1
|
Luo B, Zhang C, Zhang H, Su K, Jiang B, Cheng J, Jin Y. Lignin Tandem Catalytic Transformation to Phenolic Aryl Acrylic Esters as Plant Growth Regulators. CHEMSUSCHEM 2025; 18:e202402540. [PMID: 39745133 DOI: 10.1002/cssc.202402540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/01/2025] [Indexed: 01/19/2025]
Abstract
Based on the concept "Derived from Agroforestry, belong to (Servicing) Agroforestry", we herein achieved the tandem catalytic transformation of lignin to phenolic aryl acrylic esters, which can work as plant growth regulators. The transformation involves the first catalytic oxidative fractionation (COF) of lignin into aromatic aldehydes, which can further undergo Knoevenagel condensation with acids/esters with active Cα-H to generate the phenolic aryl acrylic esters. For the first lignin transformation, the Cu salt (CuSO4) in a 7.5 wt % NaOH aqueous solution could achieve the selective cleavage of lignin C-C bonds to provide a 25.0 wt % yield of aromatic aldehydes. Subsequently, the unique basic sites of the self-assembled hybrid system of CeO2 and 2-cyanopyridine could overcome the limitations of traditional homogeneous/heterogeneous bases and facilitate the condensation between phenolic-containing aromatic aldehydes and malonic ester to aryl acrylic esters. Furthermore, the lignin-based phenolic aryl acrylic esters showed different plant growth regulation activity based on the various structural groups for peppermint seed cultivation. The above results can expand the high-value utilization of lignin in the agroforestry field.
Collapse
Affiliation(s)
- Bingbing Luo
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, P.R. China
| | - Chaofeng Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, P.R. China
| | - Huijun Zhang
- Anhui Bio-Breeding Engineering Research Center for Water Melon and Melon, School of Life Sciences, Huaibei Normal University, Huaibei, 235000, P.R. China
| | - Kaiyi Su
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Bo Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, P.R. China
| | - Jinlan Cheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, P.R. China
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, P.R. China
| |
Collapse
|
2
|
Bai Y, Zhang XF, Ma J, Yu M, Shu L, Gu X, Yao J. Comprehensive utilization of poplar sawdust for glucose, xylose and lignin production using aluminum salt-based deep eutectic solvent. Int J Biol Macromol 2025; 308:142657. [PMID: 40164259 DOI: 10.1016/j.ijbiomac.2025.142657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/24/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
Deep eutectic solvents (DESs) demonstrate significant promise in biorefining because of their ability to break down the complex and resistant structure of lignocellulose. In this study, a ternary DES system composed of AlCl3·6H2O, formic acid (FA), and water was designed and applied for the pretreatment of poplar sawdust. The presence of AlCl3·6H2O and FA provides Lewis and Brønsted acid sites, respectively. The addition of water adjusts the acidity of the DES system, thereby increasing the separation efficiency of the three lignocellulose components. Under optimal conditions, DES (30 wt% water content) pretreatment achieved a high cellulose recovery rate of 91.3 %, with xylose yields and lignin recovery rates of 79.5 % and 90.1 %, respectively. Additionally, the cellulose residue achieved an enzymatic digestion efficiency of 97.9 %. The mass balance results revealed that the pretreatment strategy could utilize 77.6 % of the raw poplar sawdust, confirming that the method is economical and feasible. This DES pretreatment technique presents significant promise for biomass valorization.
Collapse
Affiliation(s)
- Yunhua Bai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiong-Fei Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Jiali Ma
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Mengjiao Yu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lian Shu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoli Gu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianfeng Yao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
3
|
Luo Q, Tian S, Qiang Q, Song F, Su W, He H, An Q, Li C. Copper-catalyzed C-C bond cleavage coupling with CN bond formation toward mild synthesis of lignin-based benzonitriles. J Environ Sci (China) 2025; 151:505-515. [PMID: 39481956 DOI: 10.1016/j.jes.2024.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/16/2024] [Accepted: 03/17/2024] [Indexed: 11/03/2024]
Abstract
N-participated lignin depolymerization is of great importance for the transformation of waste lignin into value-added chemicals. The vast majority of developed strategies employ organic amines as nitrogen source, and considerable methods rely on excessive use of strong base, which suffers severe environmental issues. Herein, benzonitrile derivatives are synthesized from oxidized lignin β-O-4 model compounds in the presence of solid nitrogen source (NH4)2CO3 under mild, base-free conditions over commercially available copper catalyst. Mechanism studies suggest the transformation undergoes a one-pot, highly coupled cascade reaction path involving oxidative C-C bond cleavage and in-situ formation of CN bond. Of which, Cu(OAc)2 catalyzes the transfer of hydrogen from Cβ (Cβ-H) to Cα, leading to the cleavage of Cα-Cβ bonds to offer benzaldehyde derivative, this intermediate then reacts in-situ with (NH4)2CO3 to afford the targeted aromatic nitrile product. Tetrabutylammonium iodide (TBAI), acting as a promoter, plays a key role in breaking the Cα-Cβ bonds to form the intermediate benzaldehyde derivative. With this protocol, the feasibility of the production of value-added syringonitrile from birchwood lignin has been demonstrated. This transformation provides a sustainable approach to benzonitrile chemicals from renewable source of lignin.
Collapse
Affiliation(s)
- Qi Luo
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shenglong Tian
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qian Qiang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Fei Song
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wentao Su
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Haiyan He
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Qingda An
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Changzhi Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Science, Beijing 100049, China.
| |
Collapse
|
4
|
Zhao L, Wang S, Li X, Zhang D, Shi J, Xu W. Selective oxidative depolymerization of lignin into aromatic monomers using a palladium-doped polyoxometalate catalyst. Int J Biol Macromol 2025; 311:143644. [PMID: 40311965 DOI: 10.1016/j.ijbiomac.2025.143644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/22/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
The depolymerization of lignin via selective cleavage of β-O-4 linkages is hindered by the tendency of Cα-OH groups to form benzyl carbocations, leading to condensation side reactions. Although pretreatment strategies to block Cα-OH have been widely studied, methods for efficient oxidative depolymerization remain limited. Herein, we propose a polyoxometalate (POM)-based catalytic approach under mild conditions (150 °C, 1 MPa O₂) to address this challenge. A series of metal-doped POM catalysts were synthesized, among which Pd/CsPMA exhibited optimal performance. Through condition optimization (180 min reaction, lignin-to-catalyst mass ratio of 1:1), an aromatic monomer yield of 11.01 wt% was achieved. The main product yield was 81.9 % of the total lignin yield. Investigations using lignin model compounds indicated that Pd/CsPMA promotes selective oxidation of Cα-OH groups, suggesting a synergistic mechanism between palladium and the POM framework. Furthermore, Pd/CsPMA maintained stable catalytic performance over five consecutive cycles without significant deactivation. This work demonstrates the potential of rationally designed POM catalysts for lignin valorization and provides insights into suppressing condensation during biomass conversion.
Collapse
Affiliation(s)
- Luyao Zhao
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Jilin City, Jilin Province 132013, PR China
| | - Shumin Wang
- Heilongjiang Forestry Vocational Technical College, Mudanjiang 157011, PR China
| | - Xiangyu Li
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Jilin City, Jilin Province 132013, PR China
| | - Dan Zhang
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Jilin City, Jilin Province 132013, PR China
| | - Junyou Shi
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Jilin City, Jilin Province 132013, PR China
| | - Wenbiao Xu
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Jilin City, Jilin Province 132013, PR China; Key Laboratory of Biomass Materials Science and Technology of Jilin Province, Beihua University, Jilin City, Jilin Province 132013, PR China.
| |
Collapse
|
5
|
Yao Z, Wang X, Ma Z, Han Y. Modulation of surface properties of metal organic framework-derived carbon substrates through vacancy defects for high-value biomass conversion. J Colloid Interface Sci 2025; 695:137752. [PMID: 40318555 DOI: 10.1016/j.jcis.2025.137752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/27/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
Enhancing the electrocatalytic oxidation of 5-hydroxymethylfurfural (HMF) to 2, 5-furandicarboxylic acid (FDCA) by modulating the surface properties of metal-organic framework-derived (MOF-derived) carbon substrates is an efficient approach. In this work, we successfully fabricated high-performance catalysts for the electrocatalytic oxidation reaction of HMF (HMFOR) to FDCA by introducing sulfur vacancies on NiFe alloy nanoparticle loaded MOF-derived carbon materials. The experimental results show that the use of MOF-derived carbon to support NiFe alloys can inherit the microporous and mesoporous structures of MOF precursors, provide a larger specific surface area, and can effectively limit the agglomeration of NiFe nanoparticles during pyrolysis, providing more active sites. Furthermore, the introduction of sulfur vacancies can lower the reconstruction energy barrier of the NiFe alloy, thereby facilitating the reconstruction of Ni into NiOOH with catalytic activity. The catalytic performance of the prepared catalysts exhibit excellent HMF conversions (100 %), FDCA yield (96.2 %) and Faraday Efficiency (96 %). Density functional theory (DFT) calculations indicate that 5-Hydroxymethyl-2- furancarboxylic acid (HMFCA) is the preferred pathway for the reaction and that the potential limiting step in the overall reaction is the oxidation of 5-formyl-2-furancarboxylic acid (FFCA) to FDCA. This work is expected to provide a unique perspective for improving the catalytic activity of non-precious metal nickel-based catalysts and high value conversion of biomass products.
Collapse
Affiliation(s)
- Zengji Yao
- The Liaoning Province Key Laboratory of Paper and Pulp Engineering, The Key Laboratory of High Value Utilization of Botanical Resources of China, Light Industry College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xing Wang
- The Liaoning Province Key Laboratory of Paper and Pulp Engineering, The Key Laboratory of High Value Utilization of Botanical Resources of China, Light Industry College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Zihao Ma
- The Liaoning Province Key Laboratory of Paper and Pulp Engineering, The Key Laboratory of High Value Utilization of Botanical Resources of China, Light Industry College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Ying Han
- The Liaoning Province Key Laboratory of Paper and Pulp Engineering, The Key Laboratory of High Value Utilization of Botanical Resources of China, Light Industry College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| |
Collapse
|
6
|
Liu C, Ni S, Wang Z, Fu Y, Qin M, Zhang Y. Direct In Situ Conversion of Both Lignin and Hemicellulose into Single Functional Biopolymers via Biomass Fractionation Process. Polymers (Basel) 2025; 17:1029. [PMID: 40284293 PMCID: PMC12030649 DOI: 10.3390/polym17081029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/01/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
During the conventional biomass fractionation, the degradation and dissolution of lignin and hemicellulose result in a complex extract which remains very challenging for the thorough separation and purification of a wide variety of fractionated products, limiting their further utilization. Herein, we proposed a facile and efficient strategy for fractionating biomass and simultaneously in situ converting of both lignin and hemicellulose into single products using a formic acid-phloroglucinol system. The introduced phloroglucinol could react with lignin fragments and hemicellulose-derived products, and the generated intermediate product from hemicellulose can be further condensed with lignin fragments, finally forming single lignin-based functional biopolymers containing heterocyclic structures. Only small amounts of hemicellulosic derivatives, such as oligosaccharides, monosaccharides, furfural, and 5-HMF, were detected in the extracted solution, indicating a highly directional and effective in situ conversion process of hemicellulose. The constructed specific structures on fabric surfaces by using the chelation between lignin-based functional biopolymers and metal ions achieved the preparation of functional fabrics with stable hydrophobicity. The dynamic contact angle of water droplets on the surface of prepared fabric only decreased from 122° to 116.8° over 30 min. This work strategy provides an ideal route to maximize the utilization of both lignin and hemicellulose without involving complex separation and purification procedures. This strategy is the first demonstration of using the targeted fractionation system to achieve the simultaneous conversion of hemicellulose and lignin into single functional biopolymers directly from lignocellulosic biomass.
