1
|
Gao N, Bai P, Fang C, Wu W, Bi C, Wang J, Shan A. Biomimetic Peptide Nanonets: Exploiting Bacterial Entrapment and Macrophage Rerousing for Combatting Infections. ACS NANO 2024; 18:25446-25464. [PMID: 39240217 DOI: 10.1021/acsnano.4c03669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The alarming rise in global antimicrobial resistance underscores the urgent need for effective antibacterial drugs. Drawing inspiration from the bacterial-entrapment mechanism of human defensin 6, we have fabricated biomimetic peptide nanonets composed of multiple functional fragments for bacterial eradication. These biomimetic peptide nanonets are designed to address antimicrobial resistance challenges through a dual-approach strategy. First, the resulting nanofibrous networks trap bacteria and subsequently kill them by loosening the membrane structure, dissipating proton motive force, and causing multiple metabolic perturbations. Second, these trapped bacterial clusters reactivate macrophages to scavenge bacteria through enhanced chemotaxis and phagocytosis via the PI3K-AKT signaling pathway and ECM-receptor interaction. In vivo results have proven that treatment with biomimetic peptide nanonets can alleviate systemic bacterial infections without causing noticeable systemic toxicity. As anticipated, the proposed strategy can address stubborn infections by entrapping bacteria and awakening antibacterial immune responses. This approach might serve as a guide for the design of bioinspired materials for future clinical applications.
Collapse
Affiliation(s)
- Nan Gao
- College of animal science and technology, Northeast Agricultural University, Harbin 150030, China
| | - Pengfei Bai
- College of animal science and technology, Northeast Agricultural University, Harbin 150030, China
| | - Chunyang Fang
- College of animal science and technology, Northeast Agricultural University, Harbin 150030, China
| | - Wanpeng Wu
- College of animal science and technology, Northeast Agricultural University, Harbin 150030, China
| | - Chongpeng Bi
- College of animal science and technology, Northeast Agricultural University, Harbin 150030, China
| | - Jiajun Wang
- College of animal science and technology, Northeast Agricultural University, Harbin 150030, China
| | - Anshan Shan
- College of animal science and technology, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
2
|
Gao Y, Tian X, Zhang X, Milebe Nkoua GD, Chen F, Liu Y, Chai Y. The roles of tissue-resident macrophages in sepsis-associated organ dysfunction. Heliyon 2023; 9:e21391. [PMID: 38027963 PMCID: PMC10643296 DOI: 10.1016/j.heliyon.2023.e21391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Sepsis, a syndrome caused by a dysregulated host response to infection and characterized by life-threatening organ dysfunction, particularly septic shock and sepsis-associated organ dysfunction (SAOD), is a medical emergency associated with high morbidity, high mortality, and long-term sequelae. Tissue-resident macrophages (TRMs) are a subpopulation of macrophages derived primarily from yolk sac progenitors and fetal liver during embryogenesis, located primarily in non-lymphoid tissues in adulthood, capable of local self-renewal independent of hematopoiesis, and developmentally and functionally restricted to the non-lymphoid organs in which they reside. TRMs are the first line of defense against life-threatening conditions such as sepsis, tumor growth, traumatic-associated organ injury, and surgical-associated injury. In the context of sepsis, TRMs can be considered as angels or demons involved in organ injury. Our proposal is that sepsis, septic shock, and SAOD can be attenuated by modulating TRMs in different organs. This review summarizes the pathophysiological mechanisms of TRMs in different organs or tissues involved in the development and progression of sepsis.
