1
|
Zhu H, Wu Z, Wang J, Zhang E, Zhang S, Yang Y, Li W, Shi H, Yang G, Lv L, Zhang Y. DLG2 rs11607886 polymorphism associated with schizophrenia and precuneus functional changes. Schizophr Res 2025; 280:50-58. [PMID: 40220608 DOI: 10.1016/j.schres.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/22/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND AND HYPOTHESIS Schizophrenia (SZ) is a severe mental disorder with high heritability. DLG2 encodes the postsynaptic scaffolding protein DLG2 (PSD93, Postsynaptic Density Protein 93), and its variants were associated with an increased risk of SZ. However, the role of DLG2 locus variation in SZ remains elusive. This study aims to investigate the association between DLG2 gene polymorphisms and SZ susceptibility and the relationship between DLG2 and altered brain function and clinical symptoms in SZ patients. STUDY DESIGN Single nucleotide polymorphisms (SNPs) rs11607886 and rs7479949 were genotyped in 350 SZ patients and 407 healthy controls (HCs). 47 SZ patients and 79 HCs were genotyped into two groups: the risk A allele carrier group and the GG-pure group. Functional magnetic resonance imaging (fMRI) indices were further analyzed. Subsequently, data from different brain regions were correlated with clinical symptom assessment. STUDY RESULTS DLG2 rs11607886 was significantly associated with SZ. Significant main effects were found in the ALFF and ReHo, especially for the left precuneus gyrus (PCu). A significant interaction between genotype and diagnosis had a significant effect on FC, which was increased between the left PCu and the right middle temporal gyrus in carriers of the A allele with SZ (r = -0.336, Pun-corrected = 0.042) and negatively correlated with spatial breadth scores (r = 0.444, PFDR-corrected = 0.002). CONCLUSIONS The rs11607886 polymorphism in DLG2 may influence the pathogenesis of SZ and have potential effects on cognitive function. The present study emphasizes DLG2 as a candidate gene for SZ and suggests an important role for PCu in SZ.
Collapse
Affiliation(s)
- HanYu Zhu
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan of Xinxiang Medical University, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang 453002, China; Xinxiang Key Laboratory of Child and Adolescent Psychiatry, Xinxiang 453002, China
| | - Zhaoyang Wu
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan of Xinxiang Medical University, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang 453002, China; Xinxiang Key Laboratory of Child and Adolescent Psychiatry, Xinxiang 453002, China
| | - Junxiao Wang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan of Xinxiang Medical University, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang 453002, China; Xinxiang Key Laboratory of Child and Adolescent Psychiatry, Xinxiang 453002, China
| | - Enhui Zhang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan of Xinxiang Medical University, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang 453002, China; Xinxiang Key Laboratory of Child and Adolescent Psychiatry, Xinxiang 453002, China
| | - Sen Zhang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Xinxiang Key Laboratory of Child and Adolescent Psychiatry, Xinxiang 453002, China; Brain Institute, Henan Academy of Innovations in Medical Science, Xinxiang 453002, China
| | - Yongfeng Yang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan of Xinxiang Medical University, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang 453002, China; Xinxiang Key Laboratory of Child and Adolescent Psychiatry, Xinxiang 453002, China; Brain Institute, Henan Academy of Innovations in Medical Science, Xinxiang 453002, China
| | - Wenqiang Li
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan of Xinxiang Medical University, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang 453002, China; Xinxiang Key Laboratory of Child and Adolescent Psychiatry, Xinxiang 453002, China; Brain Institute, Henan Academy of Innovations in Medical Science, Xinxiang 453002, China
| | - Han Shi
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan of Xinxiang Medical University, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang 453002, China; Xinxiang Key Laboratory of Child and Adolescent Psychiatry, Xinxiang 453002, China; Brain Institute, Henan Academy of Innovations in Medical Science, Xinxiang 453002, China
| | - Ge Yang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Brain Institute, Henan Academy of Innovations in Medical Science, Xinxiang 453002, China
| | - Luxian Lv
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan of Xinxiang Medical University, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang 453002, China; Xinxiang Key Laboratory of Child and Adolescent Psychiatry, Xinxiang 453002, China; Brain Institute, Henan Academy of Innovations in Medical Science, Xinxiang 453002, China
| | - Yan Zhang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan of Xinxiang Medical University, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang 453002, China; Xinxiang Key Laboratory of Child and Adolescent Psychiatry, Xinxiang 453002, China; Brain Institute, Henan Academy of Innovations in Medical Science, Xinxiang 453002, China.