Collapse
Affiliation(s)
- Caiyun Liu
- State Key Laboratory of Green Papermaking and Resource Recycling, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Shuzhen Ni
- State Key Laboratory of Green Papermaking and Resource Recycling, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Zhaojiang Wang
- State Key Laboratory of Green Papermaking and Resource Recycling, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Yingjuan Fu
- State Key Laboratory of Green Papermaking and Resource Recycling, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Menghua Qin
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250200, China
| | - Yongchao Zhang
- State Key Laboratory of Green Papermaking and Resource Recycling, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| |
Collapse
|
7
|
Zhang Y, Liu S, Xu D, Cheng G. Deep eutectic solvent-enabled lignocellulosic biomass valorization: Toward understanding of biomass pretreatment, lignin dissolution, and lignin's antioxidant activity. Int J Biol Macromol 2025; 301:140257. [PMID: 39880251 DOI: 10.1016/j.ijbiomac.2025.140257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/30/2024] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
A comprehensive study was conducted to determine the effects of water and ethylene glycol (EG) on biomass pretreatment using a binary deep eutectic solvent (DES) containing choline chloride and acetic acid (1ChCl3AC) at a mole ratio of 1:3. Different quantities of water and EG were combined with 1ChCl3AC to pretreat wheat straw, miscanthus, eucalyptus, and sorghum stalk at 130 °C for 6 h. The changes in nanopore structure and surface roughness of wet biomass, as well as biomass crystallinity after 1ChCl3AC-based pretreatment were investigated using XRD and small-angle neutron scattering (SANS). Adding a certain amount of water or EG did not reduce the delignification ratio or saccharification rate. Furthermore, SANS was used to explore the interactions between lignin, 1ChCl3AC, and water. The study found that lignin molecules produced various nanostructures through hydrogen bond, π-π, and hydrophobic interactions in 1ChCl3AC and its aqueous solutions. Following pretreatment, lignins were extracted and fractionated with three organic solvents to minimize structural heterogeneity. A collection of lignin antioxidants with varying activities was obtained, and antioxidant activity assessments revealed three distinct interactions amongst binary lignin combinations. The findings of this study add to our understanding of the interplay of 1ChCl3AC, water, EG, and lignin.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Organic-Inorganic Composites, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 East Road of North Third Ring Road, Chao Yang District, Beijing 100029, China
| | - Shibo Liu
- State Key Laboratory of Organic-Inorganic Composites, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 East Road of North Third Ring Road, Chao Yang District, Beijing 100029, China
| | - Deling Xu
- State Key Laboratory of Organic-Inorganic Composites, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 East Road of North Third Ring Road, Chao Yang District, Beijing 100029, China
| | - Gang Cheng
- State Key Laboratory of Organic-Inorganic Composites, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 East Road of North Third Ring Road, Chao Yang District, Beijing 100029, China.
| |
Collapse
|
8
|
Zheng S, Sun S, Manker LP, Luterbacher JS. Aldehyde-Stabilization Strategies for Building Biobased Consumer Products around Intact lignocellulosic Structures. Acc Chem Res 2025; 58:877-892. [PMID: 40048243 DOI: 10.1021/acs.accounts.4c00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Dwindling fossil resources and their associated environmental concerns have increased interest in biobased products. In particular, many approaches to convert lignocellulosic biomass into small-molecule building blocks are being explored via thermal, chemical, and biological processes. Depending on their structure, these molecules can be used as direct (i.e., drop-in) or indirect (different molecule from what is used today) substitutes for petrochemicals. In all such cases, biomass must be deconstructed, which involves the depolymerization of lignin and polysaccharides as well as their further transformation to produce these substitutes. Deconstruction often requires harsh conditions that cause degradation, and further upgrading implies multiple conversion steps, especially for drop-in molecules, all of which lead to low atom economy. Our group has developed an aldehyde-stabilization strategy that facilitates the depolymerization of lignocellulose to monomers in high yields by stabilizing intermediates under biomass deconstruction conditions. This strategy has now been adapted to prepare indirect substitutes for petrochemicals with very high atom economy including biobased solvents, plastic precursors, adhesives, and surfactants, which have widespread applications in modern society.In this Account, we first introduce the function of aldehydes using formaldehyde (FA) as an example. Specifically, we discuss their role in assisting lignin isolation and their ability to stabilize lignin by looking at the lignin monomer yields that can be obtained after hydrogenolysis of the associated aldehyde-functionalized lignin. Highly selective production of lignin monomers was achieved using acetaldehyde (AA) or propionaldehyde (PPA) as a stabilization reagent via either reductive or oxidative depolymerization. In a typical FA-assisted fractionation, hemicellulose was directly converted into diformylxylose (DFX), while cellulose with properties similar to those obtained by organosolv was isolated but could be converted to diformyl-glucose isomers (DFGs) by further hydrolysis. These stable molecules provide us a new method to preserve sugar molecules that often degrade during acidic fractionation, which will be discussed in Section 3. Besides, DFX can also be used as a green solvent (Section 4), while FA-lignin exhibits excellent adhesion properties for plywood preparation (Section 5). Biobased glyoxylic acid (GA) was used to convert hemicellulose into a high yield of dimethylglyoxylic-acid-xylose (DMGX), a terephthalic acid (TA) substitute for bioplastics production (Section 6), while GA-lignin demonstrates great amphiphilic properties and finds applications as surfactants in cosmetic products (Section 7). When fatty aldehydes were used as stabilization reagents, both lignin and hemicellulose were converted to surfactants by downstream defunctionalization (Section 7). We will also discuss the current limitations of this aldehyde-stabilization strategy for biomass utilization as well as potential solutions and improvements to said limitations. With this Account, we hope to spur further interest in aldehyde stabilization as a tool to deconstruct biomass and build new consumer products around functionalized and thus largely preserved natural structures.
Collapse
Affiliation(s)
- Shasha Zheng
- Laboratory of Sustainable and Catalytic Processing, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Songlan Sun
- Laboratory of Sustainable and Catalytic Processing, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Lorenz P Manker
- Laboratory of Sustainable and Catalytic Processing, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Jeremy S Luterbacher
- Laboratory of Sustainable and Catalytic Processing, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| |
Collapse
|
9
|
Zhang X, Xu Z, Sun Y, Mohanty SK, Lei H, Khan E, Tsang DCW. Implications of Pyrolytic Gas Dynamic Evolution on Dissolved Black Carbon Formed During Production of Biochar from Nitrogen-Rich Feedstock. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2699-2710. [PMID: 39801135 PMCID: PMC11823457 DOI: 10.1021/acs.est.4c08231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 02/12/2025]
Abstract
Gases and dissolved black carbon (DBC) formed during pyrolysis of nitrogen-rich feedstock would affect atmospheric and aquatic environments. Yet, the mechanisms driving biomass gas evolution and DBC formation are poorly understood. Using thermogravimetric-Fourier transform infrared spectrometry and two-dimensional correlation spectroscopy, we correlated the temperature-dependent primary noncondensable gas release sequence (H2O → CO2 → HCN, NH3 → CH4 → CO) with specific defunctionalization stages in the order: dehydration, decarboxylation, denitrogenation, demethylation, and decarbonylation. Our results revealed that proteins in feedstock mainly contributed to gas releases, and low-volatile pyrolytic products contributed to DBC. Combining mass difference analysis with Fourier transform ion cyclotron resonance mass spectrometry, we showed that 44-60% of DBC molecular compositions were correlated with primary gas-releasing reactions. Dehydration (-H2O), with lower reaction energy barrier, contributed to DBC formation most at 350 and 450 °C, whereas decarboxylation (-CO2) and deamidization (-HCNO) prevailed in contributing to DBC formation at 550 °C. The aromaticity changes of DBC products formed via gas emissions were deduced. Compared to their precursors, dehydration increased DBC aromaticity, while deamidization reduced the aromaticity of DBC products. These insights on pyrolytic byproducts help predict and tune DBC properties via changing gas formed during biochar production, minimizing their negative environmental impacts.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- Department
of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong
Kong 999077, China
| | - Zibo Xu
- Department
of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Yuqing Sun
- School
of Agriculture, Sun Yat-sen University, Shenzhen 518107, Guangdong, China
| | - Sanjay K. Mohanty
- Civil
and Environmental Engineering Department, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Hanwu Lei
- Department
of Biological Systems Engineering, Washington
State University, Richland, Washington 99354-1671, United States
| | - Eakalak Khan
- Civil and
Environmental Engineering and Construction Department, University of Nevada, Las Vegas, Nevada 89154-4015, United States
| | - Daniel C. W. Tsang
- Department
of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| |
Collapse
|
10
|
Miao G, Zhou Y, Yang S, He L, Xu F. A green and fast semi-liquefaction strategy: One-step preparation of high-yield nanocellulose particles. Carbohydr Polym 2025; 347:122694. [PMID: 39486935 DOI: 10.1016/j.carbpol.2024.122694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/13/2024] [Accepted: 08/29/2024] [Indexed: 11/04/2024]
Abstract
The complexity and cost of the biorefinery industry hinder the high-value utilization of lignocellulose. Herein, we propose a green, fast, and economical oxygen-alkali-ethanol (OAE) semi-liquefaction strategy for achieving one-step preparation of hemp stalk material (HSM) biomass into nanocellulose particles (NCPs). Oxygen, alkali, and ethanol have obvious synergistic effects during the semi-liquefaction process, which jointly promote the opening and depolymerization of the crystalline regions of cellulose. The presence of hemicellulose in HSM affects the preparation of NCPs, and the removal of hemicellulose in advance can significantly increase the yield of NCPs. The results showed that the yield of NCPs was as high as 90.14 % with 92.30 % purity after treatment at 120 °C for 2 h. The conversion of rod-shaped nanocellulose to NCPs was successfully captured, and Van der Waals forces were hypothesized to play a dominant role in the formation of NCPs by molecular dynamics simulations. Moreover, the semi-liquefaction can simultaneously fractionate uncondensed lignin with a yield of 46.52 %. With ethanol as a hydrogen donor, the residual lignin was effectively converted to aromatic monomers, predominantly vanillin and syringaldehyde.
Collapse
Affiliation(s)
- Guohua Miao
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Yan Zhou
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Shibo Yang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Liang He
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Feng Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
11
|
Webber MS, Watson J, Zhu J, Jang JH, Çağlayan M, Heyne JS, Beckham GT, Román-Leshkov Y. Lignin deoxygenation for the production of sustainable aviation fuel blendstocks. NATURE MATERIALS 2024; 23:1622-1638. [PMID: 39592761 DOI: 10.1038/s41563-024-02024-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 09/06/2024] [Indexed: 11/28/2024]
Abstract
Lignin is an abundant source of renewable aromatics that has long been targeted for valorization. Traditionally, the inherent heterogeneity and reactivity of lignin has relegated it to direct combustion, but its higher energy density compared with polysaccharides makes it an ideal candidate for biofuel production. This Review critically assesses lignin's potential as a substrate for sustainable aviation fuel blendstocks. Lignin can generate the necessary cyclic compounds for a fully renewable, sustainable aviation fuel when integrated with current paraffinic blends and can meet the current demand 2.5 times over. Using an energy-centric analysis, we show that lignin conversion technologies have the near-term potential to match the enthalpic yields of existing commercial sustainable aviation fuel production processes. Key factors influencing the viability of technologies for converting lignin to sustainable aviation fuel include lignin structure, delignification extent, depolymerization performance, and the development of stable and tunable deoxygenation catalysts.
Collapse
Affiliation(s)
- Matthew S Webber
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jamison Watson
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jie Zhu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jun Hee Jang
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
- Center for Bioenergy Innovation, Oak Ridge, TN, USA
| | - Mustafa Çağlayan
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Joshua S Heyne
- Bioproduct Sciences and Engineering Laboratory, School of Engineering and Applied Science, Washington State University, Richland, WA, USA
- Energy and Environment Directorate, Energy Processes and Materials Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA.
- Center for Bioenergy Innovation, Oak Ridge, TN, USA.
| | - Yuriy Román-Leshkov
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
12
|
Li H, Sun X, Li T, Zhao Z, Wang H, Yang X, Zhang C, Wang F. Photothermal catalytic transfer hydrogenolysis of protolignin. Nat Commun 2024; 15:10176. [PMID: 39580480 PMCID: PMC11585588 DOI: 10.1038/s41467-024-54664-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024] Open
Abstract
Photothermal catalysis is a promising strategy to combine the advantages of both thermal-catalysis and photocatalysis. Herein we achieve the protolignin conversion to aromatics via the photothermal catalytic transfer hydrogenolysis process intensified by the in-situ protection strategy. The Pd/TiO2 at 140 °C with UV irradiation can catalyze the reforming of primary alcohols to aldehydes and active H* species, which further participate in the acetalation protection of the 1,3-diol group of β-O-4 linkage and mediate the hydrogenolysis of Cβ-OAr bonds, respectively. The conversion of birch sawdust with ethanol as the hydrogen donor provides a 40 wt% yield of phenolic monomers, compared with an 11 wt% monomer yield obtained from the conversion of extracted 1,3-diol-protected lignin under the same conditions. The synergistic effect of photocatalysis and thermal-catalysis contributes to the prior cleavage of the Cβ-OAr bond before other C-O bonds. The feasibility of solar-light-driven photothermal catalytic system is demonstrated.
