1
|
Sibisi NC, Snyman C, Myburgh KH, Niesler CU. Evaluating the role of nitric oxide in myogenesis in vitro. Biochimie 2021; 196:216-224. [PMID: 34838884 DOI: 10.1016/j.biochi.2021.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/30/2021] [Accepted: 11/21/2021] [Indexed: 12/13/2022]
Abstract
Skeletal muscle injury activates satellite cells to proliferate as myoblasts and migrate, differentiate and fuse with existing fibres at the site of injury. Nitric oxide (NO), a free radical produced by NO synthase, is elevated and supports healing after in vivo injury. NOS-independent elevation of NO levels in vitro is possible via donors such as molsidomine (SIN-1). We hypothesized that alterations in NO levels may directly influence myogenic processes critical for skeletal muscle wound healing. This study aimed to clarify the role of NO in myoblast proliferation, migration and differentiation. Baseline NO levels were established in vitro, whereafter NO levels were manipulated during myogenesis using l-NAME (NOS inhibitor) or SIN-1. Baseline NO levels generated by myoblasts in proliferation media did not change 1 h after stimulation. Addition of a pro-proliferative dose of HGF slightly elevated NO levels 1 h post-stimulation, whereas cell numbers assessed 24 h later increased significantly; l-NAME reduced the HGF-driven increase in NO and proliferation, reducing wound closure over 16 h. In differentiation media, NO levels increased significantly within 24 h, returning to baseline over several days. Regular addition of l-NAME to differentiating cells significantly reduced NO levels and fusion. SIN-1 increased NO levels in a dose-dependent manner, reaching maximal levels 16 h post-treatment. SIN-1, added at 0, 2 and 4 days, significantly increased myofiber area (26 ± 1.8% vs 18.6 ± 3.4% in control at 5 day, p < 0.0001), without affecting proliferation or migration. In conclusion, this study demonstrates that, during skeletal muscle regeneration, increased NO specifically stimulates myoblast differentiation.
Collapse
Affiliation(s)
- N C Sibisi
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| | - C Snyman
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| | - K H Myburgh
- Department Physiological Sciences, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - C U Niesler
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa.
| |
Collapse
|
2
|
Attri P, Kurita H, Koga K, Shiratani M. Impact of Reactive Oxygen and Nitrogen Species Produced by Plasma on Mdm2-p53 Complex. Int J Mol Sci 2021; 22:ijms22179585. [PMID: 34502494 PMCID: PMC8431430 DOI: 10.3390/ijms22179585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022] Open
Abstract
The study of protein–protein interactions is of great interest. Several early studies focused on the murine double minute 2 (Mdm2)–tumor suppressor protein p53 interactions. However, the effect of plasma treatment on Mdm2 and p53 is still absent from the literature. This study investigated the structural changes in Mdm2, p53, and the Mdm2–p53 complex before and after possible plasma oxidation through molecular dynamic (MD) simulations. MD calculation revealed that the oxidized Mdm2 bounded or unbounded showed high flexibility that might increase the availability of tumor suppressor protein p53 in plasma-treated cells. This study provides insight into Mdm2 and p53 for a better understanding of plasma oncology.
Collapse
Affiliation(s)
- Pankaj Attri
- Center of Plasma Nano-Interface Engineering, Kyushu University, Fukuoka 819-0395, Japan;
- Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan
- Correspondence:
| | - Hirofumi Kurita
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi 441-8580, Aichi, Japan;
| | - Kazunori Koga
- Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan;
- Center for Novel Science Initiatives, National Institute of Natural Science, Tokyo 105-0001, Japan
| | - Masaharu Shiratani
- Center of Plasma Nano-Interface Engineering, Kyushu University, Fukuoka 819-0395, Japan;
- Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan;
| |
Collapse
|
3
|
Bacterial inactivation by plasma treated water enhanced by reactive nitrogen species. Sci Rep 2018; 8:11268. [PMID: 30050086 PMCID: PMC6062550 DOI: 10.1038/s41598-018-29549-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 06/25/2018] [Indexed: 12/31/2022] Open
Abstract
There is a growing body of literature that recognizes the importance of plasma treated water (PTW) for inactivation of microorganism. However, very little attention has been paid to the role of reactive nitrogen species (RNS) in deactivation of bacteria. The aim of this study is to explore the role of RNS in bacterial killing, and to develop a plasma system with increased sterilization efficiency. To increase the concentration of reactive oxygen and nitrogen species (RONS) in solution, we have used vapor systems (DI water/HNO3 at different wt%) combined with plasma using N2 as working gas. The results show that the addition of the vapor system yields higher RONS contents. Furthermore, PTW produced by N2 + 0.5 wt% HNO3 vapor comprises a large amount of both RNS and ROS, while PTW created by N2 + H2O vapor consists of a large amount of ROS, but much less RNS. Interestingly, we observed more deactivation of E. Coli with PTW created by N2 + 0.5 wt% HNO3 vapor plasma as compared to PTW generated by the other plasma systems. This work provides new insight into the role of RNS along with ROS for deactivation of bacteria.
