done to elucidate mechanisms of cluster formation, it almost exclusively focused on cytoplasmic interactions among receptors and other chemotaxis proteins, whereas involvement of membrane-mediated interactions was only hypothesized. Here we used imaging of constructs composed of only a fluorescent protein and the TM helices of Tar to demonstrate that interactions between the lipid bilayer and transmembrane (TM) helices of Escherichia coli chemoreceptors alone are sufficient to mediate clustering. We found that the ability to cluster depends on the sequence or length of the TM helices, implying that certain conformations of these helices facilitate clustering, whereas others do not. Notably, observed sequence specificity was apparently consistent with differences in clustering between native E. coli receptors, with the TM sequence of better-clustering high-abundance receptors being more efficient in promoting membrane-mediated complex formation. These results indicate that being more than just membrane anchors, TM helices could play an important role in the clustering and organization of membrane proteins in bacteria.
Collapse
Affiliation(s)
- Abiola M Pollard
- From the Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (SYNMIKRO), D-35043 Marburg, Germany
| | - Victor Sourjik
- From the Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (SYNMIKRO), D-35043 Marburg, Germany
| |
Collapse
|
37
|
Bergé M, Viollier PH. End-in-Sight: Cell Polarization by the Polygamic Organizer PopZ. Trends Microbiol 2017; 26:363-375. [PMID: 29198650 DOI: 10.1016/j.tim.2017.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/02/2017] [Accepted: 11/09/2017] [Indexed: 12/18/2022]
Abstract
Understanding how asymmetries in cellular constituents are achieved and how such positional information directs the construction of structures in a nonrandom fashion is a fundamental problem in cell biology. The recent identification of determinants that self-assemble into macromolecular complexes at the bacterial cell pole provides new insight into the underlying organizational principles in bacterial cells. Specifically, polarity studies in host-associated or free-living α-proteobacteria, a lineage of Gram-negative (diderm) bacteria, reveals that functional and cytological mono- and bipolarity is often conferred by the multivalent polar organizer PopZ, originally identified as a component of a polar chromosome anchor in the cell cycle model system Caulobacter crescentus. PopZ-dependent polarization appears to be widespread and also functional in obligate intracellular pathogens. Here, we discuss how PopZ polarization and the establishment of polar complexes occurs, and we detail the physiological roles of these complexes.
Collapse
Affiliation(s)
- Matthieu Bergé
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland.
| | - Patrick H Viollier
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland.
| |
Collapse
|
38
|
Kim EY, Tyndall ER, Huang KC, Tian F, Ramamurthi KS. Dash-and-Recruit Mechanism Drives Membrane Curvature Recognition by the Small Bacterial Protein SpoVM. Cell Syst 2017; 5:518-526.e3. [PMID: 29102609 DOI: 10.1016/j.cels.2017.10.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/24/2017] [Accepted: 10/05/2017] [Indexed: 10/18/2022]
Abstract
In Bacillus subtilis, sporulation requires that the 26-amino acid protein SpoVM embeds specifically into the forespore membrane, a structure with convex curvature. How this nanometer-sized protein can detect curves on a micrometer scale is not well understood. Here, we report that SpoVM exploits a "dash-and-recruit" mechanism to preferentially accumulate on the forespore. Using time-resolved imaging and flow cytometry, we observe that SpoVM exhibits a faster adsorption rate onto membranes of higher convex curvature. This preferential adsorption is accurately modeled as a two-step process: first, an initial binding event occurs with a faster on rate, then cooperative recruitment of additional SpoVM molecules follows. We demonstrate that both this biochemical process and effective sporulation in vivo require an unstructured and flexible SpoVM N terminus. We propose that this two-pronged strategy of fast adsorption followed by recruitment of subsequent molecules is a general mechanism that allows small proteins to detect subtle curves with a radius 1,000-fold their size.