Collapse
Affiliation(s)
- Yulei Gao
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, P. R. China
- Department of Emergency Medicine, China-Congo Friendship Hospital, Brazzaville, 999059, P. R. Congo
| | - Xin Tian
- Department of Medical Research, Beijing Qiansong Technology Development Company, Beijing, 100193, P. R. China
- Department of Medical Research, Sen Sho Ka Gi Company, Inba-gun, Chiba, 285-0905, Japan
| | - Xiang Zhang
- Department of Emergency Medicine, Rizhao People's Hospital of Shandong Province, Rizhao, 276825, P. R. China
| | | | - Fang Chen
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, P. R. China
| | - Yancun Liu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, P. R. China
| | - Yanfen Chai
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, P. R. China
| |
Collapse
|
3
|
Gao T, Yang X, Fujisawa M, Ohara T, Wang T, Tomonobu N, Sakaguchi M, Yoshimura T, Matsukawa A. SPRED2: A Novel Regulator of Epithelial-Mesenchymal Transition and Stemness in Hepatocellular Carcinoma Cells. Int J Mol Sci 2023; 24:ijms24054996. [PMID: 36902429 PMCID: PMC10003366 DOI: 10.3390/ijms24054996] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
The downregulation of SPRED2, a negative regulator of the ERK1/2 pathway, was previously detected in human cancers; however, the biological consequence remains unknown. Here, we investigated the effects of SPRED2 loss on hepatocellular carcinoma (HCC) cell function. Human HCC cell lines, expressing various levels of SPRED2 and SPRED2 knockdown, increased ERK1/2 activation. SPRED2-knockout (KO)-HepG2 cells displayed an elongated spindle shape with increased cell migration/invasion and cadherin switching, with features of epithelial-mesenchymal transition (EMT). SPRED2-KO cells demonstrated a higher ability to form spheres and colonies, expressed higher levels of stemness markers and were more resistant to cisplatin. Interestingly, SPRED2-KO cells also expressed higher levels of the stem cell surface markers CD44 and CD90. When CD44+CD90+ and CD44-CD90- populations from WT cells were analyzed, a lower level of SPRED2 and higher levels of stem cell markers were detected in CD44+CD90+ cells. Further, endogenous SPRED2 expression decreased when WT cells were cultured in 3D, but was restored in 2D culture. Finally, the levels of SPRED2 in clinical HCC tissues were significantly lower than those in adjacent non-HCC tissues and were negatively associated with progression-free survival. Thus, the downregulation of SPRED2 in HCC promotes EMT and stemness through the activation of the ERK1/2 pathway, and leads to more malignant phenotypes.
Collapse
Affiliation(s)
- Tong Gao
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Xu Yang
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Masayoshi Fujisawa
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Toshiaki Ohara
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Tianyi Wang
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Nahoko Tomonobu
- Department of Cell Biology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Akihiro Matsukawa
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
- Correspondence: ; Tel.: +81-86-235-7141
| |
Collapse
|
4
|
Abstract
Alzheimer's disease (AD) is a genetically complex and heterogeneous disorder with multifaceted neuropathological features, including β-amyloid plaques, neurofibrillary tangles, and neuroinflammation. Over the past decade, emerging evidence has implicated both beneficial and pathological roles for innate immune genes and immune cells, including peripheral immune cells such as T cells, which can infiltrate the brain and either ameliorate or exacerbate AD neuropathogenesis. These findings support a neuroimmune axis of AD, in which the interplay of adaptive and innate immune systems inside and outside the brain critically impacts the etiology and pathogenesis of AD. In this review, we discuss the complexities of AD neuropathology at the levels of genetics and cellular physiology, highlighting immune signaling pathways and genes associated with AD risk and interactions among both innate and adaptive immune cells in the AD brain. We emphasize the role of peripheral immune cells in AD and the mechanisms by which immune cells, such as T cells and monocytes, influence AD neuropathology, including microglial clearance of amyloid-β peptide, the key component of β-amyloid plaque cores, pro-inflammatory and cytotoxic activity of microglia, astrogliosis, and their interactions with the brain vasculature. Finally, we review the challenges and outlook for establishing immune-based therapies for treating and preventing AD.
Collapse
|
5
|
Lee JB, Kim SK, Han D, Yoon JW. Mutating both relA and spoT of enteropathogenic Escherichia coli E2348/69 attenuates its virulence and induces interleukin 6 in vivo. Front Microbiol 2023; 14:1121715. [PMID: 36937293 PMCID: PMC10017862 DOI: 10.3389/fmicb.2023.1121715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/08/2023] [Indexed: 03/06/2023] Open
Abstract
Here, we report for the first time that disrupting both relA and spoT genes in enteropathogenic Escherichia coli E2348/69 can attenuate its virulence and significantly induce interleukin 6 (IL-6) in vivo. Our experimental analyses demonstrated that an E2348/69 ΔrelAΔspoT double mutant strain derepressed the expression of type IV bundle forming pilus (BFP) and repressed the expression of glutamate decarboxylase (GAD) and locus of enterocyte effacement (LEE). Whole genome-scale transcriptomic analysis revealed that 1,564 EPEC genes were differentially expressed in the ΔrelAΔspoT double mutant strain (cut-off > two-fold). Such depletion of relA and spoT attenuated the virulence of E2348/69 in a Caenorhabditis elegans infection model. Surprisingly, IL-6 was highly induced in porcine macrophages infected with the ΔrelAΔspoT double mutant strain compared to those with its wildtype strain. Coinciding with these in vitro results, in vivo murine peritoneal challenge assays showed high increase of IL-6 and improved bacterial clearance in response to infection by the ΔrelAΔspoT double mutant strain. Taken together, our data suggest that relA and spoT play an essential role in regulating biological processes during EPEC pathogenesis and that their depletion can affect host immune responses by inducing IL-6.
