1
|
Xiong Y, Shao W, Wang J, Yang S, Zhu W, Zhang Q. Application of neurite orientation dispersion and density imaging in characterizing brain microstructural changes in classical trigeminal neuralgia and a comparison between the left and right sides. Pain 2025:00006396-990000000-00894. [PMID: 40334048 DOI: 10.1097/j.pain.0000000000003614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 03/03/2025] [Indexed: 05/09/2025]
Abstract
ABSTRACT Diffusion tensor imaging can detect brain white matter changes in classical trigeminal neuralgia (TN). However, it lacks specificity for individual tissue microstructural features, such as neurite density, orientation dispersions, and extracellular edema. Neurite orientation dispersion and density imaging (NODDI), a novel diffusion magnetic resonance imaging (MRI) technique, can provide these distinct indices. We characterized brain microstructural alterations in patients with unilateral TN using NODDI and compared the difference between left- and right-side TN (LTN and RTN, respectively). Diffusion-weighted imaging was performed on 39 patients with LTN, 37 patients with RTN, and 37 healthy controls. Neurite orientation dispersion and density imaging-related indices, including the intracellular volume fraction (Vic), orientation dispersion index (ODI), and isotropic volume fraction (Fiso), were estimated and compared using tract-based spatial statistics and voxel-based region-of-interest analysis. The LTN and RTN groups exhibited microstructural abnormalities in white and gray matter as measured by decreased fractional anisotropy and Vic and elevated Fiso, respectively. These alterations were associated with clinical features and were mainly located in the frontal lobe, corona radiata, internal capsule, and thalamus. The angular variation of neurites, characterized by ODI, exhibited no significant changes between TN and control groups. Patients with classical TN of either side exhibited reduced Vic and increased Fiso, which indicated decreased density of axons and dendrites and neuroinflammatory edema in bilateral hemispheres. Neurite orientation dispersion and density imaging is a useful technique for in vivo diffusion MRI of white and gray matter in the brain, which provides additional metrics and information closely related to the tissue microstructure that merits further study of TN pathogenesis.
Collapse
Affiliation(s)
| | - Wen Shao
- Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Shaolin Yang
- Department of Bioengineering and Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | | | - Qiang Zhang
- Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Cusinato R, Seiler A, Schindler K, Tzovara A. Sleep Modulates Neural Timescales and Spatiotemporal Integration in the Human Cortex. J Neurosci 2025; 45:e1845242025. [PMID: 39965931 PMCID: PMC11984084 DOI: 10.1523/jneurosci.1845-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/19/2024] [Accepted: 01/25/2025] [Indexed: 02/20/2025] Open
Abstract
Spontaneous neural dynamics manifest across multiple temporal and spatial scales, which are thought to be intrinsic to brain areas and exhibit hierarchical organization across the cortex. In wake, a hierarchy of timescales is thought to naturally emerge from microstructural properties, gene expression, and recurrent connections. A fundamental question is timescales' organization and changes in sleep, where physiological needs are different. Here, we describe two measures of neural timescales, obtained from broadband activity and gamma power, which display complementary properties. We leveraged intracranial electroencephalography in 106 human epilepsy patients (48 females) to characterize timescale changes from wake to sleep across the cortical hierarchy. We show that both broadband and gamma timescales are globally longer in sleep than in wake. While broadband timescales increase along the sensorimotor-association axis, gamma ones decrease. During sleep, slow waves can explain the increase of broadband and gamma timescales, but only broadband ones show a positive association with slow-wave density across the cortex. Finally, we characterize spatial correlations and their relationship with timescales as a proxy for spatiotemporal integration, finding high integration at long distances in wake for broadband and at short distances in sleep for gamma timescales. Our results suggest that mesoscopic neural populations possess different timescales that are shaped by anatomy and are modulated by the sleep/wake cycle.
Collapse
Affiliation(s)
- Riccardo Cusinato
- Institute of Computer Science, University of Bern, Bern 3012, Switzerland
- Center for Experimental Neurology - Sleep Wake Epilepsy Center - NeuroTec, Department of Neurology, Inselspital Bern, University Hospital, University of Bern, Bern 3010, Switzerland
| | - Andrea Seiler
- Sleep-Wake-Epilepsy Center, Department of Neurology, Inselspital Bern, University Hospital, University of Bern, Bern 3010, Switzerland
| | - Kaspar Schindler
- Sleep-Wake-Epilepsy Center, Department of Neurology, Inselspital Bern, University Hospital, University of Bern, Bern 3010, Switzerland
| | - Athina Tzovara
- Institute of Computer Science, University of Bern, Bern 3012, Switzerland
- Center for Experimental Neurology - Sleep Wake Epilepsy Center - NeuroTec, Department of Neurology, Inselspital Bern, University Hospital, University of Bern, Bern 3010, Switzerland
| |
Collapse
|
3
|
Stier C, Balestrieri E, Fehring J, Focke NK, Wollbrink A, Dannlowski U, Gross J. Temporal autocorrelation is predictive of age-An extensive MEG time-series analysis. Proc Natl Acad Sci U S A 2025; 122:e2411098122. [PMID: 39977317 PMCID: PMC11873822 DOI: 10.1073/pnas.2411098122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 01/14/2025] [Indexed: 02/22/2025] Open
Abstract
Understanding the evolving dynamics of the brain throughout life is pivotal for anticipating and evaluating individual health. While previous research has described age effects on spectral properties of neural signals, it remains unclear which ones are most indicative of age-related processes. This study addresses this gap by analyzing resting-state data obtained from magnetoencephalography (MEG) in 350 adults (18 to 88 y). We employed advanced time-series analysis at the brain region level and machine learning to predict age. While traditional spectral features achieved low to moderate accuracy, over a hundred time-series features proved superior. Notably, temporal autocorrelation (AC) emerged as the most robust predictor of age. Distinct patterns of AC within the visual and temporal cortex were most informative, offering a versatile measure of age-related signal changes for comprehensive health assessments based on brain activity.