Collapse
Affiliation(s)
- Hongji Li
- College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, China.
| | - Xiaotong Sun
- College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, China
| | - Ting Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, 159 LongPan Road, Nanjing, China
| | - Zhitong Zhao
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, China
| | - Hui Wang
- College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, China
| | - Xiaomei Yang
- College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, China
| | - Chaofeng Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, 159 LongPan Road, Nanjing, China.
| | - Feng Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
13
|
Palumbo CT, Ouellette ET, Zhu J, Román-Leshkov Y, Stahl SS, Beckham GT. Accessing monomers from lignin through carbon-carbon bond cleavage. Nat Rev Chem 2024; 8:799-816. [PMID: 39367248 DOI: 10.1038/s41570-024-00652-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 10/06/2024]
Abstract
Lignin, the heterogeneous aromatic macromolecule found in the cell walls of vascular plants, is an abundant feedstock for the production of biochemicals and biofuels. Many valorization schemes rely on lignin depolymerization, with decades of research focused on accessing monomers through C-O bond cleavage, given the abundance of β-O-4 bonds in lignin and the large number of available C-O bond cleavage strategies. Monomer yields are, however, invariably lower than desired, owing to the presence of recalcitrant C-C bonds whose selective cleavage remains a major challenge in catalysis. In this Review, we highlight lignin C-C cleavage reactions, including those of linkages arising from biosynthesis (β-1, β-5, β-β and 5-5) and industrial processing (5-CH2-5 and α-5). We examine multiple approaches to C-C cleavage, including homogeneous and heterogeneous catalysis, photocatalysis and biocatalysis, to identify promising strategies for further research and provide guidelines for definitive measurements of lignin C-C bond cleavage.
Collapse
Affiliation(s)
- Chad T Palumbo
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Erik T Ouellette
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Jie Zhu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yuriy Román-Leshkov
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Shannon S Stahl
- Department of Chemistry. Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA.
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA.
- Center for Bioenergy Innovation, Oak Ridge, TN, USA.
| |
Collapse
|
14
|
Chen M, Li Y, Liu H, Zhang D, Guo Y, Shi QS, Xie X. Lignin hydrogenolysis: Tuning the reaction by lignin chemistry. Int J Biol Macromol 2024; 279:135169. [PMID: 39218172 DOI: 10.1016/j.ijbiomac.2024.135169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Replacing fossil resource with biomass is one of the promising approaches to reduce our carbon footprint. Lignin is one of the three major components of lignocellulosic biomass, accounting for 10-35 wt% of dried weight of the biomass. Hydrogenolytic depolymerization of lignin is attracting increasing attention because of its capacity of utilizing lignin in its uncondensed form and compatibility with the biomass fractionation processes. Lignin is a natural aromatic polymer composed of a variety of monolignols associated with a series of lignin linkage motifs. Hydrogenolysis cleaves various ether bonds in lignin and releases phenolic monomers which can be further upgraded into valuable products, i.e., drugs, terephthalic acid, phenol. This review provides an overview of the state-of-the-art advances of the reagent (lignin), products (hydrol lignin), mass balance, and mechanism of the lignin hydrogenolysis reaction. The chemical structure of lignin is reviewed associated with the free radical coupling of monolignols and the chemical reactions of lignin upon isolation processes. The reactions of lignin linkages upon hydrogenolysis are discussed. The components of hydrol lignin and the selectivity production of phenolic monomers are reviewed. Future challenges on hydrogenolysis of lignin are proposed. This article provides an overview of lignin hydrogenolysis reaction which shows light on the generation of optimized lignin ready for hydrogenolytic depolymerization.
Collapse
Affiliation(s)
- Mingjie Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, 100 Central Xianlie Road, Guangzhou, 510070, China; Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; Guangdong Dimei New Materials Technology Co. Ltd., 100 Central Xianlie Road, Guangzhou, 510070, China
| | - Yan Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, 100 Central Xianlie Road, Guangzhou, 510070, China; Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Huiming Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, 100 Central Xianlie Road, Guangzhou, 510070, China
| | - Dandan Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, 100 Central Xianlie Road, Guangzhou, 510070, China
| | - Yanzhu Guo
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Qing-Shan Shi
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, 100 Central Xianlie Road, Guangzhou, 510070, China.
| | - Xiaobao Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, 100 Central Xianlie Road, Guangzhou, 510070, China.
| |
Collapse
|
15
|
Zhao Y, Xue L, Huang Z, Lei Z, Xie S, Cai Z, Rao X, Zheng Z, Xiao N, Zhang X, Ma F, Yu H, Xie S. Lignin valorization to bioplastics with an aromatic hub metabolite-based autoregulation system. Nat Commun 2024; 15:9288. [PMID: 39468081 PMCID: PMC11519575 DOI: 10.1038/s41467-024-53609-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024] Open
Abstract
Exploring microorganisms with downstream synthetic advantages in lignin valorization is an effective strategy to increase target product diversity and yield. This study ingeniously engineers the non-lignin-degrading bacterium Ralstonia eutropha H16 (also known as Cupriavidus necator H16) to convert lignin, a typically underutilized by-product of biorefinery, into valuable bioplastic polyhydroxybutyrate (PHB). The aromatic metabolism capacities of R. eutropha H16 for different lignin-derived aromatics (LDAs) are systematically characterized and complemented by integrating robust functional modules including O-demethylation, aromatic aldehyde metabolism and the mitigation of by-product inhibition. A pivotal discovery is the regulatory element PcaQ, which is highly responsive to the aromatic hub metabolite protocatechuic acid during lignin degradation. Based on the computer-aided design of PcaQ, we develop a hub metabolite-based autoregulation (HMA) system. This system can control the functional genes expression in response to heterologous LDAs and enhance metabolism efficiency. Multi-module genome integration and directed evolution further fortify the strain's stability and lignin conversion capacities, leading to PHB production titer of 2.38 g/L using heterologous LDAs as sole carbon source. This work not only marks a leap in bioplastic production from lignin components but also provides a strategy to redesign the non-LDAs-degrading microbes for efficient lignin valorization.
Collapse
Affiliation(s)
- Yiquan Zhao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Le Xue
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhiyi Huang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zixian Lei
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shiyu Xie
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhenzhen Cai
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinran Rao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ze Zheng
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ning Xiao
- National key Laboratory of Non-food Biomass Energy Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Xiaoyu Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fuying Ma
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongbo Yu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shangxian Xie
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- National key Laboratory of Non-food Biomass Energy Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China.
| |
Collapse
|
16
|
Zheng S, Zhang Z, He S, Yang H, Atia H, Abdel-Mageed AM, Wohlrab S, Baráth E, Tin S, Heeres HJ, Deuss PJ, de Vries JG. Benzenoid Aromatics from Renewable Resources. Chem Rev 2024; 124:10701-10876. [PMID: 39288258 PMCID: PMC11467972 DOI: 10.1021/acs.chemrev.4c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/25/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024]
Abstract
In this Review, all known chemical methods for the conversion of renewable resources into benzenoid aromatics are summarized. The raw materials that were taken into consideration are CO2; lignocellulose and its constituents cellulose, hemicellulose, and lignin; carbohydrates, mostly glucose, fructose, and xylose; chitin; fats and oils; terpenes; and materials that are easily obtained via fermentation, such as biogas, bioethanol, acetone, and many more. There are roughly two directions. One much used method is catalytic fast pyrolysis carried out at high temperatures (between 300 and 700 °C depending on the raw material), which leads to the formation of biochar; gases, such as CO, CO2, H2, and CH4; and an oil which is a mixture of hydrocarbons, mostly aromatics. The carbon selectivities of this method can be reasonably high when defined small molecules such as methanol or hexane are used but are rather low when highly oxygenated compounds such as lignocellulose are used. The other direction is largely based on the multistep conversion of platform chemicals obtained from lignocellulose, cellulose, or sugars and a limited number of fats and terpenes. Much research has focused on furan compounds such as furfural, 5-hydroxymethylfurfural, and 5-chloromethylfurfural. The conversion of lignocellulose to xylene via 5-chloromethylfurfural and dimethylfuran has led to the construction of two large-scale plants, one of which has been operational since 2023.
Collapse
Affiliation(s)
- Shasha Zheng
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Zhenlei Zhang
- State
Key Laboratory of Heavy Oil Processing, College of Chemical Engineering
and Environment, China University of Petroleum
(Beijing), 102249 Beijing, China
| | - Songbo He
- Joint International
Research Laboratory of Circular Carbon, Nanjing Tech University, Nanjing 211816, PR China
| | - Huaizhou Yang
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Hanan Atia
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Ali M. Abdel-Mageed
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Sebastian Wohlrab
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Eszter Baráth
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Sergey Tin
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Hero J. Heeres
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Peter J. Deuss
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Johannes G. de Vries
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| |
Collapse
|
17
|
Mamtimin T, Ouyang X, Wu WM, Zhou T, Hou X, Khan A, Liu P, Zhao YL, Tang H, Criddle CS, Han H, Li X. Novel Feruloyl Esterase for the Degradation of Polyethylene Terephthalate (PET) Screened from the Gut Microbiome of Plastic-Degrading Mealworms ( Tenebrio Molitor Larvae). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17717-17731. [PMID: 39315846 DOI: 10.1021/acs.est.4c01495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Mealworms (Tenebrio molitor) larvae can degrade both plastics and lignocellulose through synergistic biological activities of their gut microbiota because they share similarities in chemical and physical properties. Here, a total of 428 genes encoding lignocellulose-degrading enzymes were screened from the gut microbiome of T. molitor larvae to identify poly(ethylene terephthalate) (PET)-degrading activities. Five genes were successfully expressed in E. coli, among which a feruloyl esterase-like enzyme named TmFae-PETase demonstrated the highest PET degradation activity, converting PET into MHET (0.7 mgMHETeq ·h-1·mgenzyme-1) and TPA (0.2 mgTPAeq ·h-1·mgenzyme-1) at 50 °C. TmFae-PETase showed a preference for the hydrolysis of ferulic acid methyl ester (MFA) in the presence of both PET and MFA. Site-directed mutagenesis and molecular dynamics simulations of TmFae-PETase revealed similar catalytic mechanisms for both PET and MFA. TmFae-PETase effectively depolymerized commercial PET, making it a promising candidate for application. Additionally, the known PET hydrolases IsPETase, FsC, and LCC also hydrolyzed MFA, indicating a potential origin of PET hydrolytic activity from its lignocellulosic-degrading abilities. This study provides an innovative strategy for screening PET-degrading enzymes identified from lignocellulose degradation-related enzymes within the gut microbiome of plastic-degrading mealworms. This discovery expands the existing pool of plastic-degrading enzymes available for resource recovery and bioremediation applications.