| |
Collapse
|
2
|
Yu L, Shen Z, Wei W, Dou Z, Luo Y, Hu D, Lin W, Zhao G, Hong X, Yu S. Molecular mechanisms explaining sex-specific functional connectivity changes in chronic insomnia disorder. BMC Med 2025; 23:261. [PMID: 40325400 PMCID: PMC12054257 DOI: 10.1186/s12916-025-04089-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 04/24/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND This study investigates the hypothesis that chronic insomnia disorder (CID) is characterized by sex-specific changes in resting-state functional connectivity (rsFC), with certain molecular mechanisms potentially influencing CID's pathophysiology by altering rsFC in relevant networks. METHODS Utilizing a resting-state functional magnetic resonance imaging (fMRI) dataset of 395 participants, including 199 CID patients and 196 healthy controls, we examined sex-specific rsFC effects, particularly in the default mode network (DMN) and five insomnia-genetically vulnerable regions of interest (ROIs). By integrating gene expression data from the Allen Human Brain Atlas, we identified genes linked to these sex-specific rsFC alterations and conducted enrichment analysis to uncover underlying molecular mechanisms. Additionally, we simulated the impact of sex differences in rsFC with different sex compositions in our dataset and employed machine learning classifiers to distinguish CID from healthy controls based on sex-specific rsFC data. RESULTS We identified both shared and sex-specific rsFC changes in the DMN and the five genetically vulnerable ROIs, with gene expression variations associated with these sex-specific connectivity differences. Enrichment analysis highlighted genes involved in synaptic signaling, ion channels, and immune function as potential contributors to CID pathophysiology through their influence on connectivity. Furthermore, our findings demonstrate that different sex compositions significantly affect study outcomes and higher diagnostic performance in sex-specific rsFC data than combined sex. CONCLUSIONS This study uncovered both shared and sex-specific connectivity alterations in CID, providing molecular insights into its pathophysiology and suggesting considering sex differences in future fMRI-based diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Liyong Yu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, No.37 Shierqiao Road, Chengdu, 610075, China
| | - Zhifu Shen
- Department of Traditional Chinese Medicine, the Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Traditional Chinese and Western Medicine, North Sichuan Medical College, Nanchong, China
| | - Wei Wei
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, No.37 Shierqiao Road, Chengdu, 610075, China
| | - Zeyang Dou
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, No.37 Shierqiao Road, Chengdu, 610075, China
| | - Yucai Luo
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, No.37 Shierqiao Road, Chengdu, 610075, China
| | - Daijie Hu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, No.37 Shierqiao Road, Chengdu, 610075, China
| | - Wenting Lin
- School of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guangli Zhao
- School of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaojuan Hong
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, No.37 Shierqiao Road, Chengdu, 610075, China
| | - Siyi Yu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, No.37 Shierqiao Road, Chengdu, 610075, China.
| |
Collapse
|
3
|
Zhang X, Qing P, Liu Q, Liu C, Liu L, Gan X, Fu K, Lan C, Zhou X, Kendrick KM, Becker B, Zhao W. Neural Patterns of Social Pain in the Brain-Wide Representations Across Social Contexts. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2413795. [PMID: 40091697 DOI: 10.1002/advs.202413795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/18/2025] [Indexed: 03/19/2025]
Abstract
Empathy can be elicited by physiological pain, as well as in social contexts. Although physiological and different social contexts induce a strong subjective experience of empathy, the general and context-specific neural representations remain elusive. Here, it is combined fMRI with multivariate pattern analysis (MVPA) to establish neurofunctional models for social pain triggered by observing social exclusion and separation naturistic stimuli. The findings revealed that both social contexts engaged the empathy and social function networks. Notably, the intensity of pain empathy elicited by these two social stimuli does not significantly differentiate the neural representations of social exclusion and separation, suggesting context-specific neural representations underlying these experiences. Furthermore, this study established a model that traces the progression from physiological pain to social pain empathy. In conclusion, this study revealed the neural pathological foundations and interconnectedness of empathy induced by social and physiological stimuli and provide robust neuromarkers to precisely evaluate empathy across physiological and social domains.
Collapse
Affiliation(s)
- Xiaodong Zhang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Peng Qing
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Qi Liu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Can Liu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Lei Liu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xianyang Gan
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Kun Fu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Chunmei Lan
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xinqi Zhou
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, 610066, China
| | - Keith M Kendrick
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Benjamin Becker
- Department of Psychology, State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, 999077, China
| | - Weihua Zhao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital University of Electronic Science and Technology of China, Chengdu, 611731, China
| |
Collapse
|
4
|
Lan Z, Foster S, Charney M, van Grinsven M, Breedlove K, Kozlowska K, Lin A. Neurometabolic network (NMetNet) for functional neurological disorder in children and adolescents. Neuroimage Clin 2025; 46:103767. [PMID: 40187194 PMCID: PMC12002944 DOI: 10.1016/j.nicl.2025.103767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 03/06/2025] [Accepted: 03/08/2025] [Indexed: 04/07/2025]
Abstract
OBJECTIVES Functional neurological disorder (FND) in children and adolescents is a biopsychosocially complex condition characterized by a wide range of neurological symptoms. Using magnetic resonance spectroscopy to study neurometabolites has become an important approach to studying the mechanisms of FND. Unlike previous studies focusing on concentration-level analysis, this study examines conditional dependencies between six neurometabolites: N-acetyl aspartate, creatine, glutathione, choline, myo-inositol, and glutamate. Conditional dependence implies that two neurometabolites have joint variability that is not mediated by other neurometabolites. METHODS A Bayesian graphical lasso approach was used to estimate neurometabolites' conditional dependencies in three regions of interest: the anterior default mode network (aDMN), supplementary motor area (SMA), and posterior default mode network (pDMN). We introduce the term neurometabolic network (NMetNet) to describe these conditional dependencies. RESULTS Children and adolescents with FND (vs. healthy controls) showed a loss of conditional dependencies related to creatine and glutathione between the aDMN and SMA/pDMN. Glutathione is the primary antioxidant in the brain. Creatine plays a key role in maintaining bioenergetics and also acts as an antioxidant. CONCLUSIONS These findings suggest that FND is characterized by dysregulated bioenergetics and increased vulnerability to oxidative stress. Understanding NMetNet in FND offers novel insights into the disorder's neurobiology, with implications for therapeutic interventions to restore energy homeostasis and oxidative balance.