Collapse
Affiliation(s)
- Christina Stier
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster48149, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster48149, Germany
- Clinic of Neurology, University Medical Center Göttingen, Göttingen37075, Germany
| | - Elio Balestrieri
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster48149, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster48149, Germany
| | - Jana Fehring
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster48149, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster48149, Germany
| | - Niels K. Focke
- Clinic of Neurology, University Medical Center Göttingen, Göttingen37075, Germany
| | - Andreas Wollbrink
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster48149, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster48149, Germany
| | - Joachim Gross
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster48149, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster48149, Germany
| |
Collapse
|
4
|
Ramduny J, Uddin LQ, Vanderwal T, Feczko E, Fair DA, Kelly C, Baskin-Sommers A. Representing Brain-Behavior Associations by Retaining High-Motion Minoritized Youth. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025:S2451-9022(25)00037-0. [PMID: 39921132 DOI: 10.1016/j.bpsc.2025.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 02/10/2025]
Abstract
BACKGROUND Population neuroscience datasets provide an opportunity for researchers to estimate reproducible effect sizes for brain-behavior associations because of their large sample sizes. However, these datasets undergo strict quality control to mitigate sources of noise, such as head motion. This practice often excludes a disproportionate number of minoritized individuals. METHODS We used motion-ordering and motion-ordering+resampling (bagging) to test whether these methods preserve functional magnetic resonance imaging (fMRI) data in the Adolescent Brain Cognitive Development (ABCD) Study (N = 5733). For the 2 methods, brain-behavior associations were computed as the partial Spearman's rank correlations (Rs) between functional connectivity and cognitive performance (NIH Cognition Toolbox) as well as externalizing and internalizing psychopathology (Child Behavior Checklist) while adjusting for participant sex assigned at birth and head motion. RESULTS Black and Hispanic youth exhibited excess head motion relative to data collected from White youth and were discarded disproportionately when conventional approaches were used. Motion-ordering and bagging methods retained more than 99% of Black and Hispanic youth. Both methods produced reproducible brain-behavior associations across low-/high-motion racial/ethnic groups based on motion-limited fMRI data. CONCLUSIONS The motion-ordering and bagging methods are 2 feasible approaches that can enhance sample representation for testing brain-behavior associations and that result in reproducible effect sizes in diverse populations.
Collapse
Affiliation(s)
- Jivesh Ramduny
- Department of Psychology, Yale University, New Haven, Connecticut; Kavli Institute for Neuroscience, Yale University, New Haven, Connecticut.
| | - Lucina Q Uddin
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, California; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California; Department of Psychology, University of California Los Angeles, Los Angeles, California
| | - Tamara Vanderwal
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada; BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Eric Feczko
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota; Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Damien A Fair
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota; Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota; Institute of Child Development, University of Minnesota, Minneapolis, Minnesota
| | - Clare Kelly
- School of Psychology, Trinity College Dublin, Dublin, Ireland; Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Arielle Baskin-Sommers
- Department of Psychology, Yale University, New Haven, Connecticut; Department of Psychiatry, Yale University, New Haven, Connecticut; Wu Tsai Institute, Yale University, New Haven, Connecticut
| |
Collapse
|
5
|
Wu K, Gollo LL. Mapping and modeling age-related changes in intrinsic neural timescales. Commun Biol 2025; 8:167. [PMID: 39901043 PMCID: PMC11791184 DOI: 10.1038/s42003-025-07517-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/10/2025] [Indexed: 02/05/2025] Open
Abstract
Intrinsic timescales of brain regions exhibit heterogeneity, escalating with hierarchical levels, and are crucial for the temporal integration of external stimuli. Aging, often associated with cognitive decline, involves progressive neuronal and synaptic loss, reshaping brain structure and dynamics. However, the impact of these structural changes on temporal coding in the aging brain remains unclear. We mapped intrinsic timescales and gray matter volume (GMV) using magnetic resonance imaging (MRI) in young and elderly adults. We found shorter intrinsic timescales across multiple large-scale functional networks in the elderly cohort, and a significant positive association between intrinsic timescales and GMV. Additionally, age-related decline in performance on visual discrimination tasks was linked to a reduction in intrinsic timescales in the cuneus. To explain these age-related shifts, we developed an age-dependent spiking neuron network model. In younger subjects, brain regions were near a critical branching regime, while regions in elderly subjects had fewer neurons and synapses, pushing the dynamics toward a subcritical regime. The model accurately reproduced the empirical results, showing longer intrinsic timescales in young adults due to critical slowing down. Our findings reveal how age-related structural brain changes may drive alterations in brain dynamics, offering testable predictions and informing possible interventions targeting cognitive decline.
Collapse
Affiliation(s)
- Kaichao Wu
- Brain Networks and Modelling Laboratory and The Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
- Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia
| | - Leonardo L Gollo
- Brain Networks and Modelling Laboratory and The Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia.
- Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia.
- Instituto de Física Interdisciplinary Sistemas Complejos, IFISC (UIB-CSIC), Campus Universitat de les Illes Balears, Palma de Mallorca, Spain.
| |
Collapse
|
6
|
Häkkinen S, Voorhies WI, Willbrand EH, Tsai YH, Gagnant T, Yao JK, Weiner KS, Bunge SA. Anchoring functional connectivity to individual sulcal morphology yields insights in a pediatric study of reasoning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.04.18.590165. [PMID: 38659961 PMCID: PMC11042283 DOI: 10.1101/2024.04.18.590165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
A salient neuroanatomical feature of the human brain is its pronounced cortical folding, and there is mounting evidence that sulcal morphology is relevant to functional brain architecture and cognition. However, our understanding of the relationships between sulcal anatomy, brain activity, and behavior is still in its infancy. We previously found the depth of three small, shallow sulci in lateral prefrontal cortex (LPFC) was linked to reasoning performance in childhood and adolescence (Voorhies et al., 2021). These findings beg the question: what is the linking mechanism between sulcal morphology and cognition? To shed light on this question, we investigated functional connectivity among sulci in LPFC and lateral parietal cortex (LPC). We leveraged manual parcellations (21 sulci/hemisphere, total of 1806) and functional magnetic resonance (fMRI) data from a reasoning task from 43 participants aged 7-18 years (20 female). We conducted clustering and classification analyses of individual-level functional connectivity among sulci. Broadly, we found that 1) the connectivity patterns of individual sulci could be differentiated - and more accurately than rotated sulcal labels equated for size and shape; 2) sulcal connectivity did not consistently correspond with that of probabilistic labels or large-scale networks; 3) sulci clustered together into groups with similar patterns, not dictated by spatial proximity; and 4) across individuals, greater depth was associated with higher network centrality for several sulci under investigation. These results highlight that functional connectivity can be meaningfully anchored to individual sulcal anatomy, and demonstrate that functional network centrality can vary as a function of sulcal depth.