Collapse
Affiliation(s)
- Tursunay Mamtimin
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Center for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Xingyu Ouyang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200000, China
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Stanford University, Stanford, California 94305, United States
| | - Tuoyu Zhou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaoxiao Hou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Pu Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200000, China
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200000, China
| | - Craig S Criddle
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Stanford University, Stanford, California 94305, United States
| | - Huawen Han
- Center for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
18
|
Bujanovic BM, Hirth K, Ralph S, Reiner RS, Dongre P, Mickles C, Karlen SD, Baez C, Clemons C. Use of Renewable Alcohols in Autocatalytic Production of Aspen Organosolv Lignins. ACS OMEGA 2024; 9:38227-38247. [PMID: 39281950 PMCID: PMC11391562 DOI: 10.1021/acsomega.4c05981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/18/2024]
Abstract
This study aimed to investigate the intrinsic efficiency of renewable alcohols, applied under autocatalytic conditions, for removing lignin from aspen and hot-water-extracted aspen while substantially preserving the lignin structure so as to facilitate various valorization strategies. Ethylene glycol (EG), propylene glycol (PG), 1,4-butanediol (BDO), ethanol (EtOH), and tetrahydrofurfuryl alcohol (THFA) were evaluated based on their lignin solubilization ability, expressed as the relative energy difference (RED) following the principles of the Hansen solubility theory. The findings indicate that alcohols with a higher lignin solubilization potential lead to increased delignification, almost 90%, and produce a lignin with a higher content of β-O-4 bonds, up to 68% of those found in aspen milled wood lignin, thereby indicating their potential for valorization through depolymerization. However, these alcohols also produce lignin with a higher content of β-β and β-5 bonds, resulting in a higher molecular weight and polydispersity, due to readily occurring homolytic reactions. Hot-water extraction (HWE) conducted prior to alcohol treatment reduced the delignification efficiency and resulted in a lignin with a lower β-O-4 bond content. The lignins produced in these experiments exhibited a superior UV-A absorption capacity compared with synthetic benzophenone, as well as a greater radical quenching ability than synthetic butylated hydroxytoluene, indicating their potential for use in the protection of polymers against degradation.
Collapse
Affiliation(s)
- Biljana M Bujanovic
- US Department of Agriculture-Forest Service-Forest Products Laboratory, Madison, Wisconsin 53726, United States
| | - Kolby Hirth
- US Department of Agriculture-Forest Service-Forest Products Laboratory, Madison, Wisconsin 53726, United States
| | - Sally Ralph
- US Department of Agriculture-Forest Service-Forest Products Laboratory, Madison, Wisconsin 53726, United States
| | - Richard S Reiner
- US Department of Agriculture-Forest Service-Forest Products Laboratory, Madison, Wisconsin 53726, United States
| | - Prajakta Dongre
- Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Clayton Mickles
- US Department of Agriculture-Forest Service-Forest Products Laboratory, Madison, Wisconsin 53726, United States
| | - Steven D Karlen
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53726, United States
| | - Carlos Baez
- US Department of Agriculture-Forest Service-Forest Products Laboratory, Madison, Wisconsin 53726, United States
| | - Craig Clemons
- US Department of Agriculture-Forest Service-Forest Products Laboratory, Madison, Wisconsin 53726, United States
| |
Collapse
|
19
|
Jang JH, Callejón Álvarez J, Neuendorf QS, Román-Leshkov Y, Beckham GT. Reducing Solvent Consumption in Reductive Catalytic Fractionation through Lignin Oil Recycling. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:12919-12926. [PMID: 39211385 PMCID: PMC11351702 DOI: 10.1021/acssuschemeng.4c04089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Reductive catalytic fractionation (RCF) enables the simultaneous valorization of lignin and carbohydrates in lignocellulosic biomass through solvent-based lignin extraction, followed by depolymerization and catalytic stabilization of the extracted lignin. Process modeling has shown that the use of exogenous organic solvent in RCF is a challenge for economic and environmental feasibility, and previous works proposed that lignin oil, a mixture of lignin-derived monomers and oligomers produced by RCF, can be used as a cosolvent in RCF. Here, we further explore the potential of RCF solvent recycling with lignin oil, extending the feasible lignin oil concentration in the solvent to 100 wt %, relative to the previously demonstrated 0-19 wt % range. Solvents containing up to 80 wt % lignin oil exhibited 83-93% delignification, comparable to 83% delignification with a methanol-water mixture, and notably, using lignin oil solely as a solvent achieved 67% delignification in the absence of water. In additional experiments, applying the RCF solvent recycling approach to ten consecutive RCF reactions resulted in a final lignin oil concentration of 11 wt %, without detrimental impacts on lignin extraction, lignin oil molar mass distribution, aromatic monomer selectivity, and cellulose retention. Overall, this work further demonstrates the potential for using lignin oil as an effective cosolvent in RCF, which can reduce the burden on downstream solvent recovery.
Collapse
Affiliation(s)
- Jun Hee Jang
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Center
for Bioenergy Innovation, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Júlia Callejón Álvarez
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Center
for Bioenergy Innovation, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37830, United States
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Quinn S. Neuendorf
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Yuriy Román-Leshkov
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Gregg T. Beckham
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Center
for Bioenergy Innovation, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37830, United States
| |
Collapse
|
20
|
Bai Y, Zhang XF, Yu M, Yao J. A designed ZrOCl 2/ethylene glycol deep eutectic solvent for efficient lignocellulose valorization. Int J Biol Macromol 2024; 275:133507. [PMID: 38944082 DOI: 10.1016/j.ijbiomac.2024.133507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/04/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Deep eutectic solvents (DESs) hold great potential in biorefining because they can efficiently deconstruct the recalcitrant structure of lignocellulose. In particular, inorganic salts with Lewis acids have been proven to be effective at cleaving lignin-carbohydrate complexes. Herein, a Zr-based DES system composed of metal chloride hydrate (ZrOCl2·8H2O) and ethylene glycol (EG) was designed and used for poplar powder pretreatment. Zr4+-based salts provide sufficient acidity for lignocellulose depolymerization. The acidity of the DES was analysed by the Kamlet-Taft solvatochromic parameter, and the results demonstrated that the acidity can be regulated by the DES composition. Under the optimum conditions (ZrOCl2·8H2O:EG molar ratio of 1:2), the DES pretreatment removes nearly 100 % hemicellulose and 94.7 % lignin. The recovered lignin exhibited a low polydispersity of 1.7. The cellulose residues deliver an efficiency of 94.4 % upon enzymatic digestion. Moreover, the DES can be easily recovered with high yield and purity, and the recycled DES still maintains high delignification and enzymatic hydrolysis efficiencies. The proposed DES pretreatment technology is promising for biomass valorization.
Collapse
Affiliation(s)
- Yunhua Bai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiong-Fei Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Mengjiao Yu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianfeng Yao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
21
|
Zhang Z, Li Q, Wu X, Bourmaud C, Vlachos DG, Luterbacher J, Bodi A, Hemberger P. A solution for 4-propylguaiacol hydrodeoxygenation without ring saturation. Nat Commun 2024; 15:6330. [PMID: 39068201 PMCID: PMC11283461 DOI: 10.1038/s41467-024-50724-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024] Open
Abstract
We investigate solvent effects in the hydrodeoxygenation of 4-propylguaiacol (4PG, 166 amu), a key lignin-derived monomer, over Ru/C catalyst by combined operando synchrotron photoelectron photoion coincidence (PEPICO) spectroscopy and molecular dynamics simulations. With and without isooctane co-feeding, ring-hydrogenated 2-methoxy-4-propylcyclohexanol (172 amu) is the first product, due to the favorable flat adsorption configuration of 4PG on the catalyst surface. In contrast, tetrahydrofuran (THF)-a polar aprotic solvent that is representative of those used for lignin solubilization and upgrading-strongly coordinates to the catalyst surface at the oxygen atom. This induces a local steric hindrance, blocking the flat adsorption of 4PG more effectively, as it needs more Ru sites than the tilted adsorption configuration revealed by molecular dynamics simulations. Therefore, THF suppresses benzene ring hydrogenation, favoring a demethoxylation route that yields 4-propylphenol (136 amu), followed by dehydroxylation to propylbenzene (120 amu). Solvent selection may provide new avenues for controlling catalytic selectivity.
Collapse
Affiliation(s)
- Zihao Zhang
- Paul Scherrer Institute, Villigen, 5232, Switzerland
| | - Qiang Li
- Catalysis Center for Energy Innovation, University of Delaware, 221 Academy St., Newark, DE, 19716, USA
| | - Xiangkun Wu
- Paul Scherrer Institute, Villigen, 5232, Switzerland
| | - Claire Bourmaud
- Laboratory of Sustainable and Catalytic Processing, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Station 6, Lausanne, 1015, Switzerland
| | - Dionisios G Vlachos
- Catalysis Center for Energy Innovation, University of Delaware, 221 Academy St., Newark, DE, 19716, USA.
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, DE, 19716, USA.
| | - Jeremy Luterbacher
- Laboratory of Sustainable and Catalytic Processing, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Station 6, Lausanne, 1015, Switzerland.
| | - Andras Bodi
- Paul Scherrer Institute, Villigen, 5232, Switzerland.
| | | |
Collapse
|
22
|
Subbotina E, Souza LR, Zimmerman J, Anastas P. Room temperature catalytic upgrading of unpurified lignin depolymerization oil into bisphenols and butene-2. Nat Commun 2024; 15:5892. [PMID: 39003256 PMCID: PMC11246530 DOI: 10.1038/s41467-024-49812-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 06/19/2024] [Indexed: 07/15/2024] Open
Abstract
Lignin is the largest source of renewable aromatics on earth. Despite numerous techniques for lignin depolymerization into mixtures of valuable monomers, methods for their upgrading into final products are scarce. The state of the art upgrading methods generally rely on catalytic funneling, requiring high temperatures, catalyst loadings and hydrogen pressure, and lead to the loss of functionality and bio-based carbon content. Here an alternative approach is presented, whereby the target monomers are selectively converted in unpurified mixtures into easily separable final products under mild conditions. We use reductive catalytic fractionation of wood to convert lignin into iso-eugenol and propenyl syringol enriched oil followed by an olefin metathesis to yield bisphenols and butene-2, thus, valorizing all bio-based carbons. To further demonstrate the synthetic utility of the obtained bisphenols we converted them into polyesters with a high glass transition temperature (Tg = 140.3 °C) and thermal stability (Td50% = 330 °C).
Collapse
Affiliation(s)
- Elena Subbotina
- Department of Chemistry, Yale University, 225 Prospect St, New Haven, CT, USA.
- Department of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Teknikringen 56, 100 44, Stockholm, Sweden.
- Center for Green Chemistry & Green Engineering at Yale, 370 Prospect St, New Haven, CT, USA.
| | - Layra Rodrigues Souza
- Center for Green Chemistry & Green Engineering at Yale, 370 Prospect St, New Haven, CT, USA
| | - Julie Zimmerman
- Center for Green Chemistry & Green Engineering at Yale, 370 Prospect St, New Haven, CT, USA
- Department of Chemical and Environmental Engineering, Yale University, 17 Hillhouse Ave, New Haven, CT, USA
- Yale School of the Environment, 195 Prospect St, New Haven, CT, USA
| | - Paul Anastas
- Department of Chemistry, Yale University, 225 Prospect St, New Haven, CT, USA.
- Center for Green Chemistry & Green Engineering at Yale, 370 Prospect St, New Haven, CT, USA.
- Department of Chemical and Environmental Engineering, Yale University, 17 Hillhouse Ave, New Haven, CT, USA.
- Yale School of the Environment, 195 Prospect St, New Haven, CT, USA.
- Yale School of Public Health, 60 College St, New Haven, CT, USA.
| |
Collapse
|
23
|
Dixon RA, Puente-Urbina A, Beckham GT, Román-Leshkov Y. Enabling Lignin Valorization Through Integrated Advances in Plant Biology and Biorefining. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:239-263. [PMID: 39038247 DOI: 10.1146/annurev-arplant-062923-022602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Despite lignin having long been viewed as an impediment to the processing of biomass for the production of paper, biofuels, and high-value chemicals, the valorization of lignin to fuels, chemicals, and materials is now clearly recognized as a critical element for the lignocellulosic bioeconomy. However, the intended application for lignin will likely require a preferred lignin composition and form. To that end, effective lignin valorization will require the integration of plant biology, providing optimal feedstocks, with chemical process engineering, providing efficient lignin transformations. Recent advances in our understanding of lignin biosynthesis have shown that lignin structure is extremely diverse and potentially tunable, while simultaneous developments in lignin refining have resulted in the development of several processes that are more agnostic to lignin composition. Here, we review the interface between in planta lignin design and lignin processing and discuss the advances necessary for lignin valorization to become a feature of advanced biorefining.