Collapse
Affiliation(s)
- Zhou Lan
- Center for Clinical Investigation, Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| | - Sheryl Foster
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; Department of Radiology, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Molly Charney
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Neurology, Columbia University Irving Medical Center, New York-Presbyterian, New York, NY, United States
| | - Max van Grinsven
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, Nijmegen 6525 EZ, The Netherlands; Department of Anesthesiology, Pain and Palliative Care, Radboud University Medical Center, Geert Grooteplein Zuid 10, Nijmegen 6525 EZ, The Netherlands
| | - Katherine Breedlove
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Kasia Kozlowska
- Department of Psychological Medicine, The Children's Hospital at Westmead, Westmead, NSW 2145, Australia; Disciplines of Psychiatry and Child & Adolescent Health, Sydney University Medical School, Westmead, NSW 2145, Australia; Brain Dynamics Centre, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
| | - Alexander Lin
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
5
|
Peng R, Wang W, Liang L, Han R, Li Y, Wang H, Wang Y, Li W, Feng S, Zhou J, Huang Y, Wu F, Wu K. The brain-gut microbiota network (BGMN) is correlated with symptom severity and neurocognition in patients with schizophrenia. Neuroimage 2025; 308:121052. [PMID: 39875038 DOI: 10.1016/j.neuroimage.2025.121052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/19/2025] [Accepted: 01/23/2025] [Indexed: 01/30/2025] Open
Abstract
The association between the human brain and gut microbiota, known as the "brain-gut-microbiota axis", is involved in the neuropathological mechanisms of schizophrenia (SZ); however, its association patterns and correlations with symptom severity and neurocognition are still largely unknown. In this study, 43 SZ patients and 55 normal controls (NCs) were included, and resting-state functional magnetic resonance imaging (rs-fMRI) and gut microbiota data were acquired for each participant. First, the brain features of brain images and functional brain networks were computed from rs-fMRI data; the gut features of gut microbiota abundance and the gut microbiota network were computed from gut microbiota data. Second, we propose a novel methodology to construct an individual brain-gut microbiota network (BGMN) for each participant by combining the brain and gut features via multiple strategies. Third, discriminative models between SZ patients and NCs were built using the connectivity matrices of the BGMN as input features. Moreover, the correlations between the most discriminative features and the scores of symptom severity and neurocognition were analyzed in SZ patients. The results showed that the best discriminative model between SZ patients and NCs was achieved using the connectivity matrices of the BGMN when all the brain and gut features were integrated, with an accuracy of 0.90 and an area under the curve value of 0.97. The most discriminative features were related primarily to the genera Faecalibacterium and Collinsella, in which the genus Faecalibacterium was linked to the visual system and subcortical cortices and the genus Collinsella was linked to the default network and subcortical cortices. Furthermore, parts of the most discriminative features were significantly correlated with the scores of neurocognition in the SZ patients. The methodology for constructing individual BGMNs proposed in this study can help us reveal the associations between the brain and gut microbiota and understand the neuropathology of SZ.
Collapse
Affiliation(s)
- Runlin Peng
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China
| | - Wei Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China
| | - Liqin Liang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China
| | - Rui Han
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China
| | - Yi Li
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China
| | - Haiyuan Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China
| | - Yuran Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China
| | - Wenhao Li
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China
| | - Shixuan Feng
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou 510370, China
| | - Jing Zhou
- School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Yuanyuan Huang
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou 510370, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China
| | - Fengchun Wu
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou 510370, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou 510370, China.
| | - Kai Wu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China; Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan.
| |
Collapse
|
6
|
Cheng P, Ding K, Chen D, Yang C, Wang J, Yang S, Chen M, Zhu G. mPFC DCC coupling with CaMKII + neuronal excitation participates in behavioral despair in male mice. Transl Psychiatry 2025; 15:52. [PMID: 39952936 PMCID: PMC11829057 DOI: 10.1038/s41398-025-03266-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 01/13/2025] [Accepted: 01/30/2025] [Indexed: 02/17/2025] Open
Abstract
A longed lack of control over harmful stimuli can lead to learned helplessness (LH), a significant factor in depression. However, the cellular and molecular mechanisms underlying LH, and eventually behavioral despair, remain largely unknown. The deleted in colorectal cancer (dcc) gene is associated with the risk of depression. However, the therapeutic potential and regulation mechanism of DCC in behavioral despair are still uncertain. In this study, we showed that depressive stimulators, including LH, lipopolysaccharide, and unpredictable chronic mild stress, triggered an elevation in DCC expression in the medial prefrontal cortex (mPFC). Additionally, elevated DCC expression in the mPFC was crucial in inducing behavioral despair, as evidenced by the induction of behavioral despair in normal mice and exacerbation of behavioral despair in LH mice upon DCC overexpression. By contrast, neutralizing DCC activity ameliorated LH-induced behavioral despair. Importantly, we elucidated that pathological DCC expression was attributable to the excessive excitation of CaMKII+ neurons in a manner dependent on the calpain-mediated degradation of SCOP and aberrant phosphorylation of the ERK signaling pathway. In addition, the increase in DCC expression led to a decreased excitability threshold in CaMKII+ neurons in the mPFC, which was supported by the observation that the ligand netrin 1 increased the frequency of action potential firing and of spontaneous excitatory postsynaptic currents in CaMKII+ neurons. In conclusion, our data indicate that LH triggers the excessive excitation of CaMKII+ neurons and activation of calpain-SCOP/ERK signaling to promote DCC expression, and DCC represents a crucial target for the treatment of LH-induced behavioral despair in male mice.