Collapse
|
4
|
Chromium malate alleviates high-glucose and insulin resistance in L6 skeletal muscle cells by regulating glucose uptake and insulin sensitivity signaling pathways. Biometals 2018; 31:891-908. [DOI: 10.1007/s10534-018-0132-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/11/2018] [Indexed: 01/10/2023]
|
5
|
Zhang S, Li LH, Qiao HM, Yang X, Chen L, Luo XH. Regulation of the Antioxidant Response by MyoD Transcriptional Coactivator in Castration-resistant Prostate Cancer Cells. Urology 2018; 123:296.e9-296.e18. [PMID: 29730257 DOI: 10.1016/j.urology.2018.04.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 03/26/2018] [Accepted: 04/25/2018] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To reveal the potential role of the basic helix-loop-helix myogenic transcription regulator MyoD in the regulation of castration-resistant prostate cancer. METHODS Expression level of MyoD was assessed in prostate cancer tissues using quantitative reverse transcription polymerase chain reaction and immunohistochemistry and in experimentally induced castration-resistant LNCaP/R cells using quantitative reverse transcription polymerase chain reaction and immunoblotting. Effect of MyoD knockdown on LNCaP/R cell progression was determined by assessing cell proliferation, apoptosis, and colony formation rate. The effect of MyoD knockdown on the oxidative stress state in PC3 cells was determined by assessing antioxidant response gene expression and glutathione synthetase-to-glutathione ratio. Finally, the functional link between the nuclear factor erythroid-derived 2-related factor 1 (NRF1) and the regulation of antioxidant response element-driven transcription by MyoD was studied at both molecular and functional levels. RESULTS MyoD expression was significantly upregulated in hormone-refractory prostate cancer tissues and in experimentally induced castration-resistant LNCaP/R cells, and MyoD knockdown effectively impaired LNCaP/R cell proliferation and promoted apoptosis under androgen-depleted condition. Moreover, MyoD enhanced the glutathione production and protected against oxidative stress by positively regulating a cluster of antioxidant genes known to be the downstream targets of NRF1. Mechanistically, MyoD could augment the antioxidant response element-driven transcription in an NRF1-dependent manner, and the stimulatory effect of MyoD on the antioxidant response was substantially compromised in the presence of NRF1 small interfering RNA treatment. CONCLUSION We have identified an unexpected collaboration between MyoD and NRF1 under androgen-depleted condition, which may serve as an important adaptive mechanism during the pathogenesis of castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Shun Zhang
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Lin-Hu Li
- Department of Urology, Jingyang County Hospital, Xianyang, China
| | - Hong-Mei Qiao
- Department of Oncology, Baoji Affiliated Hospital of Xi'an Medical University, Baoji, China
| | - Xue Yang
- Department of Oncology, Baoji Affiliated Hospital of Xi'an Medical University, Baoji, China
| | - Liang Chen
- Department of Oncology, Baoji Affiliated Hospital of Xi'an Medical University, Baoji, China
| | - Xiao-Hui Luo
- Department of Urology, Baoji Central Hospital, Baoji, China.
| |
Collapse
|
6
|
Inhibition of the JNK/MAPK signaling pathway by myogenesis-associated miRNAs is required for skeletal muscle development. Cell Death Differ 2018; 25:1581-1597. [PMID: 29449644 PMCID: PMC6143622 DOI: 10.1038/s41418-018-0063-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 12/24/2017] [Accepted: 01/04/2018] [Indexed: 12/16/2022] Open
Abstract
Skeletal muscle differentiation is controlled by multiple cell signaling pathways, however, the JNK/MAPK signaling pathway dominating this process has not been fully elucidated. Here, we report that the JNK/MAPK pathway was significantly downregulated in the late stages of myogenesis, and in contrast to P38/MAPK pathway, it negatively regulated skeletal muscle differentiation. Based on the PAR-CLIP-seq analysis, we identified six elevated miRNAs (miR-1a-3p, miR-133a-3p, miR-133b-3p, miR-206-3p, miR-128-3p, miR-351-5p), namely myogenesis-associated miRNAs (mamiRs), negatively controlled the JNK/MAPK pathway by repressing multiple factors for the phosphorylation of the JNK/MAPK pathway, including MEKK1, MEKK2, MKK7, and c-Jun but not JNK protein itself, and as a result, expression of transcriptional factor MyoD and mamiRs were further promoted. Our study revealed a novel double-negative feedback regulatory pattern of cell-specific miRNAs by targeting phosphorylation kinase signaling cascade responsible for skeletal muscle development.