Collapse
Affiliation(s)
- Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas, USA;
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Allen Puente-Urbina
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Gregg T Beckham
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Yuriy Román-Leshkov
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
24
|
Kenny J, Neefe SR, Brandner DG, Stone ML, Happs RM, Kumaniaev I, Mounfield WP, Harman-Ware AE, Devos KM, Pendergast TH, Medlin JW, Román-Leshkov Y, Beckham GT. Design and Validation of a High-Throughput Reductive Catalytic Fractionation Method. JACS AU 2024; 4:2173-2187. [PMID: 38938803 PMCID: PMC11200236 DOI: 10.1021/jacsau.4c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/29/2024]
Abstract
Reductive catalytic fractionation (RCF) is a promising method to extract and depolymerize lignin from biomass, and bench-scale studies have enabled considerable progress in the past decade. RCF experiments are typically conducted in pressurized batch reactors with volumes ranging between 50 and 1000 mL, limiting the throughput of these experiments to one to six reactions per day for an individual researcher. Here, we report a high-throughput RCF (HTP-RCF) method in which batch RCF reactions are conducted in 1 mL wells machined directly into Hastelloy reactor plates. The plate reactors can seal high pressures produced by organic solvents by vertically stacking multiple reactor plates, leading to a compact and modular system capable of performing 240 reactions per experiment. Using this setup, we screened solvent mixtures and catalyst loadings for hydrogen-free RCF using 50 mg poplar and 0.5 mL reaction solvent. The system of 1:1 isopropanol/methanol showed optimal monomer yields and selectivity to 4-propyl substituted monomers, and validation reactions using 75 mL batch reactors produced identical monomer yields. To accommodate the low material loadings, we then developed a workup procedure for parallel filtration, washing, and drying of samples and a 1H nuclear magnetic resonance spectroscopy method to measure the RCF oil yield without performing liquid-liquid extraction. As a demonstration of this experimental pipeline, 50 unique switchgrass samples were screened in RCF reactions in the HTP-RCF system, revealing a wide range of monomer yields (21-36%), S/G ratios (0.41-0.93), and oil yields (40-75%). These results were successfully validated by repeating RCF reactions in 75 mL batch reactors for a subset of samples. We anticipate that this approach can be used to rapidly screen substrates, catalysts, and reaction conditions in high-pressure batch reactions with higher throughput than standard batch reactors.
Collapse
Affiliation(s)
- Jacob
K. Kenny
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Department
of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- Center
for Bioenergy Innovation, Oak Ridge, Tennessee 37830, United States
| | - Sasha R. Neefe
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Center
for Bioenergy Innovation, Oak Ridge, Tennessee 37830, United States
| | - David G. Brandner
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Center
for Bioenergy Innovation, Oak Ridge, Tennessee 37830, United States
| | - Michael L. Stone
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Center
for Bioenergy Innovation, Oak Ridge, Tennessee 37830, United States
| | - Renee M. Happs
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Center
for Bioenergy Innovation, Oak Ridge, Tennessee 37830, United States
| | - Ivan Kumaniaev
- Department
of Organic Chemistry, Stockholm University, Stockholm SE-106 91, Sweden
| | - William P. Mounfield
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Anne E. Harman-Ware
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Center
for Bioenergy Innovation, Oak Ridge, Tennessee 37830, United States
| | - Katrien M. Devos
- Center
for Bioenergy Innovation, Oak Ridge, Tennessee 37830, United States
- Institute
of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, Georgia 30602, United States
- Department
of Crop and Soil Sciences, University of
Georgia, Athens, Georgia 30602, United States
- Department
of Plant Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Thomas H. Pendergast
- Center
for Bioenergy Innovation, Oak Ridge, Tennessee 37830, United States
- Institute
of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, Georgia 30602, United States
- Department
of Crop and Soil Sciences, University of
Georgia, Athens, Georgia 30602, United States
- Department
of Plant Biology, University of Georgia, Athens, Georgia 30602, United States
| | - J. Will Medlin
- Department
of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Yuriy Román-Leshkov
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Gregg T. Beckham
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Department
of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- Center
for Bioenergy Innovation, Oak Ridge, Tennessee 37830, United States
| |
Collapse
|
25
|
Li N, Yan K, Rukkijakan T, Liang J, Liu Y, Wang Z, Nie H, Muangmeesri S, Castiella-Ona G, Pan X, Zhou Q, Jiang G, Zhou G, Ralph J, Samec JSM, Wang F. Selective lignin arylation for biomass fractionation and benign bisphenols. Nature 2024; 630:381-386. [PMID: 38811733 DOI: 10.1038/s41586-024-07446-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 04/19/2024] [Indexed: 05/31/2024]
Abstract
Lignocellulose is mainly composed of hydrophobic lignin and hydrophilic polysaccharide polymers, contributing to an indispensable carbon resource for green biorefineries1,2. When chemically treated, lignin is compromised owing to detrimental intra- and intermolecular crosslinking that hampers downstream process3,4. The current valorization paradigms aim to avoid the formation of new C-C bonds, referred to as condensation, by blocking or stabilizing the vulnerable moieties of lignin5-7. Although there have been efforts to enhance biomass utilization through the incorporation of phenolic additives8,9, exploiting lignin's proclivity towards condensation remains unproven for valorizing both lignin and carbohydrates to high-value products. Here we leverage the proclivity by directing the C-C bond formation in a catalytic arylation pathway using lignin-derived phenols with high nucleophilicity. The selectively condensed lignin, isolated in near-quantitative yields while preserving its prominent cleavable β-ether units, can be unlocked in a tandem catalytic process involving aryl migration and transfer hydrogenation. Lignin in wood is thereby converted to benign bisphenols (34-48 wt%) that represent performance-advantaged replacements for their fossil-based counterparts. Delignified pulp from cellulose and xylose from xylan are co-produced for textile fibres and renewable chemicals. This condensation-driven strategy represents a key advancement complementary to other promising monophenol-oriented approaches targeting valuable platform chemicals and materials, thereby contributing to holistic biomass valorization.
Collapse
Affiliation(s)
- Ning Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Liaoning Key Laboratory of Biomass Conversion for Energy and Material, Dalian, China
- Department of Organic Chemistry, Stockholm University, Stockholm, Sweden
| | - Kexin Yan
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Thanya Rukkijakan
- Department of Organic Chemistry, Stockholm University, Stockholm, Sweden
| | - Jiefeng Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Yuting Liu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Zhipeng Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Heran Nie
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | | | | | - Xuejun Pan
- Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Guangyuan Zhou
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - John Ralph
- Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Joseph S M Samec
- Department of Organic Chemistry, Stockholm University, Stockholm, Sweden.
| | - Feng Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
- Liaoning Key Laboratory of Biomass Conversion for Energy and Material, Dalian, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
26
|
Khan RJ, Guan J, Lau CY, Zhuang H, Rehman S, Leu SY. Monolignol Potential and Insights into Direct Depolymerization of Fruit and Nutshell Remains for High Value Sustainable Aromatics. CHEMSUSCHEM 2024; 17:e202301306. [PMID: 38078500 DOI: 10.1002/cssc.202301306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/16/2023] [Accepted: 12/08/2023] [Indexed: 01/19/2024]
Abstract
The inedible parts of nuts and stone fruits are low-cost and lignin-rich feedstock for more sustainable production of aromatic chemicals in comparison with the agricultural and forestry residues. However, the depolymerization performances on food-related biomass remains unclear, owing to the broad physicochemical variations from the edible parts of the fruits and plant species. In this study, the monomer production potentials of ten major fruit and nutshell biomass were investigated with comprehensive numerical information derived from instrumental analysis, such as plant cell wall chemical compositions, syringyl/guaiacyl (S/G ratios, and contents of lignin substructure linkages (β-O-4, β-β, β-5). A standardized one-pot reductive catalytic fractionation (RCF) process was applied to benchmark the monomer yields, and the results were statistically analyzed. Among all the tested biomass, mango endocarp provided the highest monolignol yields of 37.1 % per dry substrates. Positive S-lignin (70-84 %) resulted in higher monomer yield mainly due to more cleavable β-O-4 linkages and less condensed C-C linkages. Strong positive relationships were identified between β-O-4 and S-lignin and between β-5 and G-lignin. The analytical, numerical, and experimental results of this study shed lights to process design of lignin-first biorefinery in food-processing industries and waste management works.
Collapse
Affiliation(s)
- Rabia J Khan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Jianyu Guan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Chun Y Lau
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Huichuan Zhuang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Shazia Rehman
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Shao-Yuan Leu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
- Research Centre for Resources Engineering towards Carbon Neutrality (RCRE), The Hong Kong Polytechnic University, Hong Kong
- Research Institute for Future Food (RiFood), The Hong Kong Polytechnic University, Hong Kong, 3400-8322
| |
Collapse
|
27
|
Li Y, Wen J, Wu S, Luo S, Ma C, Li S, Chen Z, Liu S, Tian B. Photocatalytic Conversion of Lignin Models into Functionalized Aromatic Molecules Initiated by the Proton-Coupled Electron Transfer Process. Org Lett 2024; 26:1218-1223. [PMID: 38319139 DOI: 10.1021/acs.orglett.4c00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
A mild and efficient method for lignin β-O-4 cleavage and functionalization was achieved via photocatalysis. This protocol exhibits a broad scope of lignin models and excellent compatibility of functionalization reagents, constructing a series of functionalized lignin-based aromatic compounds. Highly selective formation of alkyl radical species through a proton-coupled electron transfer and β-scission process provides the opportunity to form new C-C and C-N bonds by reaction with electrophilic reagents.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
| | - Jingya Wen
- Appraisal Center for Environment & Engineering, Ministry of Ecology and Environment, Beijing 100041, People's Republic of China
| | - Simeng Wu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
| | - Sha Luo
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
| | - Chunhui Ma
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
| | - Shujun Li
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
| | - Zhijun Chen
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
| | - Shouxin Liu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
| | - Bing Tian
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
| |
Collapse
|
28
|
Huang W, Mei Q, Xu S, An B, He M, Li J, Chen Y, Han X, Luo T, Guo L, Hurd J, Lee D, Tillotson E, Haigh SJ, Walton A, Day SJ, Natrajan LS, Schröder M, Yang S. Direct Synthesis of N-formamides by Integrating Reductive Amination of Ketones and Aldehydes with CO 2 Fixation in a Metal-Organic Framework. Chemistry 2024; 30:e202303289. [PMID: 37899311 PMCID: PMC10952134 DOI: 10.1002/chem.202303289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 10/31/2023]
Abstract
Formamides are important feedstocks for the manufacture of many fine chemicals. State-of-the-art synthesis of formamides relies on the use of an excess amount of reagents, giving copious waste and thus poor atom-economy. Here, we report the first example of direct synthesis of N-formamides by coupling two challenging reactions, namely reductive amination of carbonyl compounds, particularly biomass-derived aldehydes and ketones, and fixation of CO2 in the presence of H2 over a metal-organic framework supported ruthenium catalyst, Ru/MFM-300(Cr). Highly selective production of N-formamides has been observed for a wide range of carbonyl compounds. Synchrotron X-ray powder diffraction reveals the presence of strong host-guest binding interactions via hydrogen bonding and parallel-displaced π⋅⋅⋅π interactions between the catalyst and adsorbed substrates facilitating the activation of substrates and promoting selectivity to formamides. The use of multifunctional porous catalysts to integrate CO2 utilisation in the synthesis of formamide products will have a significant impact in the sustainable synthesis of feedstock chemicals.