Collapse
Affiliation(s)
- Ping Cheng
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Keke Ding
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Daokang Chen
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Chen Yang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Juan Wang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Shaojie Yang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Ming Chen
- MOE Frontier Center for Brain Science, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.
| | - Guoqi Zhu
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China.
| |
Collapse
|
7
|
Chouinard VA, Du F, Chen X, Tusuzian E, Ren B, Anderson J, Cuklanz K, Feizi W, Zhou S, Weerasekera A, Cohen BM, Öngür D, Lewandowski KE. Cognitive Impairment in Psychotic Disorders Is Associated with Brain Reductive Stress and Impaired Energy Metabolism as Measured by 31P Magnetic Resonance Spectroscopy. Schizophr Bull 2025:sbaf003. [PMID: 39869459 DOI: 10.1093/schbul/sbaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
BACKGROUND AND HYPOTHESIS Convergent evidence shows the presence of brain metabolic abnormalities in psychotic disorders. This study examined brain reductive stress and energy metabolism in people with psychotic disorders with impaired or average range cognition. We hypothesized that global cognitive impairment would be associated with greater brain metabolic dysregulation. STUDY DESIGN Participants with affective and non-affective psychosis (n = 62) were administered the MATRICS Consensus Cognitive Battery (MCCB) and underwent a 31P-magnetic resonance spectroscopy scan at 4T. We used a cluster-analysis approach to identify 2 clusters of participants with and without cognitive dysfunction. We compared clusters on brain redox balance or reductive stress, measured by the ratio of nicotinamide adenine dinucleotide (NAD+) and its reduced form NADH, in addition to creatine kinase (CK) enzymatic activity and pH. STUDY RESULTS The mean (SD) age of participants was 25.1 (6.3) years. The mean NAD+/NADH ratio differed between groups, with lower NAD+/NADH ratio, suggesting more reductive stress, in the impaired cognitive cluster (t = -2.60, P = .01). There was also a significant reduction in CK activity in the impaired cognitive cluster (t = -2.19, P = .03). Intracellular pH did not differ between the 2 cluster groups (t = 1.31, P = .19). The clusters did not significantly differ on severity of mood and psychotic symptomatology or other measures of illness severity. CONCLUSIONS Our results demonstrate that psychotic disorders with greater cognitive impairment have greater brain metabolic dysregulation, with more reductive stress and decrease in energy metabolic rate markers. This provides new evidence for the potential of emerging metabolic therapies to treat cognitive deficits in psychotic disorders.
Collapse
Affiliation(s)
- Virginie-Anne Chouinard
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Fei Du
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Xi Chen
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Emma Tusuzian
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
| | - Boyu Ren
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Department of Biostatistics, McLean Hospital, Belmont, MA, United States
| | - Jacey Anderson
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
| | - Kyle Cuklanz
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
| | - Wirya Feizi
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Shuqin Zhou
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Akila Weerasekera
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Bruce M Cohen
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Dost Öngür
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Kathryn E Lewandowski
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
8
|
Zhou Z, Xu Z, Lai W, Chen X, Zeng L, Qian L, Liu X, Jiang W, Zhang Y, Hou G. Reduced myelin content in bipolar disorder: A study of inhomogeneous magnetization transfer. J Affect Disord 2024; 356:363-370. [PMID: 38615848 DOI: 10.1016/j.jad.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/19/2024] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Previous neuroimaging and pathological studies have found myelin-related abnormalities in bipolar disorder (BD), which prompted the use of magnetic resonance (MR) imaging technology sensitive to neuropathological changes to explore its neuropathological basis. We holistically investigated alterations in myelin within BD patients by inhomogeneous magnetization transfer (ihMT), which is sensitive and specific to myelin content. METHODS Thirty-one BD and 42 healthy controls (HC) were involved. Four MR metrics, i.e., ihMT ratio (ihMTR), pseudo-quantitative ihMT (qihMT), magnetization transfer ratio and pseudo-quantitative magnetization transfer (qMT), were compared between groups using analysis methods based on whole-brain voxel-level and white matter regions of interest (ROI), respectively. RESULTS The voxel-wise analysis showed significantly inter-group differences of ihMTR and qihMT in the corpus callosum. The ROI-wise analysis showed that ihMTR, qihMT, and qMT values in BD group were significantly lower than that in HC group in the genu and body of corpus callosum, left anterior limb of the internal capsule, left anterior corona radiate, and bilateral cingulum (p < 0.001). And the qihMT in genu of corpus callosum and right cingulum were negatively correlated with depressive symptoms in BD group. LIMITATIONS This study is based on cross-sectional data and the sample size is limited. CONCLUSION These findings suggest the reduced myelin content of anterior midline structure in the bipolar patients, which might be a critical pathophysiological feature of BD.
Collapse
Affiliation(s)
- Zhifeng Zhou
- Neuropsychiatry Imaging Center, Department of Radiology, Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen 518118, China
| | - Ziyun Xu
- Neuropsychiatry Imaging Center, Department of Radiology, Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen 518118, China
| | - Wentao Lai
- Neuropsychiatry Imaging Center, Department of Radiology, Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen 518118, China
| | - Xiaoqiao Chen
- Neuropsychiatry Imaging Center, Department of Radiology, Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen 518118, China
| | - Lin Zeng
- Neuropsychiatry Imaging Center, Department of Radiology, Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen 518118, China
| | - Long Qian
- MR Research, GE Healthcare, Beijing 100176, China
| | - Xia Liu
- Neuropsychiatry Imaging Center, Department of Radiology, Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen 518118, China
| | - Wentao Jiang
- Neuropsychiatry Imaging Center, Department of Radiology, Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen 518118, China
| | - Yingli Zhang
- Department of Psychology, Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen 518118, China.
| | - Gangqiang Hou
- Neuropsychiatry Imaging Center, Department of Radiology, Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen 518118, China.
| |
Collapse
|
9
|
Song N, Mei S, Wang X, Hu G, Lu M. Focusing on mitochondria in the brain: from biology to therapeutics. Transl Neurodegener 2024; 13:23. [PMID: 38632601 PMCID: PMC11022390 DOI: 10.1186/s40035-024-00409-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/13/2024] [Indexed: 04/19/2024] Open
Abstract
Mitochondria have multiple functions such as supplying energy, regulating the redox status, and producing proteins encoded by an independent genome. They are closely related to the physiology and pathology of many organs and tissues, among which the brain is particularly prominent. The brain demands 20% of the resting metabolic rate and holds highly active mitochondrial activities. Considerable research shows that mitochondria are closely related to brain function, while mitochondrial defects induce or exacerbate pathology in the brain. In this review, we provide comprehensive research advances of mitochondrial biology involved in brain functions, as well as the mitochondria-dependent cellular events in brain physiology and pathology. Furthermore, various perspectives are explored to better identify the mitochondrial roles in neurological diseases and the neurophenotypes of mitochondrial diseases. Finally, mitochondrial therapies are discussed. Mitochondrial-targeting therapeutics are showing great potentials in the treatment of brain diseases.