Collapse
Affiliation(s)
- Suvi Häkkinen
- Department of Psychology, University of California, Berkeley, Berkeley, CA, 94720 USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720 USA
| | - Willa I. Voorhies
- Department of Psychology, University of California, Berkeley, Berkeley, CA, 94720 USA
| | - Ethan H. Willbrand
- Department of Psychology, University of California, Berkeley, Berkeley, CA, 94720 USA
- Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI, 53726 USA
| | - Yi-Heng Tsai
- Department of Psychology, University of California, Berkeley, Berkeley, CA, 94720 USA
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599 USA
| | - Thomas Gagnant
- Department of Psychology, University of California, Berkeley, Berkeley, CA, 94720 USA
- Medical Science Faculty, University of Bordeaux, Bordeaux, France
| | | | - Kevin S. Weiner
- Department of Psychology, University of California, Berkeley, Berkeley, CA, 94720 USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720 USA
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA, 94720 USA
| | - Silvia A. Bunge
- Department of Psychology, University of California, Berkeley, Berkeley, CA, 94720 USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720 USA
| |
Collapse
|
7
|
Gruskin DC, Vieira DJ, Lee JK, Patel GH. Heritability of movie-evoked brain activity and connectivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.16.612469. [PMID: 39345386 PMCID: PMC11429865 DOI: 10.1101/2024.09.16.612469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The neural bases of sensory processing are conserved across people, but no two individuals experience the same stimulus in exactly the same way. Recent work has established that the idiosyncratic nature of subjective experience is underpinned by individual variability in brain responses to sensory information. However, the fundamental origins of this individual variability have yet to be systematically investigated. Here, we establish a genetic basis for individual differences in sensory processing by quantifying (1) the heritability of high-dimensional brain responses to movies and (2) the extent to which this heritability is grounded in lower-level aspects of brain function. Specifically, we leverage 7T fMRI data collected from a twin sample to first show that movie-evoked brain activity and connectivity patterns are heritable across the cortex. Next, we use hyperalignment to decompose this heritability into genetic similarity in where vs. how sensory information is processed. Finally, we show that the heritability of brain activity patterns can be partially explained by the heritability of the neural timescale, a one-dimensional measure of local circuit functioning. These results demonstrate that brain responses to complex stimuli are heritable, and that this heritability is due, in part, to genetic control over stable aspects of brain function.
Collapse
Affiliation(s)
- David C. Gruskin
- Medical Scientist Training Program, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Daniel J. Vieira
- Division of Experimental Therapeutics, New York State Psychiatric Institute, New York, New York 10032, USA
| | - Jessica K. Lee
- Division of Experimental Therapeutics, New York State Psychiatric Institute, New York, New York 10032, USA
| | - Gaurav H. Patel
- Division of Experimental Therapeutics, New York State Psychiatric Institute, New York, New York 10032, USA
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York 10032, USA
| |
Collapse
|
8
|
Wang C, Zhou L, Zhou F, Fu T. The application value of Rs-fMRI-based machine learning models for differentiating mild cognitive impairment from Alzheimer's disease: a systematic review and meta-analysis. Neurol Sci 2025; 46:45-62. [PMID: 39225837 PMCID: PMC11698789 DOI: 10.1007/s10072-024-07731-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Various machine learning (ML) models based on resting-state functional MRI (Rs-fMRI) have been developed to facilitate differential diagnosis of mild cognitive impairment (MCI) and Alzheimer's disease (AD). However, the diagnostic accuracy of such models remains understudied. Therefore, we conducted this systematic review and meta-analysis to explore the diagnostic accuracy of Rs-fMRI-based radiomics in differentiating MCI from AD. METHODS PubMed, Embase, Cochrane, and Web of Science were searched from inception up to February 8, 2024, to identify relevant studies. Meta-analysis was conducted using a bivariate mixed-effects model, and sub-group analyses were carried out by the types of ML tasks (binary classification and multi-class classification tasks). FINDINGS In total, 23 studies, comprising 5,554 participants were enrolled in the study. In the binary classification tasks (twenty studies), the diagnostic accuracy of the ML model for AD was 0.99 (95%CI: 0.34 ~ 1.00), with a sensitivity of 0.94 (95%CI: 0.89 ~ 0.97) and a specificity of 0.98 (95%CI: 0.95 ~ 1.00). In the multi-class classification tasks (six studies), the diagnostic accuracy of the ML model was 0.98 (95%CI: 0.98 ~ 0.99) for NC, 0.96 (95%CI: 0.96 ~ 0.96) for early mild cognitive impairment (EMCI), 0.97 (95%CI: 0.96 ~ 0.97) for late mild cognitive impairment (LMCI), and 0.95 (95%CI: 0.95 ~ 0.95) for AD. CONCLUSIONS The Rs-fMRI-based ML model can be adapted to multi-class classification tasks. Therefore, multi-center studies with large samples are needed to develop intelligent application tools to promote the development of intelligent ML models for disease diagnosis.
Collapse
Affiliation(s)
- Chentong Wang
- Rheumatology Immunology Department, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, 315000, China
| | - Li Zhou
- Rheumatology Immunology Department, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, 315000, China.
- Ningbo Medical Center Lihuili Hospital, 1111 Jiangnan Road, Yinzhou District, Ningbo, Zhejiang, China.
| | - Feng Zhou
- Rheumatology Immunology Department, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, 315000, China
| | - Tingting Fu
- Rheumatology Immunology Department, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, 315000, China
| |
Collapse
|
9
|
Wang Y, Qiao C, Qu G, Calhoun VD, Stephen JM, Wilson TW, Wang YP. A Deep Dynamic Causal Learning Model to Study Changes in Dynamic Effective Connectivity During Brain Development. IEEE Trans Biomed Eng 2024; 71:3390-3401. [PMID: 38968024 PMCID: PMC11700232 DOI: 10.1109/tbme.2024.3423803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
OBJECTIVE Brain dynamic effective connectivity (dEC), characterizes the information transmission patterns between brain regions that change over time, which provides insight into the biological mechanism underlying brain development. However, most existing methods predominantly capture fixed or temporally invariant EC, leaving dEC largely unexplored. METHODS Herein we propose a deep dynamic causal learning model specifically designed to capture dEC. It includes a dynamic causal learner to detect time-varying causal relationships from spatio-temporal data, and a dynamic causal discriminator to validate these findings by comparing original and reconstructed data. RESULTS Our model outperforms established baselines in the accuracy of identifying dynamic causalities when tested on the simulated data. When applied to the Philadelphia Neurodevelopmental Cohort, the model uncovers distinct patterns in dEC networks across different age groups. Specifically, the evolution process of brain dEC networks in young adults is more stable than in children, and significant differences in information transfer patterns exist between them. CONCLUSION This study highlights the brain's developmental trajectory, where networks transition from undifferentiated to specialized structures with age, in accordance with the improvement of an individual's cognitive and information processing capability. SIGNIFICANCE The proposed model consists of the identification and verification of dynamic causality, utilizing the spatio-temporal fusing information from fMRI. As a result, it can accurately detect dEC and characterize its evolution over age.