Collapse
|
7
|
Attri P, Tochikubo F, Park JH, Choi EH, Koga K, Shiratani M. Impact of Gamma rays and DBD plasma treatments on wastewater treatment. Sci Rep 2018; 8:2926. [PMID: 29440647 PMCID: PMC5811431 DOI: 10.1038/s41598-018-21001-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 01/29/2018] [Indexed: 12/11/2022] Open
Abstract
The rapid growth in world population brings with it the need for improvement in the current technology for water purification, in order to provide adequate potable water to everyone. Although an advanced oxidation process has been used to purify wastewater, its action mechanism is still not clear. Therefore, in the present study we treat dye-polluted water with gamma rays and dielectric barrier discharge (DBD) plasma. We study the wastewater treatment efficiency of gamma rays and DBD plasma at different absorbed doses, and at different time intervals, respectively. Methyl orange and methylene blue dyes are taken as model dyes. To understand the effects of environment and humidity on the decolorization of these dyes, we use various gas mixtures in the DBD plasma reactor. In the plasma reactor, we use the ambient air and ambient air + other gas (oxygen, nitrogen, and argon) mixtures, respectively, for the treatment of dyes. Additionally, we study the humidity effect on the decolorization of dyes with air plasma. Moreover, we also perform plasma simulation in different environment conditions, to understand which major radicals are generated during the plasma treatments, and determine their probable densities.
Collapse
Affiliation(s)
- Pankaj Attri
- Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea. .,Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan.
| | - Fumiyoshi Tochikubo
- Department of Electrical and Electronic Engineering, Tokyo Metropolitan University, Tokyo, Japan
| | - Ji Hoon Park
- Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Eun Ha Choi
- Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Kazunori Koga
- Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan.
| | - Masaharu Shiratani
- Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
8
|
Kumar N, Shaw P, Razzokov J, Yusupov M, Attri P, Uhm HS, Choi EH, Bogaerts A. Enhancement of cellular glucose uptake by reactive species: a promising approach for diabetes therapy. RSC Adv 2018; 8:9887-9894. [PMID: 35540836 PMCID: PMC9078705 DOI: 10.1039/c7ra13389h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/03/2018] [Indexed: 12/16/2022] Open
Abstract
It is generally known that antidiabetic activity is associated with an increased level of glucose uptake in adipocytes and skeletal muscle cells. However, the role of exogenous reactive oxygen and nitrogen species (RONS) in muscle development and more importantly in glucose uptake is largely unknown. We investigate the effect of RONS generated by cold atmospheric plasma (CAP) in glucose uptake. We show that the glucose uptake is significantly enhanced in differentiated L6 skeletal muscle cells after CAP treatment. We also observe a significant increase of the intracellular Ca++ and ROS level, without causing toxicity. One of the possible reasons for an elevated level of glucose uptake as well as intracellular ROS and Ca++ ions is probably the increased oxidative stress leading to glucose transport. Influenence of biocompatible microsecond dielectric barrier discharge (μs-DBD) plasma in glucose uptake and cell differentiation.![]()
Collapse
Affiliation(s)
- Naresh Kumar
- Department of Chemistry
- University of Antwerp
- Belgium
| | | | | | | | - Pankaj Attri
- Department of Chemistry
- University of Antwerp
- Belgium
| | - Han Sup Uhm
- Plasma Bioscience Research Center/Department of Electrical and Biological Physics
- Kwangwoon University
- Seoul 139-701
- Korea
| | - Eun Ha Choi
- Plasma Bioscience Research Center/Department of Electrical and Biological Physics
- Kwangwoon University
- Seoul 139-701
- Korea
| | | |
Collapse
|
9
|
Attri P, Kim M, Sarinont T, Ha Choi E, Seo H, Cho AE, Koga K, Shiratani M. The protective action of osmolytes on the deleterious effects of gamma rays and atmospheric pressure plasma on protein conformational changes. Sci Rep 2017; 7:8698. [PMID: 28821765 PMCID: PMC5562882 DOI: 10.1038/s41598-017-08643-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 06/28/2017] [Indexed: 01/07/2023] Open
Abstract
Both gamma rays and atmospheric pressure plasma are known to have anticancer properties. While their mechanism actions are still not clear, in some contexts they work in similar manner, while in other contexts they work differently. So to understand these relationships, we have studied Myoglobin protein after the treatment of gamma rays and dielectric barrier discharge (DBD) plasma, and analyzed the changes in thermodynamic properties and changes in the secondary structure of protein after both treatments. The thermodynamic properties were analyzed using chemical and thermal denaturation after both treatments. We have also studied the action of gamma rays and DBD plasma on myoglobin in the presence of osmolytes, such as sorbitol and trehalose. For deep understanding of the action of gamma rays and DBD plasma, we have analyzed the reactive species generated by them in buffer at all treatment conditions. Finally, we have used molecular dynamic simulation to understand the hydrogen peroxide action on myoglobin with or without osmolytes, to gain deeper insight into how the osmolytes can protect the protein structure from the reactive species generated by gamma rays and DBD plasma.
Collapse
Affiliation(s)
- Pankaj Attri
- Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea.,Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan
| | - Minsup Kim
- Department of Bioinformatics, Korea University, Sejong, 02841, Korea
| | - Thapanut Sarinont
- Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan
| | - Eun Ha Choi
- Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Hyunwoong Seo
- Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan
| | - Art E Cho
- Department of Bioinformatics, Korea University, Sejong, 02841, Korea.
| | - Kazunori Koga
- Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan.
| | - Masaharu Shiratani
- Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan.
| |
Collapse
|