Collapse
Affiliation(s)
- Wenyuan Huang
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Qingqing Mei
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Shaojun Xu
- Department of Chemical EngineeringUniversity of ManchesterManchesterM13 9PLUK
- UK Catalysis HubResearch Complex at HarwellRutherford Appleton LaboratoryHarwellOX11 0FAUK
| | - Bing An
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Meng He
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Jiangnan Li
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Yinlin Chen
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Xue Han
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
- College of ChemistryBeijing Normal UniversityBeijing100875China
| | - Tian Luo
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Lixia Guo
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Joseph Hurd
- Department of Chemical EngineeringUniversity of ManchesterManchesterM13 9PLUK
| | - Daniel Lee
- Department of Chemical EngineeringUniversity of ManchesterManchesterM13 9PLUK
| | - Evan Tillotson
- Department of MaterialsUniversity of ManchesterManchesterM13 9PLUK
| | - Sarah J. Haigh
- Department of MaterialsUniversity of ManchesterManchesterM13 9PLUK
| | - Alex Walton
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
- Photon Science InstituteUniversity of ManchesterManchesterM13 9PLUK
| | - Sarah J. Day
- Diamond Light Source Harwell Science CampusOxfordshireOX11 0DEUK
| | | | - Martin Schröder
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Sihai Yang
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
- College of Chemistry and Molecular EngineeringBeijing National Laboratory for Molecular SciencesPeking UniversityBeijing100871China
| |
Collapse
|
29
|
Fan Y, Ji H, Ji X, Tian Z, Chen J. Lignocellulosic biomass pretreatment with a lignin stabilization strategy and valorization toward multipurpose fractionation. Int J Biol Macromol 2024; 259:129186. [PMID: 38184047 DOI: 10.1016/j.ijbiomac.2023.129186] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/20/2023] [Accepted: 12/30/2023] [Indexed: 01/08/2024]
Abstract
Lignocellulosic biomass has emerged as a promising alternative with sustainable advantages for the production of a wide range of renewable products and value-added chemicals. In this study, a pretreatment strategy that use a fully recyclable acid hydrotrope (p-TsOH aqueous solution) to extract lignin and employ glyoxylic acid (GA) to stabilize lignin was proposed for biomass valorization toward multipurpose fractionation. 83.0 % of lignin was dissolved out by p-TsOH hydrotrope (80 wt%) with GA addition to form GA-stabilized product at 80 o C for 15 min. The stabilized lignin was subsequently used as an additive in the preparation of lignin-based suncream. Notably, the incorporation of 4 wt% lignin nanospheres into an SPF15 sunscreen yielded a measured SPF of 59.94. Furthermore, the depolymerization of uncondensed lignin into aromatic monomers yielded a high lignin-oil yield of 84.2 %. Additionally, direct heating of the pretreatment liquor facilitated the conversion of monosaccharides into furfural, achieving a desired yield of 53.7 % without the addition of any acid catalyst. The pretreatment also enhanced the enzymatic hydrolysis of glucan, resulting in a saccharification yield of 98.4 %. Moreover, short-term ultrasonication of the pretreated substrate yielded pulp suitable for papermaking. Incorporating 15 wt% fibers into the produced paper sheets led to a 5.3 % increase in tear index and a 25.4 % increase in tensile index. This study presents a viable pretreatment strategy for the multipurpose fractionation of lignocellulosic biomass, offering potential avenues for biomass valorization.
Collapse
Affiliation(s)
- Yufei Fan
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Hairui Ji
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Xingxiang Ji
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Zhongjian Tian
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jiachuan Chen
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
30
|
Zhang D, Loomer M, Gamez G. Quantitative analysis of biopolymers in lignocellulosic biomass feedstocks via laser-assisted micro-pyrolysis flowing atmospheric-pressure afterglow high-resolution ambient mass spectrometry. Talanta 2024; 268:125333. [PMID: 37931586 DOI: 10.1016/j.talanta.2023.125333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 11/08/2023]
Abstract
Herein, a diode laser-assisted micro-pyrolysis (LAMP) technique coupled with FAPA high resolution mass spectrometry (HRMS) is demonstrated for fast chemical characterization of lignocellulosic biomass feedstocks. The solid lignocellulosic biomass can be analyzed directly with minimal sample preparation. The mass spectra of the pyrolysis products are interpreted with the aid of data visualization tools such as Kendrick mass defect (KMD) plots and van Krevelen plots. Furthermore, quantitation of lignin/cellulose/hemicellulose, sugar contents of glucan/xylan/galactan/arabinan and lignin monomeric unit S/G is achieved with good accuracy and precision, through multivariate analysis methods, including partial least squares regression (PLSR) and support vector regression (SVR).
Collapse
Affiliation(s)
- Dong Zhang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409-1061, USA
| | - Michael Loomer
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409-1061, USA
| | - Gerardo Gamez
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409-1061, USA.
| |
Collapse
|
31
|
Palumbo CT, Gu NX, Bleem AC, Sullivan KP, Katahira R, Stanley LM, Kenny JK, Ingraham MA, Ramirez KJ, Haugen SJ, Amendola CR, Stahl SS, Beckham GT. Catalytic carbon-carbon bond cleavage in lignin via manganese-zirconium-mediated autoxidation. Nat Commun 2024; 15:862. [PMID: 38286984 PMCID: PMC10825196 DOI: 10.1038/s41467-024-45038-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 01/09/2024] [Indexed: 01/31/2024] Open
Abstract
Efforts to produce aromatic monomers through catalytic lignin depolymerization have historically focused on aryl-ether bond cleavage. A large fraction of aromatic monomers in lignin, however, are linked by various carbon-carbon (C-C) bonds that are more challenging to cleave and limit the yields of aromatic monomers from lignin depolymerization. Here, we report a catalytic autoxidation method to cleave C-C bonds in lignin-derived dimers and oligomers from pine and poplar. The method uses manganese and zirconium salts as catalysts in acetic acid and produces aromatic carboxylic acids as primary products. The mixtures of the oxygenated monomers are efficiently converted to cis,cis-muconic acid in an engineered strain of Pseudomonas putida KT2440 that conducts aromatic O-demethylation reactions at the 4-position. This work demonstrates that autoxidation of lignin with Mn and Zr offers a catalytic strategy to increase the yield of valuable aromatic monomers from lignin.
Collapse
Affiliation(s)
- Chad T Palumbo
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Nina X Gu
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Alissa C Bleem
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Kevin P Sullivan
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Rui Katahira
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Lisa M Stanley
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Jacob K Kenny
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, 80303, CO, USA
| | - Morgan A Ingraham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Kelsey J Ramirez
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Stefan J Haugen
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Caroline R Amendola
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Shannon S Stahl
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.
| |
Collapse
|
32
|
Afanasenko AM, Wu X, De Santi A, Elgaher WAM, Kany AM, Shafiei R, Schulze MS, Schulz TF, Haupenthal J, Hirsch AKH, Barta K. Clean Synthetic Strategies to Biologically Active Molecules from Lignin: A Green Path to Drug Discovery. Angew Chem Int Ed Engl 2024; 63:e202308131. [PMID: 37840425 DOI: 10.1002/anie.202308131] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/06/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
Deriving active pharmaceutical agents from renewable resources is crucial to increasing the economic feasibility of modern biorefineries and promises to alleviate critical supply-chain dependencies in pharma manufacturing. Our multidisciplinary approach combines research in lignin-first biorefining, sustainable catalysis, and alternative solvents with bioactivity screening, an in vivo efficacy study, and a structural-similarity search. The resulting sustainable path to novel anti-infective, anti-inflammatory, and anticancer molecules enabled the rapid identification of frontrunners for key therapeutic indications, including an anti-infective against the priority pathogen Streptococcus pneumoniae with efficacy in vivo and promising plasma and metabolic stability. Our catalytic methods provided straightforward access, inspired by the innate structural features of lignin, to synthetically challenging biologically active molecules with the core structure of dopamine, namely, tetrahydroisoquinolines, quinazolinones, 3-arylindoles and the natural product tetrahydropapaveroline. Our diverse array of atom-economic transformations produces only harmless side products and uses benign reaction media, such as tunable deep eutectic solvents for modulating reactivity in challenging cyclization steps.
Collapse
Affiliation(s)
- Anastasiia M Afanasenko
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen (the, Netherlands
| | - Xianyuan Wu
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen (the, Netherlands
| | - Alessandra De Santi
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen (the, Netherlands
| | - Walid A M Elgaher
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123, Saarbrücken, Germany
| | - Andreas M Kany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123, Saarbrücken, Germany
| | - Roya Shafiei
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123, Saarbrücken, Germany
- Saarland University, Department of Pharmacy, Campus Building E8.1, 66123, Saarbrücken, Germany
| | | | - Thomas F Schulz
- Institute of Virology, Hannover Medical School, 30625, Hannover, Germany
- Institute of Virology, Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625, Hannover, Germany
| | - Jörg Haupenthal
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123, Saarbrücken, Germany
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123, Saarbrücken, Germany
- Saarland University, Department of Pharmacy, Campus Building E8.1, 66123, Saarbrücken, Germany
- Institute of Virology, Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625, Hannover, Germany
| | - Katalin Barta
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen (the, Netherlands
- Institute for Chemistry, University of Graz, Heinrichstrasse 28/II, 8010, Graz, Austria
| |
Collapse
|
33
|
Chen R, Chen S, Wang L, Wang D. Nanoscale Metal Particle Modified Single-Atom Catalyst: Synthesis, Characterization, and Application. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304713. [PMID: 37439396 DOI: 10.1002/adma.202304713] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
Single-atom catalysts (SACs) have attracted considerable attention in heterogeneous catalysis because of their well-defined active sites, maximum atomic utilization efficiency, and unique unsaturated coordinated structures. However, their effectiveness is limited to reactions requiring active sites containing multiple metal atoms. Furthermore, the loading amounts of single-atom sites must be restricted to prevent aggregation, which can adversely affect the catalytic performance despite the high activity of the individual atoms. The introduction of nanoscale metal particles (NMPs) into SACs (NMP-SACs) has proven to be an efficient approach for improving their catalytic performance. A comprehensive review is urgently needed to systematically introduce the synthesis, characterization, and application of NMP-SACs and the mechanisms behind their superior catalytic performance. This review first presents and classifies the different mechanisms through which NMPs enhance the performance of SACs. It then summarizes the currently reported synthetic strategies and state-of-the-art characterization techniques of NMP-SACs. Moreover, their application in electro/thermo/photocatalysis, and the reasons for their superior performance are discussed. Finally, the challenges and perspectives of NMP-SACs for the future design of advanced catalysts are addressed.
Collapse
Affiliation(s)
- Runze Chen
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Shenghua Chen
- National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, Shanxi, 710049, P. R. China
| | - Liqiang Wang
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
34
|
Gu NX, Palumbo CT, Bleem AC, Sullivan KP, Haugen SJ, Woodworth SP, Ramirez KJ, Kenny JK, Stanley LD, Katahira R, Stahl SS, Beckham GT. Autoxidation Catalysis for Carbon-Carbon Bond Cleavage in Lignin. ACS CENTRAL SCIENCE 2023; 9:2277-2285. [PMID: 38161372 PMCID: PMC10755848 DOI: 10.1021/acscentsci.3c00813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 01/03/2024]
Abstract
Selective lignin depolymerization is a key step in lignin valorization to value-added products, and there are multiple catalytic methods to cleave labile aryl-ether bonds in lignin. However, the overall aromatic monomer yield is inherently limited by refractory carbon-carbon linkages, which are abundant in lignin and remain intact during most selective lignin deconstruction processes. In this work, we demonstrate that a Co/Mn/Br-based catalytic autoxidation method promotes carbon-carbon bond cleavage in acetylated lignin oligomers produced from reductive catalytic fractionation. The oxidation products include acetyl vanillic acid and acetyl vanillin, which are ideal substrates for bioconversion. Using an engineered strain of Pseudomonas putida, we demonstrate the conversion of these aromatic monomers to cis,cis-muconic acid. Overall, this study demonstrates that autoxidation enables higher yields of bioavailable aromatic monomers, exceeding the limits set by ether-bond cleavage alone.
Collapse
Affiliation(s)
- Nina X. Gu
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Chad T. Palumbo
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Alissa C. Bleem
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Kevin P. Sullivan
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Stefan J. Haugen
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Sean P. Woodworth
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Kelsey J. Ramirez
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Jacob K. Kenny
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Lisa D. Stanley
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Rui Katahira
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Shannon S. Stahl
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United
States
| | - Gregg T. Beckham
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| |
Collapse
|
35
|
Luo X, Tian B, Zhai Y, Guo H, Liu S, Li J, Li S, James TD, Chen Z. Room-temperature phosphorescent materials derived from natural resources. Nat Rev Chem 2023; 7:800-812. [PMID: 37749285 DOI: 10.1038/s41570-023-00536-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 09/27/2023]
Abstract
Room-temperature phosphorescent (RTP) materials have enormous potential in many different areas. Additionally, the conversion of natural resources to RTP materials has attracted considerable attention. Owing to their inherent luminescent properties, natural materials can be efficiently converted into sustainable RTP materials. However, to date, only a few reviews have focused on this area of endeavour. Motivated by this lack of coverage, in this Review, we address this shortcoming and introduce the types of natural resource available for the preparation of RTP materials. We mainly focus on the inherent advantages of natural resources for RTP materials, strategies for activating and enhancing the RTP properties of the natural resources as well as the potential applications of these RTP materials. In addition, we discuss future challenges and opportunities in this area of research.