Collapse
Affiliation(s)
- Edward Y Kim
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Erin R Tyndall
- Department of Biochemistry and Molecular Biology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Fang Tian
- Department of Biochemistry and Molecular Biology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA.
| | - Kumaran S Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
39
|
Moine A, Espinosa L, Martineau E, Yaikhomba M, Jazleena PJ, Byrne D, Biondi EG, Notomista E, Brilli M, Molle V, Gayathri P, Mignot T, Mauriello EMF. The nucleoid as a scaffold for the assembly of bacterial signaling complexes. PLoS Genet 2017; 13:e1007103. [PMID: 29161263 PMCID: PMC5716589 DOI: 10.1371/journal.pgen.1007103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/05/2017] [Accepted: 11/05/2017] [Indexed: 11/17/2022] Open
Abstract
The FrzCD chemoreceptor from the gliding bacterium Myxococcus xanthus forms cytoplasmic clusters that occupy a large central region of the cell body also occupied by the nucleoid. In this work, we show that FrzCD directly binds to the nucleoid with its N-terminal positively charged tail and recruits active signaling complexes at this location. The FrzCD binding to the nucleoid occur in a DNA-sequence independent manner and leads to the formation of multiple distributed clusters that explore constrained areas. This organization might be required for cooperative interactions between clustered receptors as observed in membrane-bound chemosensory arrays.
Collapse
Affiliation(s)
- Audrey Moine
- Laboratoire de Chimie Bactérienne, CNRS-Université Aix-Marseille, Marseille, France
| | - Leon Espinosa
- Laboratoire de Chimie Bactérienne, CNRS-Université Aix-Marseille, Marseille, France
| | - Eugenie Martineau
- Laboratoire de Chimie Bactérienne, CNRS-Université Aix-Marseille, Marseille, France
| | - Mutum Yaikhomba
- Biology Division, Indian Institute of Science Education and Research, Pune, India
| | - P. J. Jazleena
- Biology Division, Indian Institute of Science Education and Research, Pune, India
| | - Deborah Byrne
- Protein Purification Platform, Institut de Microbiologie de la Méditerranée, CNRS, Marseille, France
| | - Emanuele G. Biondi
- Laboratoire de Chimie Bactérienne, CNRS-Université Aix-Marseille, Marseille, France
| | - Eugenio Notomista
- Dipartimento di Biologia, Università degli Studi di Napoli “Federico II”, Naples, Italy
| | - Matteo Brilli
- DAFNAE, Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnano, Italy
| | - Virginie Molle
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, CNRS-Universités de Montpellier II et I, Montpellier, France
| | - Pananghat Gayathri
- Biology Division, Indian Institute of Science Education and Research, Pune, India
| | - Tâm Mignot
- Laboratoire de Chimie Bactérienne, CNRS-Université Aix-Marseille, Marseille, France
| | | |
Collapse
|
40
|
Targeting of dopamine transporter to filopodia requires an outward-facing conformation of the transporter. Sci Rep 2017; 7:5399. [PMID: 28710426 PMCID: PMC5511133 DOI: 10.1038/s41598-017-05637-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/01/2017] [Indexed: 12/01/2022] Open
Abstract
Dopamine transporter (DAT) has been shown to accumulate in filopodia in neurons and non-neuronal cells. To examine the mechanisms of DAT filopodial targeting, we used quantitative live-cell fluorescence microscopy, and compared the effects of the DAT inhibitor cocaine and its fluorescent analog JHC1-64 on the plasma membrane distribution of wild-type DAT and two non-functional DAT mutants, R60A and W63A, that do not accumulate in filopodia. W63A did not bind JHC1-64, whereas R60A did, although less efficiently compared to the wild-type DAT. Molecular dynamics simulations predicted that R60A preferentially assumes an outward-facing (OF) conformation through compensatory intracellular salt bridge formation, which in turn favors binding of cocaine. Imaging analysis showed that JHC1-64-bound R60A mutant predominantly localized in filopodia, whereas free R60A molecules were evenly distributed within the plasma membrane. Cocaine binding significantly increased the density of R60A, but not that of W63A, in filopodia. Further, zinc binding, known to stabilize the OF state, also increased R60A concentration in filopodia. Finally, amphetamine, that is thought to disrupt DAT OF conformation, reduced the concentration of wild-type DAT in filopodia. Altogether, these data indicate that OF conformation is required for the efficient targeting of DAT to, and accumulation in, filopodia.