Collapse
|
10
|
Han X, Feng J, Xu H, Du S, Li J. A hypergraph transformer method for brain disease diagnosis. Front Med (Lausanne) 2024; 11:1496573. [PMID: 39610680 PMCID: PMC11604076 DOI: 10.3389/fmed.2024.1496573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 10/30/2024] [Indexed: 11/30/2024] Open
Abstract
Objective To address the high-order correlation modeling and fusion challenges between functional and structural brain networks. Method This paper proposes a hypergraph transformer method for modeling high-order correlations between functional and structural brain networks. By utilizing hypergraphs, we can effectively capture the high-order correlations within brain networks. The Transformer model provides robust feature extraction and integration capabilities that are capable of handling complex multimodal brain imaging. Results The proposed method is evaluated on the ABIDE and ADNI datasets. It outperforms all the comparison methods, including traditional and graph-based methods, in diagnosing different types of brain diseases. The experimental results demonstrate its potential and application prospects in clinical practice. Conclusion The proposed method provides new tools and insights for brain disease diagnosis, improving accuracy and aiding in understanding complex brain network relationships, thus laying a foundation for future brain science research.
Collapse
Affiliation(s)
- Xiangmin Han
- School of Software, Tsinghua University, Beijing, China
| | - Jingxi Feng
- The Institute of Artificial Intelligence and Robotics, College of Artificial Intelligence, Xi'an Jiaotong University, Xi'an, China
| | - Heming Xu
- The Institute of Artificial Intelligence and Robotics, College of Artificial Intelligence, Xi'an Jiaotong University, Xi'an, China
| | - Shaoyi Du
- The Institute of Artificial Intelligence and Robotics, College of Artificial Intelligence, Xi'an Jiaotong University, Xi'an, China
| | - Junchang Li
- Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center, Shenzhen, China
| |
Collapse
|
11
|
Jang H, Mashour GA, Hudetz AG, Huang Z. Measuring the dynamic balance of integration and segregation underlying consciousness, anesthesia, and sleep in humans. Nat Commun 2024; 15:9164. [PMID: 39448600 PMCID: PMC11502666 DOI: 10.1038/s41467-024-53299-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024] Open
Abstract
Consciousness requires a dynamic balance of integration and segregation in brain networks. We report an fMRI-based metric, the integration-segregation difference (ISD), which captures two key network properties: network efficiency (integration) and clustering (segregation). With this metric, we quantify brain state transitions from conscious wakefulness to unresponsiveness induced by the anesthetic propofol. The observed changes in ISD suggest a profound shift towards the segregation of brain networks during anesthesia. A common unimodal-transmodal sequence of disintegration and reintegration occurs in brain networks during, respectively, loss and return of responsiveness. Machine learning models using integration and segregation data accurately identify awake vs. unresponsive states and their transitions. Metastability (dynamic recurrence of non-equilibrium transient states) is more effectively explained by integration, while complexity (diversity of neural activity) is more closely linked with segregation. A parallel analysis of sleep states produces similar findings. Our results demonstrate that the ISD reliably indexes states of consciousness.
Collapse
Affiliation(s)
- Hyunwoo Jang
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI, USA
| | - George A Mashour
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Anthony G Hudetz
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Zirui Huang
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA.
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
12
|
Dai R, Jang H, Hudetz AG, Huang Z, Mashour GA. Neural Correlates of Psychedelic, Sleep, and Sedated States Support Global Theories of Consciousness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619731. [PMID: 39484478 PMCID: PMC11526930 DOI: 10.1101/2024.10.23.619731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Understanding neural mechanisms of consciousness remains a challenging question in neuroscience. A central debate in the field concerns whether consciousness arises from global interactions that involve multiple brain regions or focal neural activity, such as in sensory cortex. Additionally, global theories diverge between the Global Neuronal Workspace (GNW) hypothesis, which emphasizes frontal and parietal areas, and the Integrated Information Theory (IIT), which focuses on information integration within posterior cortical regions. To disentangle the global vs. local and frontoparietal vs. posterior dilemmas, we measured global functional connectivity and local neural synchrony with functional magnetic resonance imaging (fMRI) data across a spectrum of conscious states in humans induced by psychedelics, sleep, and deep sedation. We found that psychedelic states are associated with increased global functional connectivity and decreased local neural synchrony. In contrast, non-REM sleep and deep sedation displayed the opposite pattern, suggesting that consciousness arises from global brain network interactions rather than localized activity. This mirror-image pattern between enhanced and diminished states was observed in both anterior-posterior (A-P) and posterior-posterior (P-P) brain regions but not within the anterior part of the brain alone. Moreover, anterior transmodal regions played a key role in A-P connectivity, while both posterior transmodal and posterior unimodal regions were critical for P-P connectivity. Overall, these findings provide empirical evidence supporting global theories of consciousness in relation to varying states of consciousness. They also bridge the gap between two prominent theories, GNW and IIT, by demonstrating how different theories can converge on shared neuronal mechanisms.
Collapse
Affiliation(s)
- Rui Dai
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Hyunwoo Jang
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anthony G. Hudetz
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zirui Huang
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - George A. Mashour
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| |
Collapse
|
13
|
Lendner JD, Lin JJ, Larsson PG, Helfrich RF. Multiple Intrinsic Timescales Govern Distinct Brain States in Human Sleep. J Neurosci 2024; 44:e0171242024. [PMID: 39187378 PMCID: PMC11484545 DOI: 10.1523/jneurosci.0171-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/22/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024] Open
Abstract
Human sleep exhibits multiple, recurrent temporal regularities, ranging from circadian rhythms to sleep stage cycles and neuronal oscillations during nonrapid eye movement sleep. Moreover, recent evidence revealed a functional role of aperiodic activity, which reliably discriminates different sleep stages. Aperiodic activity is commonly defined as the spectral slope χ of the 1/frequency (1/fχ) decay function of the electrophysiological power spectrum. However, several lines of inquiry now indicate that the aperiodic component of the power spectrum might be better characterized by a superposition of several decay processes with associated timescales. Here, we determined multiple timescales, which jointly shape aperiodic activity using human intracranial electroencephalography. Across three independent studies (47 participants, 23 female), our results reveal that aperiodic activity reliably dissociated sleep stage-dependent dynamics in a regionally specific manner. A principled approach to parametrize aperiodic activity delineated several, spatially and state-specific timescales. Lastly, we employed pharmacological modulation by means of propofol anesthesia to disentangle state-invariant timescales that may reflect physical properties of the underlying neural population from state-specific timescales that likely constitute functional interactions. Collectively, these results establish the presence of multiple intrinsic timescales that define the electrophysiological power spectrum during distinct brain states.