Collapse
Affiliation(s)
- Nanshan Song
- Department of Pharmacology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shuyuan Mei
- The First Clinical Medical College, Nanjing Medical University, Nanjing, 211166, China
| | - Xiangxu Wang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Gang Hu
- Department of Pharmacology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
- Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, China.
| |
Collapse
|
10
|
Suzuki T, Hattori S, Mizukami H, Nakajima R, Hibi Y, Kato S, Matsuzaki M, Ikebe R, Miyakawa T, Yamakawa K. Inversed Effects of Nav1.2 Deficiency at Medial Prefrontal Cortex and Ventral Tegmental Area for Prepulse Inhibition in Acoustic Startle Response. Mol Neurobiol 2024; 61:622-634. [PMID: 37650965 DOI: 10.1007/s12035-023-03610-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 08/20/2023] [Indexed: 09/01/2023]
Abstract
Numerous pathogenic variants of SCN2A gene, encoding voltage-gated sodium channel α2 subunit Nav1.2 protein, have been identified in a wide spectrum of neuropsychiatric disorders including schizophrenia. However, pathological mechanisms for the schizophrenia-relevant behavioral abnormalities caused by the variants remain poorly understood. Here in this study, we characterized mouse lines with selective Scn2a deletion at schizophrenia-related brain regions, medial prefrontal cortex (mPFC) or ventral tegmental area (VTA), obtained by injecting adeno-associated viruses (AAV) expressing Cre recombinase into homozygous Scn2a-floxed (Scn2afl/fl) mice, in which expression of the Scn2a was locally deleted in the presence of Cre recombinase. The mice lacking Scn2a in the mPFC exhibited a tendency for a reduction in prepulse inhibition (PPI) in acoustic startle response. Conversely, the mice lacking Scn2a in the VTA showed a significant increase in PPI. We also found that the mice lacking Scn2a in the mPFC displayed increased sociability, decreased locomotor activity, and increased anxiety-like behavior, while the mice lacking Scn2a in the VTA did not show any other abnormalities in these parameters except for vertical activity which is one of locomotor activities. These results suggest that Scn2a-deficiencies in mPFC and VTA are inversely relevant for the schizophrenic phenotypes in patients with SCN2A variants.
Collapse
Affiliation(s)
- Toshimitsu Suzuki
- Department of Neurodevelopmental Disorder Genetics, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan.
| | - Satoko Hattori
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
- Research Creation Support Center, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan
| | - Hiroaki Mizukami
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, 329-0498, Japan
| | - Ryuichi Nakajima
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Yurina Hibi
- Department of Neurodevelopmental Disorder Genetics, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Saho Kato
- Department of Neurodevelopmental Disorder Genetics, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Mahoro Matsuzaki
- Department of Neurodevelopmental Disorder Genetics, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Ryu Ikebe
- Department of Neurodevelopmental Disorder Genetics, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Kazuhiro Yamakawa
- Department of Neurodevelopmental Disorder Genetics, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| |
Collapse
|
11
|
Stein A, Zhu C, Du F, Öngür D. Magnetic Resonance Spectroscopy Studies of Brain Energy Metabolism in Schizophrenia: Progression from Prodrome to Chronic Psychosis. Curr Psychiatry Rep 2023; 25:659-669. [PMID: 37812338 DOI: 10.1007/s11920-023-01457-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 10/10/2023]
Abstract
PURPOSE OF REVIEW Schizophrenia (SZ) is a debilitating mental illness; existing treatments are partially effective and associated with significant side effect burden, largely due to our limited understanding of disease mechanisms and the trajectory of disease progression. Accumulating evidence suggests that metabolic changes associated with glucose metabolism, mitochondrial dysfunction, and redox imbalance play an important role in the pathophysiology of schizophrenia. However, the molecular mechanisms associated with these abnormalities in the brains of schizophrenia patients and the ways in which they change over time remain unclear. This paper aims to review the current literature on molecular mechanisms and in vivo magnetic resonance spectroscopy (MRS) studies of impaired energy metabolism in patients at clinical high risk for psychosis, with first-episode SZ, and with chronic SZ. Our review covers research related to high-energy phosphate metabolism, lactate, intracellular pH, redox ratio, and the antioxidant glutathione. RECENT FINDINGS Both first-episode and chronic SZ patients display a significant reduction in creatine kinase reaction activity and redox (NAD + /NADH) ratio in the prefrontal cortex. Chronic, but not first-episode, SZ patients also show a trend toward increased lactate levels and decreased pH value. These findings suggest a progressive shift from oxidative phosphorylation to glycolysis for energy production over the course of SZ, which is associated with redox imbalance and mitochondrial dysfunction. Accumulating evidence indicates that aberrant brain energy metabolism associated with mitochondrial dysfunction and redox imbalance plays a critical role in SZ and will be a promising target for future treatments.