Collapse
|
41
|
Abstract
The bacterial cytoplasmic membrane is composed of roughly equal proportions of lipids and proteins. The main lipid components are phospholipids, which vary in acyl chain length, saturation, and branching and carry head groups that vary in size and charge. Phospholipid variants determine membrane properties such as fluidity and charge that in turn modulate interactions with membrane-associated proteins. We summarize recent advances in understanding bacterial membrane structure and function, focusing particularly on the possible existence and significance of specialized membrane domains. We review the role of membrane curvature as a spatial cue for recruitment and regulation of proteins involved in morphogenic functions, especially elongation and division. Finally, we examine the role of the membrane, especially regulation of synthesis and fluid properties, in the life cycle of cell wall-deficient L-form bacteria.
Collapse
Affiliation(s)
- Henrik Strahl
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, NE2 4AX United Kingdom; ,
| | - Jeff Errington
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, NE2 4AX United Kingdom; ,
| |
Collapse
|
42
|
Wu YZ, Sun J, Zhang Y, Pu M, Zhang G, He N, Zeng X. Effective Integration of Targeted Tumor Imaging and Therapy Using Functionalized InP QDs with VEGFR2 Monoclonal Antibody and miR-92a Inhibitor. ACS APPLIED MATERIALS & INTERFACES 2017; 9:13068-13078. [PMID: 28358188 DOI: 10.1021/acsami.7b02641] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Rapid diagnosis and targeted drug treatment require agents that possess multiple functions. Nanomaterials that facilitate optical imaging and direct drug delivery have shown great promise for effective cancer treatment. In this study, we first modified near-infrared fluorescent indium phosphide quantum dots (InP QDs) with a vascular endothelial growth factor receptor 2 (VEGFR2) monoclonal antibody to afford targeted drug delivery function. Then, a miR-92a inhibitor, an antisense microRNA that enhances the expression of tumor suppressor p63, was attached to the VEGFR2-InP QDs via electrostatic interactions. The functionalized InP nanocomposite (IMAN) selectively targets tumor sites and allows for infrared imaging in vivo. We further explored the mechanism of this active targeting. The IMAN was endocytosed and delivered in the form of microvesicles via VEGFR2-CD63 signaling. Moreover, the IMAN induced apoptosis of human myelogenous leukemia cells through the p63 pathway in vitro and in vivo. These results indicate that the IMAN may provide a new and promising chemotherapy strategy against cancer cells, particularly by its active targeting function and utility in noninvasive three-dimensional tumor imaging.
Collapse
Affiliation(s)
| | | | | | | | | | - Nongyue He
- The State Key Laboratory of Bioelectronics, Department of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| | - Xin Zeng
- Maternal and Child Health Institute, Nanjing Maternity and Child Health Care Hospital , Nanjing 210029, China
| |
Collapse
|
43
|
Draper W, Liphardt J. Origins of chemoreceptor curvature sorting in Escherichia coli. Nat Commun 2017; 8:14838. [PMID: 28322223 PMCID: PMC5364426 DOI: 10.1038/ncomms14838] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 02/02/2017] [Indexed: 12/17/2022] Open
Abstract
Bacterial chemoreceptors organize into large clusters at the cell poles. Despite a wealth of structural and biochemical information on the system's components, it is not clear how chemoreceptor clusters are reliably targeted to the cell pole. Here, we quantify the curvature-dependent localization of chemoreceptors in live cells by artificially deforming growing cells of Escherichia coli in curved agar microchambers, and find that chemoreceptor cluster localization is highly sensitive to membrane curvature. Through analysis of multiple mutants, we conclude that curvature sensitivity is intrinsic to chemoreceptor trimers-of-dimers, and results from conformational entropy within the trimer-of-dimers geometry. We use the principles of the conformational entropy model to engineer curvature sensitivity into a series of multi-component synthetic protein complexes. When expressed in E. coli, the synthetic complexes form large polar clusters, and a complex with inverted geometry avoids the cell poles. This demonstrates the successful rational design of both polar and anti-polar clustering, and provides a synthetic platform on which to build new systems.