Collapse
Affiliation(s)
- Janna D Lendner
- Hertie Institute for Clinical Brain Research, University Medical Center Tübingen, Tübingen 72076, Germany
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Tübingen, Tübingen 72076, Germany
| | - Jack J Lin
- Department of Neurology, UC Davis, Sacramento, California 95816
- Center for Mind and Brain, UC Davis, Davis, California 95618
| | - Pål G Larsson
- Department of Neurosurgery, University of Oslo Medical Center, Oslo 0372, Norway
| | - Randolph F Helfrich
- Hertie Institute for Clinical Brain Research, University Medical Center Tübingen, Tübingen 72076, Germany
| |
Collapse
|
14
|
Tang H, Liu G, Dai S, Ye K, Zhao K, Wang W, Yang C, He L, Leow A, Thompson P, Huang H, Zhan L. Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2024; 15002:227-237. [PMID: 39465192 PMCID: PMC11513182 DOI: 10.1007/978-3-031-72069-7_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The MRI-derived brain network serves as a pivotal instrument in elucidating both the structural and functional aspects of the brain, encompassing the ramifications of diseases and developmental processes. However, prevailing methodologies, often focusing on synchronous BOLD signals from functional MRI (fMRI), may not capture directional influences among brain regions and rarely tackle temporal functional dynamics. In this study, we first construct the brain-effective network via the dynamic causal model. Subsequently, we introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE). This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic inter-play between structural and effective networks via an ordinary differential equation (ODE) model, which characterizes spatial-temporal brain dynamics. Our framework is validated on several clinical phenotype prediction tasks using two independent publicly available datasets (HCP and OASIS). The experimental results clearly demonstrate the advantages of our model compared to several state-of-the-art methods.
Collapse
Affiliation(s)
- Haoteng Tang
- University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Guodong Liu
- University of Maryland, College Park, MD 20742, USA
| | - Siyuan Dai
- University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Kai Ye
- University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Kun Zhao
- University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Wenlu Wang
- Texas A&M University - Corpus Christi, Corpus Christi, TX 78412, USA
| | - Carl Yang
- Emory University, Atlanta, GA 30322, USA
| | - Lifang He
- Lehigh University, Bethlehem, PA 18015, USA
| | - Alex Leow
- University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Paul Thompson
- University of Southern California, Los Angeles, CA 90032, USA
| | - Heng Huang
- University of Maryland, College Park, MD 20742, USA
| | - Liang Zhan
- University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
15
|
Benozzo D, Baggio G, Baron G, Chiuso A, Zampieri S, Bertoldo A. Analyzing asymmetry in brain hierarchies with a linear state-space model of resting-state fMRI data. Netw Neurosci 2024; 8:965-988. [PMID: 39355437 PMCID: PMC11424037 DOI: 10.1162/netn_a_00381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/02/2024] [Indexed: 10/03/2024] Open
Abstract
This study challenges the traditional focus on zero-lag statistics in resting-state functional magnetic resonance imaging (rsfMRI) research. Instead, it advocates for considering time-lag interactions to unveil the directionality and asymmetries of the brain hierarchy. Effective connectivity (EC), the state matrix in dynamical causal modeling (DCM), is a commonly used metric for studying dynamical properties and causal interactions within a linear state-space system description. Here, we focused on how time-lag statistics are incorporated within the framework of DCM resulting in an asymmetric EC matrix. Our approach involves decomposing the EC matrix, revealing a steady-state differential cross-covariance matrix that is responsible for modeling information flow and introducing time-irreversibility. Specifically, the system's dynamics, influenced by the off-diagonal part of the differential covariance, exhibit a curl steady-state flow component that breaks detailed balance and diverges the dynamics from equilibrium. Our empirical findings indicate that the EC matrix's outgoing strengths correlate with the flow described by the differential cross covariance, while incoming strengths are primarily driven by zero-lag covariance, emphasizing conditional independence over directionality.
Collapse
Affiliation(s)
- Danilo Benozzo
- Information Engineering Department, University of Padova, Padova, Italy
| | - Giacomo Baggio
- Information Engineering Department, University of Padova, Padova, Italy
| | - Giorgia Baron
- Information Engineering Department, University of Padova, Padova, Italy
| | - Alessandro Chiuso
- Information Engineering Department, University of Padova, Padova, Italy
| | - Sandro Zampieri
- Information Engineering Department, University of Padova, Padova, Italy
| | - Alessandra Bertoldo
- Information Engineering Department, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
| |
Collapse
|
16
|
Owen LLW, Manning JR. High-level cognition is supported by information-rich but compressible brain activity patterns. Proc Natl Acad Sci U S A 2024; 121:e2400082121. [PMID: 39178232 PMCID: PMC11363287 DOI: 10.1073/pnas.2400082121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/08/2024] [Indexed: 08/25/2024] Open
Abstract
To efficiently yet reliably represent and process information, our brains need to produce information-rich signals that differentiate between moments or cognitive states, while also being robust to noise or corruption. For many, though not all, natural systems, these two properties are often inversely related: More information-rich signals are less robust, and vice versa. Here, we examined how these properties change with ongoing cognitive demands. To this end, we applied dimensionality reduction algorithms and pattern classifiers to functional neuroimaging data collected as participants listened to a story, temporally scrambled versions of the story, or underwent a resting state scanning session. We considered two primary aspects of the neural data recorded in these different experimental conditions. First, we treated the maximum achievable decoding accuracy across participants as an indicator of the "informativeness" of the recorded patterns. Second, we treated the number of features (components) required to achieve a threshold decoding accuracy as a proxy for the "compressibility" of the neural patterns (where fewer components indicate greater compression). Overall, we found that the peak decoding accuracy (achievable without restricting the numbers of features) was highest in the intact (unscrambled) story listening condition. However, the number of features required to achieve comparable classification accuracy was also lowest in the intact story listening condition. Taken together, our work suggests that our brain networks flexibly reconfigure according to ongoing task demands and that the activity patterns associated with higher-order cognition and high engagement are both more informative and more compressible than the activity patterns associated with lower-order tasks and lower engagement.