Collapse
Affiliation(s)
- Abigail Stein
- Psychotic Disorders Division, McLean Hospital, Belmont, 02478, USA
- McLean Imaging Center, McLean Hospital, Belmont, 02478, USA
| | - Chenyanwen Zhu
- Psychotic Disorders Division, McLean Hospital, Belmont, 02478, USA
- McLean Imaging Center, McLean Hospital, Belmont, 02478, USA
| | - Fei Du
- Psychotic Disorders Division, McLean Hospital, Belmont, 02478, USA.
- McLean Imaging Center, McLean Hospital, Belmont, 02478, USA.
- Harvard Medical School, Boston, MA, 02115, USA.
| | - Dost Öngür
- Psychotic Disorders Division, McLean Hospital, Belmont, 02478, USA.
- Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
12
|
Neufeld NH, Oliver LD, Mulsant BH, Alexopoulos GS, Hoptman MJ, Tani H, Marino P, Meyers BS, Rothschild AJ, Whyte EM, Bingham KS, Flint AJ, Voineskos AN. Effects of antipsychotic medication on functional connectivity in major depressive disorder with psychotic features. Mol Psychiatry 2023; 28:3305-3313. [PMID: 37258617 DOI: 10.1038/s41380-023-02118-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/02/2023] [Accepted: 05/11/2023] [Indexed: 06/02/2023]
Abstract
The effect of antipsychotic medication on resting state functional connectivity in major depressive disorder (MDD) is currently unknown. To address this gap, we examined patients with MDD with psychotic features (MDDPsy) participating in the Study of the Pharmacotherapy of Psychotic Depression II. All participants were treated with sertraline plus olanzapine and were subsequently randomized to continue sertraline plus olanzapine or be switched to sertraline plus placebo. Participants completed an MRI at randomization and at study endpoint (study completion at Week 36, relapse, or early termination). The primary outcome was change in functional connectivity measured within and between specified networks and the rest of the brain. The secondary outcome was change in network topology measured by graph metrics. Eighty-eight participants completed a baseline scan; 73 completed a follow-up scan, of which 58 were usable for analyses. There was a significant treatment X time interaction for functional connectivity between the secondary visual network and rest of the brain (t = -3.684; p = 0.0004; pFDR = 0.0111). There was no significant treatment X time interaction for graph metrics. Overall, functional connectivity between the secondary visual network and the rest of the brain did not change in participants who stayed on olanzapine but decreased in those switched to placebo. There were no differences in changes in network topology measures when patients stayed on olanzapine or switched to placebo. This suggests that olanzapine may stabilize functional connectivity, particularly between the secondary visual network and the rest of the brain.
Collapse
Affiliation(s)
- Nicholas H Neufeld
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | | | - Benoit H Mulsant
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - George S Alexopoulos
- Department of Psychiatry, Weill Cornell Medicine, Weill Cornell Medical College, Westchester Behavioral Health Center, White Plains, NY, USA
| | - Matthew J Hoptman
- Division of Clinical Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Hideaki Tani
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Patricia Marino
- Department of Psychiatry, Weill Cornell Medicine, Weill Cornell Medical College, Westchester Behavioral Health Center, White Plains, NY, USA
| | - Barnett S Meyers
- Department of Psychiatry, Weill Cornell Medicine, Weill Cornell Medical College, Westchester Behavioral Health Center, White Plains, NY, USA
| | - Anthony J Rothschild
- Department of Psychiatry, University of Massachusetts Chan Medical School and UMass Memorial Health Care, Worcester, MA, USA
| | - Ellen M Whyte
- Department of Psychiatry, University of Pittsburgh School of Medicine and UPMC Western Psychiatric Hospital, Pittsburgh, PA, USA
| | - Kathleen S Bingham
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Centre for Mental Health, University Health Network, Toronto, ON, Canada
| | - Alastair J Flint
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Centre for Mental Health, University Health Network, Toronto, ON, Canada
| | - Aristotle N Voineskos
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Centre for Addiction and Mental Health, Toronto, ON, Canada.
| |
Collapse
|
13
|
Malakasis N, Chavlis S, Poirazi P. Synaptic turnover promotes efficient learning in bio-realistic spiking neural networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541722. [PMID: 37292929 PMCID: PMC10245885 DOI: 10.1101/2023.05.22.541722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
While artificial machine learning systems achieve superhuman performance in specific tasks such as language processing, image and video recognition, they do so use extremely large datasets and huge amounts of power. On the other hand, the brain remains superior in several cognitively challenging tasks while operating with the energy of a small lightbulb. We use a biologically constrained spiking neural network model to explore how the neural tissue achieves such high efficiency and assess its learning capacity on discrimination tasks. We found that synaptic turnover, a form of structural plasticity, which is the ability of the brain to form and eliminate synapses continuously, increases both the speed and the performance of our network on all tasks tested. Moreover, it allows accurate learning using a smaller number of examples. Importantly, these improvements are most significant under conditions of resource scarcity, such as when the number of trainable parameters is halved and when the task difficulty is increased. Our findings provide new insights into the mechanisms that underlie efficient learning in the brain and can inspire the development of more efficient and flexible machine learning algorithms.
Collapse
Affiliation(s)
- Nikos Malakasis
- School of Medicine, University of Crete, Heraklion 70013, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
| | - Spyridon Chavlis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
| | - Panayiota Poirazi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
| |
Collapse
|
14
|
Lee EE, Adamowicz DH, Frangou S. An NIMH Workshop on Non-Affective Psychosis in Midlife and Beyond: Research Agenda on Phenomenology, Clinical Trajectories, Underlying Mechanisms, and Intervention Targets. Am J Geriatr Psychiatry 2023; 31:353-365. [PMID: 36858928 PMCID: PMC10990076 DOI: 10.1016/j.jagp.2023.01.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/05/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023]
Abstract
We present a review of the state of the research in the phenomenology, clinical trajectories, biological mechanisms, aging biomarkers, and treatments for middle-aged and older people with schizophrenia (PwS) discussed at the NIMH sponsored workshop "Non-affective Psychosis in Midlife and Beyond." The growing population of PwS has specific clinical needs that require tailored and mechanistically derived interventions. Differentiating between the effects of aging and disease progression is a key challenge of studying older PwS. This review of the workshop highlights the recent findings in this understudied clinical population and the critical gaps in knowledge and consensus for research priorities. This review showcases the major challenges and opportunities for research to advance clinical care for this growing and understudied population.