Collapse
Affiliation(s)
- Xiongfei Luo
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Bing Tian
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Yingxiang Zhai
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Hongda Guo
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Shouxin Liu
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Jian Li
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Shujun Li
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, UK.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, P. R. China.
| | - Zhijun Chen
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China.
| |
Collapse
|
36
|
Chu S, Shao J, Qu H, Wang X, Xiao R, Zhang H. Band Structure Engineering of Polyimide Photocatalyst for Efficient and Selective Oxidation of Biomass-Derived 5-Hydroxymethylfurfural. CHEMSUSCHEM 2023; 16:e202300886. [PMID: 37498683 DOI: 10.1002/cssc.202300886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023]
Abstract
Solar-driven high-value utilization of biomass and its derivatives has attracted tremendous attention in replacing fossil sources to generate chemicals. Developing high-performance photocatalysts to selectively catalyze bio-platform molecules remains a challenge. Herein, biomass-based 5-hydroxymethylfurfural (HMF) was efficiently and selectively photooxidized to 2, 5-diformylfuran (DFF) using a metal-free polyimide (PI). PI with moderate photooxidation capacity delivered high DFF selectivity of 91 % and high apparent quantum efficiency of 1.13 %, nearly 7 times higher than that of graphitic carbon nitride. Experimental measurements and theoretical calculations revealed that the band structure and photooxidation capability of PI can be continuously modulated by varying the molar ratio of amine and anhydride. Mechanism analysis depicted that holes and superoxide radicals play crucial roles in the efficient photooxidation of HMF to DFF. This work provides guidance on designing efficient polymeric photocatalysts for oxidating biomass and its derivatives to value-added chemicals.
Collapse
Affiliation(s)
- Sheng Chu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Jingjing Shao
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Hongyu Qu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Xintie Wang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Rui Xiao
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Huiyan Zhang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| |
Collapse
|
37
|
Saikia A, Dutta K, Bora D, Saha B, Singh A. Metal catalyst-free selective acetosyringone synthesis from rice straw lignin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:100203-100214. [PMID: 37626195 DOI: 10.1007/s11356-023-29349-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023]
Abstract
In recent decades, due to abundance (second most abundant natural polymer after cellulose) and sustainability, lignin has attracted much interest from different researchers to use as a raw material for producing various value-added materials such as polymer and fuel. In addition to that, the aromatic structure of lignin makes it a suitable candidate for producing platform chemicals with aromatic rings. As a result, lignin depolymerization has become an interesting process to derive different phenolic monomers like vanillin, acetosyringone, and guaiacol. Among them, due to the bioactive characteristics and efficiency of acetosyringone in plant regulatory systems, the production of acetosyringone from lignin has been presented in this work. A green and cost-effective method was developed for the selective formation of acetosyringone via depolymerization of isolated rice straw lignin (RSL) by using metal catalyst-free conditions in the biphasic medium and described. The RSL was characterized with various spectroscopic techniques such as FT-IR, solid-state 13C NMR, XPS, and TGA. The selectivity of synthesized acetosyringone during depolymerization of RSL was checked from GC-MS analysis. The molecular structure and purity of acetosyringone isolated from preparative thin layer chromatography (TLC) were confirmed with the help of 1H NMR and HRMS, respectively.
Collapse
Affiliation(s)
- Ankumoni Saikia
- Coal and Energy Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Koushik Dutta
- Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debashree Bora
- Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Biswajit Saha
- Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ajit Singh
- Coal and Energy Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
38
|
Christoff-Tempesta T, Epps TH. Ionic-Liquid-Mediated Deconstruction of Polymers for Advanced Recycling and Upcycling. ACS Macro Lett 2023; 12:1058-1070. [PMID: 37516988 PMCID: PMC10433533 DOI: 10.1021/acsmacrolett.3c00276] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023]
Abstract
Ionic liquids (ILs) are a promising medium to assist in the advanced (chemical and biological) recycling of polymers, owing to their tunable catalytic activity, tailorable chemical functionality, low vapor pressures, and thermal stability. These unique physicochemical properties, combined with ILs' capacity to solubilize plastics waste and biopolymers, offer routes to deconstruct polymers at reduced temperatures (and lower energy inputs) versus conventional bulk and solvent-based methods, while also minimizing unwanted side reactions. In this Viewpoint, we discuss the use of ILs as catalysts and mediators in advanced recycling, with an emphasis on chemical recycling, by examining the interplay between IL chemistry and deconstruction thermodynamics, deconstruction kinetics, IL recovery, and product recovery. We also consider several potential environmental benefits and concerns associated with employing ILs for advanced recycling over bulk- or solvent-mediated deconstruction techniques, such as reduced chemical escape by volatilization, decreased energy demands, toxicity, and environmental persistence. By analyzing IL-mediated polymer deconstruction across a breadth of macromolecular systems, we identify recent innovations, current challenges, and future opportunities in IL application toward circular polymer economies.
Collapse
Affiliation(s)
- Ty Christoff-Tempesta
- Department
of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Thomas H. Epps
- Department
of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department
of Materials Science and Engineering, University
of Delaware, Newark, Delaware 19716, United States
- Center
for Research in Soft matter and Polymers (CRiSP), University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
39
|
Cheng X, Palma B, Zhao H, Zhang H, Wang J, Chen Z, Hu J. Photoreforming for Lignin Upgrading: A Critical Review. CHEMSUSCHEM 2023:e202300675. [PMID: 37455297 DOI: 10.1002/cssc.202300675] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Photoreforming of lignocellulosic biomass to simultaneously produce gas fuels and value-added chemicals has gradually emerged as a promising strategy to alleviate the fossil fuels crisis. Compared to cellulose and hemicellulose, the exploitation and utilization of lignin via photoreforming are still at the early and more exciting stages. This Review systematically summarizes the latest progress on the photoreforming of lignin-derived model components and "real" lignin, aiming to provide insights for lignin photocatalytic valorization from fundamental to industrial applications. Considering the complexity of lignin physicochemical properties, related analytic methods are also introduced to characterize lignin photocatalytic conversion and product distribution. We finally put forward the challenges and perspective of lignin photoreforming, hoping to provide some guidance to valorize biomass into value-added chemicals and fuels via a mild photoreforming process in the future.
Collapse
Affiliation(s)
- Xi Cheng
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| | - Bruna Palma
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| | - Heng Zhao
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| | - Hongguang Zhang
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| | - Jiu Wang
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| | - Zhangxin Chen
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| |
Collapse
|
40
|
Suh SM, Jambu S, Chin MT, Diao T. Selective Cleavage of Lignin Model Compounds via a Reverse Biosynthesis Mechanism. Org Lett 2023; 25:4792-4796. [PMID: 37294132 PMCID: PMC10334464 DOI: 10.1021/acs.orglett.3c01416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Indexed: 06/10/2023]
Abstract
Selective depolymerization of lignin remains a significant challenge in biomass conversion. The biosynthesis of lignin involves the polymerization of monolignol building blocks through oxidative radical coupling reactions. A strategy for lignin degradation leverages photoredox deoxygenative radical formation to trigger reverse biosynthesis, which cleaves model compounds of the β-O-4 and β-5-β-O-4 linkages to produce monolignols, precursors to flavoring compounds. This mild method preserves important oxygen functionality and serves as a platform for achieving selective lignin depolymerization.
Collapse
Affiliation(s)
- Sang Mi Suh
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Subramanian Jambu
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Mason T. Chin
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Tianning Diao
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| |
Collapse
|
41
|
Zhang Z, Tao F, Ji H. Valorization of Boehmeria nivea stalk towards multipurpose fractionation: furfural, pulp, and phenolic monomers. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:99. [PMID: 37308943 PMCID: PMC10262554 DOI: 10.1186/s13068-023-02351-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/26/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND As one of the most abundant bioresource in nature, the value-added utilization of lignocellulosic biomass is limited due to its inherent stubbornness. Pretreatment is a necessary step to break down the recalcitrance of cell walls and achieve an efficient separation of three main components (cellulose, hemicelluloses, and lignin). RESULTS In this study, hemicelluloses and lignin in Boehmeria nivea stalks were selectively extracted with a recyclable acid hydrotrope, an aqueous solution of P-toluenesulfonic acid (p-TsOH). 79.86% of hemicelluloses and 90.24% of lignin were removed under a mild pretreatment condition, C80T80t20, (acid concentration of 80 wt%, pretreatment temperature and time of 80 °C and 20 min, respectively). After ultrasonic treatment for 10 s, the residual cellulose-rich solid was directly converted into pulp. Subsequently, the latter was utilized to produce paper via mixing with softwood pulp. The prepared handsheets with a pulp addition of 15 wt% displayed higher tear strength (8.31 mN m2/g) and tensile strength (8.03 Nm/g) than that of pure softwood pulp. What's more, the hydrolysates of hemicelluloses and the extracted lignin were transformed to furfural and phenolic monomers with yields of 54.67% and 65.3%, respectively. CONCLUSIONS The lignocellulosic biomass, Boehmeria nivea stalks, were valorized to pulp, furfural, and phenolic monomers, successfully. And a potential solution of comprehensive utilization of Boehmeria nivea stalks was provided in this paper.
Collapse
Affiliation(s)
- Zhen Zhang
- Key Laboratory of Pulp and Paper Science and Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Furong Tao
- Faculty of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Hairui Ji
- Key Laboratory of Pulp and Paper Science and Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| |
Collapse
|
42
|
Liu M, Dyson PJ. Direct conversion of lignin to functionalized diaryl ethers via oxidative cross-coupling. Nat Commun 2023; 14:2830. [PMID: 37217549 DOI: 10.1038/s41467-023-38534-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
Efficient valorization of lignin, a sustainable source of functionalized aromatic products, would reduce dependence on fossil-derived feedstocks. Oxidative depolymerization is frequently applied to lignin to generate phenolic monomers. However, due to the instability of phenolic intermediates, repolymerization and dearylation reactions lead to low selectivity and product yields. Here, a highly efficient strategy to extract the aromatic monomers from lignin affording functionalized diaryl ethers using oxidative cross-coupling reactions is described, which overcomes the limitations of oxidative methods and affords high-value specialty chemicals. Reaction of phenylboronic acids with lignin converts the reactive phenolic intermediates into stable diaryl ether products in near-theoretical maximum yields (92% for beech lignin and 95% for poplar lignin based on the content of β-O-4 linkages). This strategy suppresses side reactions typically encountered in oxidative depolymerization reactions of lignin and provides a new approach for the direct transformation of lignin into valuable functionalized diaryl ethers, including key intermediates in pharmaceutical and natural product synthesis.
Collapse
Affiliation(s)
- Mingyang Liu
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Paul J Dyson
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
| |
Collapse
|
43
|
Recent advance in biomass membranes: Fabrication, functional regulation, and antimicrobial applications. Carbohydr Polym 2023; 305:120537. [PMID: 36737189 DOI: 10.1016/j.carbpol.2023.120537] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/07/2023]
Abstract
Both inorganic and polymeric membranes have been widely applied for antimicrobial applications. However, these membranes exhibit low biocompatibility, weak biodegradability, and potential toxicity to human being and environment. Biomass materials serve as excellent candidates for fabricating functional membranes to address these problems due to their unique physical, chemical, and biological properties. Here we present recent progress in the fabrication, functional regulation, and antimicrobial applications of various biomass-based membranes. We first introduce the types of biomass membranes and their fabrication methods, including the phase inversion, vacuum filtration, electrospinning, layer-by-layer self-assembly, and coating. Then, the strategies on functional regulation of biomass membranes by adding 0D, 1D, and 2D nanomaterials are presented and analyzed. In addition, antibacterial, antifungal, and antiviral applications of biomass-based functional membranes are summarized. Finally, potential development aspects of biomass membranes are discussed and prospected. This comprehensive review is valuable for guiding the design, synthesis, structural/functional tailoring, and sustainable utilization of biomass membranes.