Collapse
Affiliation(s)
- Lucy L. W. Owen
- Department of Psychiatry and Human Behavior, Carney Institute for Brain Sciences, Brown University, Providence, RI02906
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH03755
- Department of Computer Science, University of Montana, Missoula, MT59812
| | - Jeremy R. Manning
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH03755
| |
Collapse
|
17
|
Ramduny J, Uddin LQ, Vanderwal T, Feczko E, Fair DA, Kelly C, Baskin-Sommers A. Increasing the representation of minoritized youth for inclusive and reproducible brain-behavior associations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.22.600221. [PMID: 38979302 PMCID: PMC11230295 DOI: 10.1101/2024.06.22.600221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Population neuroscience datasets allow researchers to estimate reliable effect sizes for brain-behavior associations because of their large sample sizes. However, these datasets undergo strict quality control to mitigate sources of noise, such as head motion. This practice often excludes a disproportionate number of minoritized individuals. We employ motion-ordering and motion-ordering+resampling (bagging) to test if these methods preserve functional MRI (fMRI) data in the Adolescent Brain Cognitive Development Study ( N = 5,733 ). Black and Hispanic youth exhibited excess head motion relative to data collected from White youth, and were discarded disproportionately when using conventional approaches. Both methods retained more than 99% of Black and Hispanic youth. They produced reproducible brain-behavior associations across low-/high-motion racial/ethnic groups based on motion-limited fMRI data. The motion-ordering and bagging methods are two feasible approaches that can enhance sample representation for testing brain-behavior associations and fulfill the promise of consortia datasets to produce generalizable effect sizes across diverse populations.
Collapse
Affiliation(s)
- Jivesh Ramduny
- Department of Psychology, Yale University, New Haven, CT, USA
- Kavli Institute for Neuroscience, Yale University, New Haven, CT, USA
| | - Lucina Q. Uddin
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
- Department of Psychology, University of California Los Angeles, Los Angeles, CA, USA
| | - Tamara Vanderwal
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Eric Feczko
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Damien A. Fair
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| | - Clare Kelly
- School of Psychology, Trinity College Dublin, Dublin, Ireland
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Arielle Baskin-Sommers
- Department of Psychology, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
18
|
Yu M, Risacher SL, Nho KT, Wen Q, Oblak AL, Unverzagt FW, Apostolova LG, Farlow MR, Brosch JR, Clark DG, Wang S, Deardorff R, Wu YC, Gao S, Sporns O, Saykin AJ. Spatial transcriptomic patterns underlying amyloid-β and tau pathology are associated with cognitive dysfunction in Alzheimer's disease. Cell Rep 2024; 43:113691. [PMID: 38244198 PMCID: PMC10926093 DOI: 10.1016/j.celrep.2024.113691] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/29/2023] [Accepted: 01/03/2024] [Indexed: 01/22/2024] Open
Abstract
Amyloid-β (Aβ) and tau proteins accumulate within distinct neuronal systems in Alzheimer's disease (AD). Although it is not clear why certain brain regions are more vulnerable to Aβ and tau pathologies than others, gene expression may play a role. We study the association between brain-wide gene expression profiles and regional vulnerability to Aβ (gene-to-Aβ associations) and tau (gene-to-tau associations) pathologies by leveraging two large independent AD cohorts. We identify AD susceptibility genes and gene modules in a gene co-expression network with expression profiles specifically related to regional vulnerability to Aβ and tau pathologies in AD. In addition, we identify distinct biochemical pathways associated with the gene-to-Aβ and the gene-to-tau associations. These findings may explain the discordance between regional Aβ and tau pathologies. Finally, we propose an analytic framework, linking the identified gene-to-pathology associations to cognitive dysfunction in AD at the individual level, suggesting potential clinical implication of the gene-to-pathology associations.
Collapse
Affiliation(s)
- Meichen Yu
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University Network Science Institute, Bloomington, IN, USA.
| | - Shannon L Risacher
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kwangsik T Nho
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University Network Science Institute, Bloomington, IN, USA
| | - Qiuting Wen
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Adrian L Oblak
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Frederick W Unverzagt
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Liana G Apostolova
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Martin R Farlow
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jared R Brosch
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David G Clark
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sophia Wang
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rachael Deardorff
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yu-Chien Wu
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sujuan Gao
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Olaf Sporns
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University Network Science Institute, Bloomington, IN, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Andrew J Saykin
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University Network Science Institute, Bloomington, IN, USA.
| |
Collapse
|
19
|
Shinn M. Phantom oscillations in principal component analysis. Proc Natl Acad Sci U S A 2023; 120:e2311420120. [PMID: 37988465 PMCID: PMC10691246 DOI: 10.1073/pnas.2311420120] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/18/2023] [Indexed: 11/23/2023] Open
Abstract
Principal component analysis (PCA) is a dimensionality reduction method that is known for being simple and easy to interpret. Principal components are often interpreted as low-dimensional patterns in high-dimensional space. However, this simple interpretation fails for timeseries, spatial maps, and other continuous data. In these cases, nonoscillatory data may have oscillatory principal components. Here, we show that two common properties of data cause oscillatory principal components: smoothness and shifts in time or space. These two properties implicate almost all neuroscience data. We show how the oscillations produced by PCA, which we call "phantom oscillations," impact data analysis. We also show that traditional cross-validation does not detect phantom oscillations, so we suggest procedures that do. Our findings are supported by a collection of mathematical proofs. Collectively, our work demonstrates that patterns which emerge from high-dimensional data analysis may not faithfully represent the underlying data.
Collapse
Affiliation(s)
- Maxwell Shinn
- University College London (UCL) Queen Square Institute of Neurology, University College London, LondonWC1E 6BT, United Kingdom
| |
Collapse
|
20
|
Nakuci J, Yeon J, Xue K, Kim JH, Kim SP, Rahnev D. Quantifying the contribution of subject and group factors in brain activation. Cereb Cortex 2023; 33:11092-11101. [PMID: 37771044 PMCID: PMC10646690 DOI: 10.1093/cercor/bhad348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/30/2023] Open
Abstract
Research in neuroscience often assumes universal neural mechanisms, but increasing evidence points toward sizeable individual differences in brain activations. What remains unclear is the extent of the idiosyncrasy and whether different types of analyses are associated with different levels of idiosyncrasy. Here we develop a new method for addressing these questions. The method consists of computing the within-subject reliability and subject-to-group similarity of brain activations and submitting these values to a computational model that quantifies the relative strength of group- and subject-level factors. We apply this method to a perceptual decision-making task (n = 50) and find that activations related to task, reaction time, and confidence are influenced equally strongly by group- and subject-level factors. Both group- and subject-level factors are dwarfed by a noise factor, though higher levels of smoothing increases their contributions relative to noise. Overall, our method allows for the quantification of group- and subject-level factors of brain activations and thus provides a more detailed understanding of the idiosyncrasy levels in brain activations.