Collapse
Affiliation(s)
- Ellen E Lee
- Department of Psychiatry (EEL, DA), University of California San Diego, La Jolla, CA; Sam and Rose Stein Institute for Research on Aging (EEL, DA), University of California San Diego, La Jolla, CA; Desert-Pacific Mental Illness Research Education and Clinical Center, Veterans Affairs San Diego Healthcare System (EEL), San Diego, CA.
| | - David H Adamowicz
- Department of Psychiatry (EEL, DA), University of California San Diego, La Jolla, CA; Sam and Rose Stein Institute for Research on Aging (EEL, DA), University of California San Diego, La Jolla, CA
| | - Sophia Frangou
- Department of Psychiatry (SF), University of British Columbia, Vancouver, British Columbia, Canada; Icahn School of Medicine at Mount Sinai (SF), New York, NY
| |
Collapse
|
15
|
Chen X, Song X, Öngür D, Du F. Association of default-mode network neurotransmitters and inter-network functional connectivity in first episode psychosis. Neuropsychopharmacology 2023; 48:781-788. [PMID: 36788375 PMCID: PMC10066209 DOI: 10.1038/s41386-023-01546-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/16/2023]
Abstract
Multiple psychiatric disorders are characterized by a failure to suppress default-mode network (DMN) activity during tasks and by weaker anti-correlations between DMN and other brain networks at rest. However, the cellular and molecular mechanisms underlying this phenomenon are poorly understood. At the cellular level, neuronal activity is regulated by multiple neurochemical processes including cycling of glutamate and GABA, the major excitatory and inhibitory neurotransmitters in brain. By combining functional MRI and magnetic resonance spectroscopy techniques, it has been shown that the neurotransmitter concentrations in DMN modulate not only functional activity during cognitive tasks, but also the functional connectivity between DMN and other brain networks such as frontoparietal executive control network (CN) at rest in the healthy brain. In the current study, we extend previous research to first episode psychosis (FEP) patients and their relatives. We detected higher glutamate (Glu) levels in the medial prefrontal cortex (MPFC) in FEP compared to healthy controls without a significant difference in GABA. We also observed a significantly lower functional anti-correlated connectivity between critical nodes within the DMN (MPFC) and CN (DLPFC) in FEP. Furthermore, the relationship between MPFC Glu and GABA concentrations and the functional anti-correlation that is seen in healthy people was absent in FEP patients. These findings imply that both the DMN Glu level and the interaction between DMN and CN are affected by the illness, as is the association between neurochemistry and functional connectivity. A better understanding of this observation could provide opportunities for developing novel treatment strategies for psychosis.
Collapse
Affiliation(s)
- Xi Chen
- Psychotic Disorders Division, McLean Hospital, Belmont, CA, 02478, USA
- McLean Imaging Center, McLean Hospital, Belmont, CA, 02478, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Xiaopeng Song
- Psychotic Disorders Division, McLean Hospital, Belmont, CA, 02478, USA
- McLean Imaging Center, McLean Hospital, Belmont, CA, 02478, USA
- Harvard Medical School, Boston, MA, 02115, USA
- Wuhan Zhongke Industrial Research Institute of Medical Science, Wuhan, Hubei, 430075, China
| | - Dost Öngür
- Psychotic Disorders Division, McLean Hospital, Belmont, CA, 02478, USA.
- Harvard Medical School, Boston, MA, 02115, USA.
| | - Fei Du
- Psychotic Disorders Division, McLean Hospital, Belmont, CA, 02478, USA
- McLean Imaging Center, McLean Hospital, Belmont, CA, 02478, USA
- Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
16
|
Radford-Smith DE, Anthony DC. Mechanisms of Maternal Diet-Induced Obesity Affecting the Offspring Brain and Development of Affective Disorders. Metabolites 2023; 13:455. [PMID: 36984895 PMCID: PMC10053489 DOI: 10.3390/metabo13030455] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
Depression and metabolic disease are common disorders that share a bidirectional relationship and continue to increase in prevalence. Maternal diet and maternal behaviour both profoundly influence the developmental trajectory of offspring during the perinatal period. At an epidemiological level, both maternal depression and obesity during pregnancy have been shown to increase the risk of neuropsychiatric disease in the subsequent generation. Considerable progress has been made to understand the mechanisms by which maternal obesity disrupts the developing offspring gut-brain axis, priming offspring for the development of affective disorders. This review outlines such mechanisms in detail, including altered maternal care, the maternal microbiome, inflammation, breast milk composition, and maternal and placental metabolites. Subsequently, offspring may be prone to developing gut-brain interaction disorders with concomitant changes to brain energy metabolism, neurotransmission, and behaviour, alongside gut dysbiosis. The gut microbiome may act as a key modifiable, and therefore treatable, feature of the relationship between maternal obesity and the offspring brain function. Further studies examining the relationship between maternal nutrition, the maternal microbiome and metabolites, and offspring neurodevelopment are warranted to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Daniel E. Radford-Smith
- Department of Psychiatry, University of Oxford, Warneford Hospital, Warneford Lane, Oxford OX37JX, UK
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX13TA, UK
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX13QT, UK
| | - Daniel C. Anthony
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX13QT, UK
| |
Collapse
|
17
|