Collapse
|
44
|
Lou Y, Sun X, Yu Y, Zeng S, Li Y, Liu Y, Yu H. One-Pot Protolignin Extraction by Targeted Unlocking Lignin-Carbohydrate Esters via Nucleophilic Addition-Elimination Strategy. RESEARCH (WASHINGTON, D.C.) 2023; 6:0069. [PMID: 36930767 PMCID: PMC10013968 DOI: 10.34133/research.0069] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/15/2023] [Indexed: 01/21/2023]
Abstract
Protolignin extraction can facilitate structure elucidation and valorization of lignin in biorefinery, but is rather challenging due to the complex chemical bonds present. Here, we developed the in situ generated NH3-reline (IGNR) system to realize one-pot protolignin extraction from lignocellulose. In the IGNR system, reline consisting of choline chloride and urea acted as both a solvent and a nucleophile generator, and the nucleophilic addition-elimination mechanism was verified by model compound studies. The in situ generated NH3 could precisely cleave the lignin-carbohydrate esters in lignocellulose with a near-quantitative retention of carbohydrates. The extracted IGNR-Protolignin exhibited native lignin substructure with high molecular weight and high β-O-4' content (41.5 per 100 aromatic units). In addition, the up-scaled kilogram reaction demonstrated the feasibility of the IGNR system for potential industrial application in a green and sustainable pathway. This work represents a breakthrough toward protolignin extraction in practice with the future goal of achieving total biorefinery.
Collapse
Affiliation(s)
- Yuhan Lou
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, P. R. China
| | - Xinyue Sun
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, P. R. China
| | - Yanyan Yu
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, P. R. China
| | - Suqing Zeng
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, P. R. China
| | - Yilin Li
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, P. R. China
| | - Yongzhuang Liu
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, P. R. China
| | - Haipeng Yu
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, P. R. China
| |
Collapse
|
45
|
Grimm C, Pompei S, Egger K, Fuchs M, Kroutil W. Anaerobic demethylation of guaiacyl-derived monolignols enabled by a designed artificial cobalamin methyltransferase fusion enzyme. RSC Adv 2023; 13:5770-5777. [PMID: 36816070 PMCID: PMC9930637 DOI: 10.1039/d2ra08005b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Lignin-derived aryl methyl ethers (e.g. coniferyl alcohol, ferulic acid) are expected to be a future carbon source for chemistry. The well-known P450 dependent biocatalytic O-demethylation of these aryl methyl ethers is prone to side product formation especially for the oxidation sensitive catechol products which get easily oxidized in the presence of O2. Alternatively, biocatalytic demethylation using cobalamin dependent enzymes may be used under anaerobic conditions, whereby two proteins, namely a methyltransferase and a carrier protein are required. To make this approach applicable for preparative transformations, fusion proteins were designed connecting the cobalamin-dependent methyltransferase (MT) with the corrinoid-binding protein (CP) from Desulfitobacterium hafniense by variable glycine linkers. From the proteins created, the fusion enzyme MT-L5-CP with the shortest linker performed best of all fusion enzymes investigated showing comparable and, in some aspects, even better performance than the separated proteins. The fusion enzymes provided several advantages like that the cobalamin cofactor loading step required originally for the CP could be skipped enabling a significantly simpler protocol. Consequently, the biocatalytic demethylation was performed using Schlenk conditions allowing the O-demethylation e.g. of the monolignol coniferyl alcohol on a 25 mL scale leading to 75% conversion. The fusion enzyme represents a promising starting point to be evolved for alternative demethylation reactions to diversify natural products and to valorize lignin.
Collapse
Affiliation(s)
- Christopher Grimm
- Institute of Chemistry, University of Graz, NAWI Graz Heinrichstraße 28 8010 Graz Austria
| | - Simona Pompei
- Institute of Chemistry, University of Graz, NAWI Graz Heinrichstraße 28 8010 Graz Austria
| | - Kristina Egger
- Institute of Chemistry, University of Graz, NAWI Graz Heinrichstraße 28 8010 Graz Austria
| | - Michael Fuchs
- Institute of Chemistry, University of Graz, NAWI Graz Heinrichstraße 28 8010 Graz Austria
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, NAWI Graz Heinrichstraße 28 8010 Graz Austria
- BioTechMed Graz 8010 Graz Austria
- Field of Excellence BioHealth, University of Graz 8010 Graz Austria
| |
Collapse
|
46
|
Rinken R, Posthuma D, Rinaldi R. Lignin Stabilization and Carbohydrate Nature in H-transfer Reductive Catalytic Fractionation: The Role of Solvent Fractionation of Lignin Oil in Structural Profiling. CHEMSUSCHEM 2023; 16:e202201875. [PMID: 36469562 PMCID: PMC10108069 DOI: 10.1002/cssc.202201875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Reductive Catalytic Fractionation (RCF) of lignocellulosic materials produces lignin oil rich in monomer products and high-quality cellulosic pulps. RCF lignin oil also contains lignin oligomers/polymers and hemicellulose-derived carbohydrates. The variety of components makes lignin oil a complex matrix for analytical methods. As a result, the signals are often convoluted and overlapped, making detecting and quantifying key intermediates challenging. Therefore, to investigate the mechanisms underlining lignin stabilization and elucidate the structural features of carbohydrates occurring in the RCF lignin oil, fractionation methods reducing the RCF lignin oil complexity are required. This report examines the solvent fractionation of RCF lignin oil as a facile method for producing lignin oil fractions for advanced characterization. Solvent fractionation uses small volumes of environmentally benign solvents (methanol, acetone, and ethyl acetate) to produce multigram lignin fractions comprising products in different molecular weight ranges. This feature allows the determination of structural heterogeneity across the entire molecular weight distribution of the RCF lignin oil by high-resolution HSQC NMR spectroscopy. This study provides detailed insight into the role of the hydrogenation catalyst (Raney Ni) in stabilizing lignin fragments and defining the structural features of hemicellulose-derived carbohydrates in lignin oil obtained by the H-transfer RCF process.
Collapse
Affiliation(s)
- Raul Rinken
- Department of Chemical EngineeringImperial College LondonSouth Kensington CampusSW7 2AZLondonUK
| | - Dean Posthuma
- Department of Chemical EngineeringImperial College LondonSouth Kensington CampusSW7 2AZLondonUK
| | - Roberto Rinaldi
- Department of Chemical EngineeringImperial College LondonSouth Kensington CampusSW7 2AZLondonUK
| |
Collapse
|
47
|
Wu R, Li Y, Wang X, Fu Y, Qin M, Zhang Y. In-situ lignin sulfonation for enhancing enzymatic hydrolysis of poplar using mild organic solvent pretreatment. BIORESOURCE TECHNOLOGY 2023; 369:128410. [PMID: 36455816 DOI: 10.1016/j.biortech.2022.128410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Biomass pretreatment is an essential strategy to overcome biomass recalcitrance and promote lignocellulosic bioconversion. Here, a reusable organic solvent system (formic acid-methanesulfonic acid) was explored to pretreat poplar under a mild temperature (below 100 °C). The results showed that the co-solvent system could extract basically complete hemicelluloses and part of lignin with original cellulose retained in the pretreated substrates. Meanwhile, sulfonic acid groups were introduced into lignin structure remained in the substrates. The glucose conversion yield of the substrates with a higher concentration of sulfonic acid groups (13.2 mmol/kg) reached 45.9 % by reducing the hydrophobic interaction between lignin and cellulase, showing 89.3 % improvement compared with that of the substrates treated with single formic acid. This progressive study aimed to develop a new strategy to realize sulfonation and promote enzymatic hydrolysis of substrates by using mild organic solvent pretreatment.
Collapse
Affiliation(s)
- Ruijie Wu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, Shandong, China; Laboratory of Natural Materials Technology, Faculty of Science and Engineering, Åbo Akademi University, Henrikinkatu 2, Turku FI-20500, Finland
| | - Yongzheng Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, Shandong, China
| | - Xiaodi Wang
- Organic Chemistry Laboratory, Taishan University, Taian 271021, Shandong, China
| | - Yingjuan Fu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, Shandong, China
| | - Menghua Qin
- Organic Chemistry Laboratory, Taishan University, Taian 271021, Shandong, China
| | - Yongchao Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, Shandong, China.
| |
Collapse
|
48
|
Chen M, Li Y, Liu H, Zhang D, Shi QS, Zhong XQ, Guo Y, Xie XB. High value valorization of lignin as environmental benign antimicrobial. Mater Today Bio 2023; 18:100520. [PMID: 36590981 PMCID: PMC9800644 DOI: 10.1016/j.mtbio.2022.100520] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Lignin is a natural aromatic polymer of p-hydroxyphenylpropanoids with various biological activities. Noticeably, plants have made use of lignin as biocides to defend themselves from pathogen microbial invasions. Thus, the use of isolated lignin as environmentally benign antimicrobial is believed to be a promising high value approach for lignin valorization. On the other hand, as green and sustainable product of plant photosynthesis, lignin should be beneficial to reduce the carbon footprint of antimicrobial industry. There have been many reports that make use of lignin to prepare antimicrobials for different applications. However, lignin is highly heterogeneous polymers different in their monomers, linkages, molecular weight, and functional groups. The structure and property relationship, and the mechanism of action of lignin as antimicrobial remains ambiguous. To show light on these issues, we reviewed the publications on lignin chemistry, antimicrobial activity of lignin models and isolated lignin and associated mechanism of actions, approaches in synthesis of lignin with improved antimicrobial activity, and the applications of lignin as antimicrobial in different fields. Hopefully, this review will help and inspire researchers in the preparation of lignin antimicrobial for their applications.
Collapse
Affiliation(s)
- Mingjie Chen
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Yan Li
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Huiming Liu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Dandan Zhang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Qing-Shan Shi
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Xin-Qi Zhong
- Department of Neonatology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Yanzhu Guo
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Xiao-Bao Xie
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| |
Collapse
|
49
|
Zhang L, Meng G, Zhang W, Li X, Zhang Z, Yang M, Wu Y, Wang D, Li Y. Oriented Conversion of a LA/HMF Mixture to GVL and FDCA in a Biphasic Solvent over a Ru Single-Atom/Nanoparticle Dual-Site Catalyst. ACS Catal 2023. [DOI: 10.1021/acscatal.2c04726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Lilong Zhang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084,China
- College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Ge Meng
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Wei Zhang
- College of Electrical Engineering, Zhejiang University of Water Resources and Electronic Power, Hangzhou 310018, Zhejiang, China
| | - Xiaoxian Li
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084,China
| | - Zedong Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Mingde Yang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084,China
| | - Yulong Wu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084,China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
50
|
Wu X, De Bruyn M, Hulan JM, Brasil H, Sun Z, Barta K. High yield production of 1,4-cyclohexanediol and 1,4-cyclohexanediamine from high molecular-weight lignin oil. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2023; 25:211-220. [PMID: 36685710 PMCID: PMC9808896 DOI: 10.1039/d2gc03777g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The complete utilization of all lignin depolymerization streams obtained from the reductive catalytic fractionation (RCF) of woody biomass into high-value-added compounds is a timely and challenging objective. Here, we present a catalytic methodology to transform beech lignin-derived dimers and oligomers (DO) into well-defined 1,4-cyclohexanediol and 1,4-cyclohexanediamine. The latter two compounds have vast industrial relevance as monomers for polymer synthesis as well as pharmaceutical building blocks. The proposed two-step catalytic sequence involves the use of the commercially available RANEY® Ni catalyst. Therefore, the first step involves the efficient defunctionalization of lignin-derived 2,6-dimethoxybenzoquinone (DMBQ) into 1,4-cyclohexanediol (14CHDO) in 86.5% molar yield, representing a 10.7 wt% yield calculated on a DO weight basis. The second step concerns the highly selective amination of 1,4-cyclohexanediol with ammonia to give 1,4-cyclohexanediamine (14CHDA) in near quantitative yield. The ability to use RANEY® Ni and ammonia in this process holds great potential for future industrial synthesis of 1,4-cyclohexanediamine from renewable resources.
Collapse
Affiliation(s)
- Xianyuan Wu
- Stratingh Institute for Chemistry, University of Groningen Groningen The Netherlands
| | - Mario De Bruyn
- Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz Heinrichstrasse 28/II 8010 Graz Austria
| | - Julia Michaela Hulan
- Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz Heinrichstrasse 28/II 8010 Graz Austria
| | - Henrique Brasil
- Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz Heinrichstrasse 28/II 8010 Graz Austria
| | - Zhuohua Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University No. 35 Tsinghua East Road Haidian District Beijing 100083 P. R. China
| | - Katalin Barta
- Stratingh Institute for Chemistry, University of Groningen Groningen The Netherlands
- Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz Heinrichstrasse 28/II 8010 Graz Austria
| |
Collapse
|