Collapse
Affiliation(s)
- Johan Nakuci
- School of Psychology, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Jiwon Yeon
- Department of Psychology, Stanford University, Stanford, CA 94305, United States
| | - Kai Xue
- School of Psychology, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Ji-Hyun Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Sung-Phil Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Dobromir Rahnev
- School of Psychology, Georgia Institute of Technology, Atlanta, GA 30332, United States
| |
Collapse
|
21
|
Betzel RF, Faskowitz J, Sporns O. Living on the edge: network neuroscience beyond nodes. Trends Cogn Sci 2023; 27:1068-1084. [PMID: 37716895 PMCID: PMC10592364 DOI: 10.1016/j.tics.2023.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/14/2023] [Accepted: 08/10/2023] [Indexed: 09/18/2023]
Abstract
Network neuroscience has emphasized the connectional properties of neural elements - cells, populations, and regions. This has come at the expense of the anatomical and functional connections that link these elements to one another. A new perspective - namely one that emphasizes 'edges' - may prove fruitful in addressing outstanding questions in network neuroscience. We highlight one recently proposed 'edge-centric' method and review its current applications, merits, and limitations. We also seek to establish conceptual and mathematical links between this method and previously proposed approaches in the network science and neuroimaging literature. We conclude by presenting several avenues for future work to extend and refine existing edge-centric analysis.
Collapse
Affiliation(s)
- Richard F Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA; Cognitive Science Program, Indiana University, Bloomington, IN 47405, USA; Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA; Network Science Institute, Indiana University, Bloomington, IN 47405, USA.
| | - Joshua Faskowitz
- Section on Functional Imaging Methods, National Institute of Mental Health, Bethesda, MD, USA
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA; Cognitive Science Program, Indiana University, Bloomington, IN 47405, USA; Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA; Network Science Institute, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
22
|
Baracchini G, Zhou Y, da Silva Castanheira J, Hansen JY, Rieck J, Turner GR, Grady CL, Misic B, Nomi J, Uddin LQ, Spreng RN. The biological role of local and global fMRI BOLD signal variability in human brain organization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.22.563476. [PMID: 37961684 PMCID: PMC10634715 DOI: 10.1101/2023.10.22.563476] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Variability drives the organization and behavior of complex systems, including the human brain. Understanding the variability of brain signals is thus necessary to broaden our window into brain function and behavior. Few empirical investigations of macroscale brain signal variability have yet been undertaken, given the difficulty in separating biological sources of variance from artefactual noise. Here, we characterize the temporal variability of the most predominant macroscale brain signal, the fMRI BOLD signal, and systematically investigate its statistical, topographical and neurobiological properties. We contrast fMRI acquisition protocols, and integrate across histology, microstructure, transcriptomics, neurotransmitter receptor and metabolic data, fMRI static connectivity, and empirical and simulated magnetoencephalography data. We show that BOLD signal variability represents a spatially heterogeneous, central property of multi-scale multi-modal brain organization, distinct from noise. Our work establishes the biological relevance of BOLD signal variability and provides a lens on brain stochasticity across spatial and temporal scales.
Collapse
Affiliation(s)
- Giulia Baracchini
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Yigu Zhou
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Jason da Silva Castanheira
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Justine Y. Hansen
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | | | - Gary R. Turner
- Department of Psychology, York University, Toronto, ON, Canada
| | - Cheryl L. Grady
- Rotman Research Institute at Baycrest, and Department of Psychiatry and Psychology, University of Toronto, Toronto, ON, Canada
| | - Bratislav Misic
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Jason Nomi
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, USA
| | - Lucina Q. Uddin
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, USA
| | - R. Nathan Spreng
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| |
Collapse
|
23
|
Betzel RF, Cutts SA, Tanner J, Greenwell SA, Varley T, Faskowitz J, Sporns O. Hierarchical organization of spontaneous co-fluctuations in densely sampled individuals using fMRI. Netw Neurosci 2023; 7:926-949. [PMID: 37781150 PMCID: PMC10473297 DOI: 10.1162/netn_a_00321] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/03/2023] [Indexed: 10/03/2023] Open
Abstract
Edge time series decompose functional connectivity into its framewise contributions. Previous studies have focused on characterizing the properties of high-amplitude frames (time points when the global co-fluctuation amplitude takes on its largest value), including their cluster structure. Less is known about middle- and low-amplitude co-fluctuations (peaks in co-fluctuation time series but of lower amplitude). Here, we directly address those questions, using data from two dense-sampling studies: the MyConnectome project and Midnight Scan Club. We develop a hierarchical clustering algorithm to group peak co-fluctuations of all magnitudes into nested and multiscale clusters based on their pairwise concordance. At a coarse scale, we find evidence of three large clusters that, collectively, engage virtually all canonical brain systems. At finer scales, however, each cluster is dissolved, giving way to increasingly refined patterns of co-fluctuations involving specific sets of brain systems. We also find an increase in global co-fluctuation magnitude with hierarchical scale. Finally, we comment on the amount of data needed to estimate co-fluctuation pattern clusters and implications for brain-behavior studies. Collectively, the findings reported here fill several gaps in current knowledge concerning the heterogeneity and richness of co-fluctuation patterns as estimated with edge time series while providing some practical guidance for future studies.