McGuigan BN, Santini T, Keshavan MS, Prasad KM. Gene Expressions Preferentially Influence Cortical Thickness of Human Connectome Project Atlas Parcellated Regions in First-Episode Antipsychotic-Naïve Psychoses. SCHIZOPHRENIA BULLETIN OPEN 2023; 4:sgad019. [PMID: 37621304 PMCID: PMC10445951 DOI: 10.1093/schizbullopen/sgad019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Altered gene expressions may mechanistically link genetic factors with brain morphometric alterations. Existing gene expression studies have examined selected morphometric features using low-resolution atlases in medicated schizophrenia. We examined the relationship of gene expression with cortical thickness (CT), surface area (SA), and gray matter volume (GMV) of first-episode antipsychotic-naïve psychosis patients (FEAP = 85) and 81 controls, hypothesizing that gene expressions often associated with psychosis will differentially associate with different morphometric features. We explored such associations among schizophrenia and non-schizophrenia subgroups within FEAP group compared to controls. We mapped 360 Human Connectome Project atlas-based parcellations on brain MRI on to the publicly available brain gene expression data from the Allen Brain Institute collection. Significantly correlated genes were investigated using ingenuity pathway analysis to elucidate molecular pathways. CT but not SA or GMV correlated with expression of 1137 out of 15 633 genes examined controlling for age, sex, and average CT. Among these ≈19%, ≈39%, and 8% of genes were unique to FEAP, schizophrenia, and non-schizophrenia, respectively. Variants of 10 among these 1137 correlated genes previously showed genome-wide-association with schizophrenia. Molecular pathways associated with CT were axonal guidance and sphingosine pathways (common to FEAP and controls), selected inflammation pathways (unique to FEAP), synaptic modulation (unique to schizophrenia), and telomere extension (common to NSZ and healthy controls). We demonstrate that different sets of genes and molecular pathways may preferentially influence CT in different diagnostic groups. Genes with altered expressions correlating with CT and associated pathways may be targets for pathophysiological investigations and novel treatment designs.
Collapse
Affiliation(s)
- Bridget N McGuigan
- University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tales Santini
- University of Pittsburgh Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matcheri S Keshavan
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Konasale M Prasad
- University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| |
Collapse
|
18
|
Wei ZZ, Qiu B, Song X, Liu Y. Editorial: Current Status and the Need for Acute and Chronic Modulation of Brain Circuits as Interventions in Neurological and Psychiatric Disorders. Front Hum Neurosci 2022; 16:927382. [PMID: 35832874 PMCID: PMC9271917 DOI: 10.3389/fnhum.2022.927382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Zheng Z. Wei
- Department of Neurology, Beijing Friendship Hospital Center for Neurological Disorders, Beijing, China
- *Correspondence: Zheng Z. Wei
| | - Bin Qiu
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, United States
| | - Xiaopeng Song
- McLean Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA, United States
| | - Yuxuan Liu
- Department of Pediatrics, Stanford University, Stanford, CA, United States
- Yuxuan Liu
| |
Collapse
|
19
|
Modifying the maternal microbiota alters the gut-brain metabolome and prevents emotional dysfunction in the adult offspring of obese dams. Proc Natl Acad Sci U S A 2022; 119:2108581119. [PMID: 35197280 PMCID: PMC8892342 DOI: 10.1073/pnas.2108581119] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 12/13/2022] Open
Abstract
Maternal obesity disturbs brain-gut-microbiota interactions and induces negative affect in the offspring, but its impact on gut and brain metabolism in the offspring (F1) are unknown. Here, we tested whether perinatal intake of a multispecies probiotic could mitigate the abnormal emotional behavior in the juvenile and adult offspring of obese dams. Untargeted NMR-based metabolomic profiling and gene-expression analysis throughout the gut-brain axis were then used to investigate the biology underpinning behavioral changes in the dams and their offspring. Prolonged high-fat diet feeding reduced maternal gut short-chain fatty acid abundance, increased markers of peripheral inflammation, and decreased the abundance of neuroactive metabolites in maternal milk during nursing. Both juvenile (postnatal day [PND] 21) and adult (PND112) offspring of obese dams exhibited increased anxiety-like behavior, which were prevented by perinatal probiotic exposure. Maternal probiotic treatment increased gut butyrate and brain lactate in the juvenile and adult offspring and increased the expression of prefrontal cortex PFKFB3, a marker of glycolytic metabolism in astrocytes. PFKFB3 expression correlated with the increase in gut butyrate in the juvenile and adult offspring. Maternal obesity reduced synaptophysin expression in the adult offspring, while perinatal probiotic exposure increased expression of brain-derived neurotrophic factor. Finally, we showed that the resilience of juvenile and adult offspring to anxiety-like behavior was most prominently associated with increased brain lactate abundance, independent of maternal group. Taken together, we show that maternal probiotic supplementation exerts a long-lasting effect on offspring neuroplasticity and the offspring gut-liver-brain metabolome, increasing resilience to emotional dysfunction induced by maternal obesity.
Collapse
|
20
|
Sami MB, Liddle P. Neurobiology of Psychosis and Schizophrenia 2021: Nottingham Meeting. Schizophr Bull 2022; 48:289-291. [PMID: 35064266 PMCID: PMC8886577 DOI: 10.1093/schbul/sbab152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Musa Basseer Sami
- Institute of Mental Health, University of Nottingham, Nottingham,UK
- Nottinghamshire Healthcare, NHS Foundation Trust, Nottingham, UK
- To whom correspondence should be addressed; Institute of Mental Health, University of Nottingham, Nottingham, UK; tel: +44 115 823 1294, e-mail:
| | - Peter Liddle
- Institute of Mental Health, University of Nottingham, Nottingham,UK
| |
Collapse
|