Collapse
Affiliation(s)
- Will Draper
- Biophysics Graduate Group and Department of Physics, University of California, Berkeley, California 94720, USA.,Bioengineering, Shriram Center for Bioengineering &Chemical Engineering, Stanford University, Stanford, California 94305, USA
| | - Jan Liphardt
- Biophysics Graduate Group and Department of Physics, University of California, Berkeley, California 94720, USA.,Bioengineering, Shriram Center for Bioengineering &Chemical Engineering, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
44
|
Egan AJF, Cleverley RM, Peters K, Lewis RJ, Vollmer W. Regulation of bacterial cell wall growth. FEBS J 2017; 284:851-867. [PMID: 27862967 DOI: 10.1111/febs.13959] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/28/2016] [Accepted: 11/09/2016] [Indexed: 12/19/2022]
Abstract
During growth and propagation, a bacterial cell enlarges and subsequently divides its peptidoglycan (PG) sacculus, a continuous mesh-like layer that encases the cell membrane to confer mechanical strength and morphological robustness. The mechanism of sacculus growth, how it is regulated and how it is coordinated with other cellular processes is poorly understood. In this article, we will discuss briefly the current knowledge of how cell wall synthesis is regulated, on multiple levels, from both sides of the cytoplasmic membrane. According to the current knowledge, cytosolic scaffolding proteins connect PG synthases with cytoskeletal elements, and protein phosphorylation regulates cell wall growth in Gram-positive species. PG-active enzymes engage in multiple protein-protein interactions within PG synthesis multienzyme complexes, and some of the interactions modulate activities. PG synthesis is also regulated by central metabolism, and by PG maturation through the action of PG hydrolytic enzymes. Only now are we beginning to appreciate how these multiple levels of regulating PG synthesis enable the cell to propagate robustly with a defined cell shape under different and variable growth conditions.
Collapse
Affiliation(s)
- Alexander J F Egan
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, UK
| | - Robert M Cleverley
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, UK
| | - Katharina Peters
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, UK
| | - Richard J Lewis
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, UK
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, UK
| |
Collapse
|
45
|
Updegrove TB, Ramamurthi KS. Geometric protein localization cues in bacterial cells. Curr Opin Microbiol 2017; 36:7-13. [PMID: 28110195 DOI: 10.1016/j.mib.2016.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/15/2016] [Accepted: 12/17/2016] [Indexed: 10/20/2022]
Abstract
Bacterial cells are highly organized at a molecular level. Understanding how specific proteins localize to their proper subcellular address has been a major challenge in bacterial cell biology. One mechanism, which appears to be increasingly more common, is the use of 'geometric cues' for protein localization. In this model, certain shape-sensing proteins recognize, and preferentially embed into, either negatively or positively curved (concave or convex, respectively) membranes. Here, we review examples of bacterial proteins that reportedly localize by sensing geometric cues and highlight emerging mechanistic understandings of how proteins may recognize subtle differences in membrane curvature.
Collapse
Affiliation(s)
- Taylor B Updegrove
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Kumaran S Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
46
|
Aranda-Sicilia MN, Aboukila A, Armbruster U, Cagnac O, Schumann T, Kunz HH, Jahns P, Rodríguez-Rosales MP, Sze H, Venema K. Envelope K+/H+ Antiporters AtKEA1 and AtKEA2 Function in Plastid Development. PLANT PHYSIOLOGY 2016; 172:441-9. [PMID: 27443603 PMCID: PMC5074627 DOI: 10.1104/pp.16.00995] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 07/19/2016] [Indexed: 05/04/2023]
Abstract
It is well established that thylakoid membranes of chloroplasts convert light energy into chemical energy, yet the development of chloroplast and thylakoid membranes is poorly understood. Loss of function of the two envelope K(+)/H(+) antiporters AtKEA1 and AtKEA2 was shown previously to have negative effects on the efficiency of photosynthesis and plant growth; however, the molecular basis remained unclear. Here, we tested whether the previously described phenotypes of double mutant kea1kea2 plants are due in part to defects during early chloroplast development in Arabidopsis (Arabidopsis thaliana). We show that impaired growth and pigmentation is particularly evident in young expanding leaves of kea1kea2 mutants. In proliferating leaf zones, chloroplasts contain much lower amounts of photosynthetic complexes and chlorophyll. Strikingly, AtKEA1 and AtKEA2 proteins accumulate to high amounts in small and dividing plastids, where they are specifically localized to the two caps of the organelle separated by the fission plane. The unusually long amino-terminal domain of 550 residues that precedes the antiport domain appears to tether the full-length AtKEA2 protein to the two caps. Finally, we show that the double mutant contains 30% fewer chloroplasts per cell. Together, these results show that AtKEA1 and AtKEA2 transporters in specific microdomains of the inner envelope link local osmotic, ionic, and pH homeostasis to plastid division and thylakoid membrane formation.