Collapse
Affiliation(s)
- Richard F. Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- Cognitive Science Program, Indiana University, Bloomington, IN, USA
- Network Science Institute, Indiana University, Bloomington, IN, USA
| | - Sarah A. Cutts
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | - Jacob Tanner
- Cognitive Science Program, Indiana University, Bloomington, IN, USA
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, USA
| | - Sarah A. Greenwell
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Thomas Varley
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, USA
| | - Joshua Faskowitz
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- Cognitive Science Program, Indiana University, Bloomington, IN, USA
- Network Science Institute, Indiana University, Bloomington, IN, USA
| |
Collapse
|
24
|
Mao X, Zhang X, Song C, Ma K, Wang K, Wang X, Lian Y, Zhang Y, Han S, Cheng J, Zhang Y. Alterations in static and dynamic regional homogeneity in mesial temporal lobe epilepsy with and without initial precipitating injury. Front Neurosci 2023; 17:1226077. [PMID: 37600006 PMCID: PMC10434245 DOI: 10.3389/fnins.2023.1226077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
Objectives Initial precipitating injury (IPI) such as febrile convulsion and intracranial infection will increase the susceptibility to epilepsy. It is still unknown if the functional deficits differ between mesial temporal lobe epilepsy with IPI (mTLE-IPI) and without IPI (mTLE-NO). Methods We recruited 25 mTLE-IPI patients, 35 mTLE-NO patients and 33 healthy controls (HC). Static regional homogeneity (sReHo) and dynamic regional homogeneity (dReHo) were then adopted to estimate the alterations of local neuronal activity. One-way analysis of variance was used to analyze the differences between the three groups in sReHo and dReHo. Then the results were utilized as masks for further between-group comparisons. Besides, correlation analyses were carried out to detect the potential relationships between abnormal regional homogeneity indicators and clinical characteristics. Results When compared with HC, the bilateral thalamus and the visual cortex in mTLE-IPI patients showed an increase in both sReHo and variability of dReHo. Besides, mTLE-IPI patients exhibited decreased sReHo in the right cerebellum crus1/crus2, inferior parietal lobule and temporal neocortex. mTLE-NO patients showed decreased sReHo and variability of dReHo in the bilateral temporal neocortex compared with HC. Increased sReHo and variability of dReHo were found in the bilateral visual cortex when mTLE-IPI patients was compared with mTLE-NO patients, as well as increased variability of dReHo in the left thalamus and decreased sReHo in the right dorsolateral prefrontal cortex. Additionally, we discovered a negative correlation between the national hospital seizure severity scale testing score and sReHo in the right cerebellum crus1 in mTLE-IPI patients. Conclusion According to the aforementioned findings, both mTLE-IPI and mTLE-NO patients had significant anomalies in local neuronal activity, although the functional deficits were much severer in mTLE-IPI patients. The use of sReHo and dReHo may provide a novel insight into the impact of the presence of IPI on the development of mTLE.
Collapse
Affiliation(s)
- Xinyue Mao
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Xiaonan Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Chengru Song
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Keran Ma
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Kefan Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Xin Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Yajun Lian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Yan Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| |
Collapse
|
25
|
Nanda A, Rubinov M. Unbiased and efficient sampling of timeseries reveals redundancy of brain network and gradient structure. Neuroimage 2023; 274:120110. [PMID: 37150102 DOI: 10.1016/j.neuroimage.2023.120110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 05/09/2023] Open
Abstract
Many studies in human neuroscience seek to understand the structure of brain networks and gradients. Few studies, however, have tested the redundancy between these outwardly distinct features. Here, we developed methods to directly enable such tests. We built on insights from linear algebra to develop methods for unbiased and efficient sampling of timeseries with network or gradient constraints. We used these methods to show considerable redundancy between popular definitions of network and gradient structure in functional MRI data. On the one hand, we found that network constraints largely accounted for the structure of three major gradients. On the other hand, we found that gradient constraints largely accounted for the structure of seven major networks. Our results imply that some networks and gradients may denote discrete and continuous representations of the same aspects of functional MRI data. We suggest that integrated explanations can reduce redundancy by avoiding the attribution of independent existence or function to these features.
Collapse
Affiliation(s)
- Aditya Nanda
- Department of Biomedical Engineering, Vanderbilt University, USA.
| | - Mikail Rubinov
- Department of Biomedical Engineering, Vanderbilt University, USA; Department of Computer Science, Vanderbilt University, USA; Janelia Research Campus, Howard Hughes Medical Institute, USA.
| |
Collapse
|
26
|
Shi C, Wang Y, Wu Y, Chen S, Hu R, Zhang M, Qiu B, Wang X. Self-supervised pretraining improves the performance of classification of task functional magnetic resonance imaging. Front Neurosci 2023; 17:1199312. [PMID: 37434766 PMCID: PMC10330812 DOI: 10.3389/fnins.2023.1199312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/05/2023] [Indexed: 07/13/2023] Open
Abstract
Introduction Decoding brain activities is one of the most popular topics in neuroscience in recent years. And deep learning has shown high performance in fMRI data classification and regression, but its requirement for large amounts of data conflicts with the high cost of acquiring fMRI data. Methods In this study, we propose an end-to-end temporal contrastive self-supervised learning algorithm, which learns internal spatiotemporal patterns within fMRI and allows the model to transfer learning to datasets of small size. For a given fMRI signal, we segmented it into three sections: the beginning, middle, and end. We then utilized contrastive learning by taking the end-middle (i.e., neighboring) pair as the positive pair, and the beginning-end (i.e., distant) pair as the negative pair. Results We pretrained the model on 5 out of 7 tasks from the Human Connectome Project (HCP) and applied it in a downstream classification of the remaining two tasks. The pretrained model converged on data from 12 subjects, while a randomly initialized model required 100 subjects. We then transferred the pretrained model to a dataset containing unpreprocessed whole-brain fMRI from 30 participants, achieving an accuracy of 80.2 ± 4.7%, while the randomly initialized model failed to converge. We further validated the model's performance on the Multiple Domain Task Dataset (MDTB), which contains fMRI data of 26 tasks from 24 participants. Thirteen tasks of fMRI were selected as inputs, and the results showed that the pre-trained model succeeded in classifying 11 of the 13 tasks. When using the 7 brain networks as input, variations of the performance were observed, with the visual network performed as well as whole brain inputs, while the limbic network almost failed in all 13 tasks. Discussion Our results demonstrated the potential of self-supervised learning for fMRI analysis with small datasets and unpreprocessed data, and for analysis of the correlation between regional fMRI activity and cognitive tasks.
Collapse
Affiliation(s)
- Chenwei Shi
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei, Anhui, China
| | - Yanming Wang
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei, Anhui, China
| | - Yueyang Wu
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei, Anhui, China
| | - Shishuo Chen
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei, Anhui, China
| | - Rongjie Hu
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei, Anhui, China
| | - Min Zhang
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei, Anhui, China
| | - Bensheng Qiu
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei, Anhui, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Xiaoxiao Wang
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
27
|
Wang S, Chang C. Complex topology meets simple statistics. Nat Neurosci 2023; 26:732-734. [PMID: 37095400 DOI: 10.1038/s41593-023-01295-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Affiliation(s)
- Shiyu Wang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Catie Chang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA.
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|