Collapse
Affiliation(s)
- María Nieves Aranda-Sicilia
- Departimento de Bioquímica, Biología Celular, y Molecular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain (M.N.A.-S., A.A., O.C., M.P.R.-R., K.V.);Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (U.A.);Institute of Plant Biochemistry, Heinrich-Heine-University Düsseldorf, D-40225 Duesseldorf, Germany (T.S., P.J.);School of Biological Sciences, Washington State University, Pullman, Washington 99164-4236 (H.-H.K.); andDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742 (H.S.)
| | - Ali Aboukila
- Departimento de Bioquímica, Biología Celular, y Molecular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain (M.N.A.-S., A.A., O.C., M.P.R.-R., K.V.);Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (U.A.);Institute of Plant Biochemistry, Heinrich-Heine-University Düsseldorf, D-40225 Duesseldorf, Germany (T.S., P.J.);School of Biological Sciences, Washington State University, Pullman, Washington 99164-4236 (H.-H.K.); andDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742 (H.S.)
| | - Ute Armbruster
- Departimento de Bioquímica, Biología Celular, y Molecular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain (M.N.A.-S., A.A., O.C., M.P.R.-R., K.V.);Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (U.A.);Institute of Plant Biochemistry, Heinrich-Heine-University Düsseldorf, D-40225 Duesseldorf, Germany (T.S., P.J.);School of Biological Sciences, Washington State University, Pullman, Washington 99164-4236 (H.-H.K.); andDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742 (H.S.)
| | - Olivier Cagnac
- Departimento de Bioquímica, Biología Celular, y Molecular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain (M.N.A.-S., A.A., O.C., M.P.R.-R., K.V.);Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (U.A.);Institute of Plant Biochemistry, Heinrich-Heine-University Düsseldorf, D-40225 Duesseldorf, Germany (T.S., P.J.);School of Biological Sciences, Washington State University, Pullman, Washington 99164-4236 (H.-H.K.); andDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742 (H.S.)
| | - Tobias Schumann
- Departimento de Bioquímica, Biología Celular, y Molecular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain (M.N.A.-S., A.A., O.C., M.P.R.-R., K.V.);Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (U.A.);Institute of Plant Biochemistry, Heinrich-Heine-University Düsseldorf, D-40225 Duesseldorf, Germany (T.S., P.J.);School of Biological Sciences, Washington State University, Pullman, Washington 99164-4236 (H.-H.K.); andDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742 (H.S.)
| | - Hans-Henning Kunz
- Departimento de Bioquímica, Biología Celular, y Molecular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain (M.N.A.-S., A.A., O.C., M.P.R.-R., K.V.);Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (U.A.);Institute of Plant Biochemistry, Heinrich-Heine-University Düsseldorf, D-40225 Duesseldorf, Germany (T.S., P.J.);School of Biological Sciences, Washington State University, Pullman, Washington 99164-4236 (H.-H.K.); andDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742 (H.S.)
| | - Peter Jahns
- Departimento de Bioquímica, Biología Celular, y Molecular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain (M.N.A.-S., A.A., O.C., M.P.R.-R., K.V.);Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (U.A.);Institute of Plant Biochemistry, Heinrich-Heine-University Düsseldorf, D-40225 Duesseldorf, Germany (T.S., P.J.);School of Biological Sciences, Washington State University, Pullman, Washington 99164-4236 (H.-H.K.); andDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742 (H.S.)
| | - María Pilar Rodríguez-Rosales
- Departimento de Bioquímica, Biología Celular, y Molecular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain (M.N.A.-S., A.A., O.C., M.P.R.-R., K.V.);Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (U.A.);Institute of Plant Biochemistry, Heinrich-Heine-University Düsseldorf, D-40225 Duesseldorf, Germany (T.S., P.J.);School of Biological Sciences, Washington State University, Pullman, Washington 99164-4236 (H.-H.K.); andDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742 (H.S.)
| | - Heven Sze
- Departimento de Bioquímica, Biología Celular, y Molecular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain (M.N.A.-S., A.A., O.C., M.P.R.-R., K.V.);Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (U.A.);Institute of Plant Biochemistry, Heinrich-Heine-University Düsseldorf, D-40225 Duesseldorf, Germany (T.S., P.J.);School of Biological Sciences, Washington State University, Pullman, Washington 99164-4236 (H.-H.K.); andDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742 (H.S.)
| | - Kees Venema
- Departimento de Bioquímica, Biología Celular, y Molecular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain (M.N.A.-S., A.A., O.C., M.P.R.-R., K.V.);Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (U.A.);Institute of Plant Biochemistry, Heinrich-Heine-University Düsseldorf, D-40225 Duesseldorf, Germany (T.S., P.J.);School of Biological Sciences, Washington State University, Pullman, Washington 99164-4236 (H.-H.K.); andDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742 (H.S.)
| |
Collapse
|
47
|
Functional Membrane Microdomains Organize Signaling Networks in Bacteria. J Membr Biol 2016; 250:367-378. [PMID: 27566471 DOI: 10.1007/s00232-016-9923-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 08/16/2016] [Indexed: 11/27/2022]
Abstract
Membrane organization is usually associated with the correct function of a number of cellular processes in eukaryotic cells as diverse as signal transduction, protein sorting, membrane trafficking, or pathogen invasion. It has been recently discovered that bacterial membranes are able to compartmentalize their signal transduction pathways in functional membrane microdomains (FMMs). In this review article, we discuss the biological significance of the existence of FMMs in bacteria and comment on possible beneficial roles that FMMs play on the harbored signal transduction cascades. Moreover, four different membrane-associated signal transduction cascades whose functions are linked to the integrity of FMMs are introduced, and the specific role that FMMs play in stabilizing and promoting interactions of their signaling components is discussed. Altogether, FMMs seem to play a relevant role in promoting more efficient activation of signal transduction cascades in bacterial cells and show that bacteria are more sophisticated organisms than previously appreciated.
Collapse
|
48
|
Te Winkel JD, Gray DA, Seistrup KH, Hamoen LW, Strahl H. Analysis of Antimicrobial-Triggered Membrane Depolarization Using Voltage Sensitive Dyes. Front Cell Dev Biol 2016; 4:29. [PMID: 27148531 PMCID: PMC4829611 DOI: 10.3389/fcell.2016.00029] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 03/24/2016] [Indexed: 12/14/2022] Open
Abstract
The bacterial cytoplasmic membrane is a major inhibitory target for antimicrobial compounds. Commonly, although not exclusively, these compounds unfold their antimicrobial activity by disrupting the essential barrier function of the cell membrane. As a consequence, membrane permeability assays are central for mode of action studies analysing membrane-targeting antimicrobial compounds. The most frequently used in vivo methods detect changes in membrane permeability by following internalization of normally membrane impermeable and relatively large fluorescent dyes. Unfortunately, these assays are not sensitive to changes in membrane ion permeability which are sufficient to inhibit and kill bacteria by membrane depolarization. In this manuscript, we provide experimental advice how membrane potential, and its changes triggered by membrane-targeting antimicrobials can be accurately assessed in vivo. Optimized protocols are provided for both qualitative and quantitative kinetic measurements of membrane potential. At last, single cell analyses using voltage-sensitive dyes in combination with fluorescence microscopy are introduced and discussed.
Collapse
Affiliation(s)
- J Derk Te Winkel
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University Newcastle upon Tyne, UK
| | - Declan A Gray
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University Newcastle upon Tyne, UK
| | - Kenneth H Seistrup
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University Newcastle upon Tyne, UK
| | - Leendert W Hamoen
- Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| | - Henrik Strahl
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University Newcastle upon Tyne, UK
| |
Collapse
|