Collapse
|
6
|
Liu T, Zhao J, Lin C. Sprouty-related proteins with EVH1 domain (SPRED2) prevents high-glucose induced endothelial-mesenchymal transition and endothelial injury by suppressing MAPK activation. Bioengineered 2022; 13:13882-13892. [PMID: 35707829 PMCID: PMC9275976 DOI: 10.1080/21655979.2022.2086351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Diabetic retinopathy (DR) is a common complication of diabetes, and the leading cause of blindness in adults. Sprouty-related proteins with EVH1 domain (SPRED2) play an important role in diabetes and are closely related to the lens and eye morphogenesis. This study attempted to investigate the role and related mechanism of SPRED2 in DR. DR rat model was established by administration streptozocin. Human retinal endothelial cells (HRECs) were treated with high glucose (HG) to mimic DR. The results showed that SPRED2 expression was decreased in the retinal tissues of DR rats and HG-treated HRECs. MTT assay and flow cytometry data showed that SPRED2 overexpression reduced cell viability of HG-treated HRECs. SPRED2 overexpression enhanced Caspase-3 activity and promoted apoptosis of HG-treated HRECs. Furthermore, the expressions of endothelial cell markers CD31 and E-cad were down-regulated, whereas the expressions of mesenchymal cell markers FSP1, SM22, and α-SMA were up-regulated in the HG-treated HRECs. SPRED2 overexpression reversed HG-induced endothelial–mesenchymal transition in HRECs. The expressions of tight junction components claudin 3, occludin, and ZO-1 were increased in HG-treated HRECs following SPRED2 up-regulation. In addition, SPRED2 overexpression downregulated the expression of p-ERK1/2, p-p38, and p-JNK in the HG-treated HRECs. In conclusion, this study demonstrated that SPRED2 overexpression repressed endothelial–mesenchymal transition and endothelial injury in HG-treated HRECs by suppressing MAPK signaling pathway. These findings suggested that SPRED2 may be a novel potential therapeutic target implicated in DR progression.
Collapse
Affiliation(s)
- Tian Liu
- Department of Ophthalmology, The First People's Hospital of Jingmen, Jingmen, China
| | - Jing Zhao
- Department of Ophthalmology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, China
| | - Chengmin Lin
- Department of Ophthalmology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, China
| |
Collapse
|
7
|
Sun C, Fujisawa M, Ohara T, Liu Q, Cao C, Yang X, Yoshimura T, Kunkel SL, Matsukawa A. Spred2 controls the severity of Concanavalin A-induced liver damage by limiting interferon-gamma production by CD4 + and CD8 + T cells. J Adv Res 2022; 35:71-86. [PMID: 35003795 PMCID: PMC8721245 DOI: 10.1016/j.jare.2021.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/12/2021] [Accepted: 03/30/2021] [Indexed: 11/15/2022] Open
Abstract
Spred2-/- mice developed exacerbated Con A-induced liver damage with increased IFNγ production. MEK/ERK inhibitor U0126 markedly inhibited the damage and reduced IFNγ production. Neutralization of IFNγ abolished the damage with down-regulated hepatic STAT1 activation. Depletion of CD4+/CD8+ T cells improved the damage with decreased IFNγ production. Transplantation of CD4+/CD8+ T cells into RAG1-/- mice reproduced severe liver damage. Liver damage and IFNγ production were significantly lower in Spred2 transgenic mice.
Introduction Mitogen-activated protein kinases (MAPKs) are involved in T cell-mediated liver damage. However, the inhibitory mechanism(s) that controls T cell-mediated liver damage remains unknown. Objectives We investigated whether Spred2 (Sprouty-related, EVH1 domain-containing protein 2) that negatively regulates ERK-MAPK pathway has a biological impact on T cell-mediated liver damage by using a murine model. Methods We induced hepatotoxicity in genetically engineered mice by intravenously injecting Concanavalin A (Con A) and analyzed the mechanisms using serum chemistry, histology, ELISA, qRT-PCR, Western blotting and flow cytometry. Results Spred2-deficient mice (Spred2-/-) developed more sever liver damage than wild-type (WT) mice with increased interferon-γ (IFNγ) production. Hepatic ERK phosphorylation was enhanced in Spred2-/- mice, and pretreatment of Spred2-/- mice with the MAPK/ERK inhibitor U0126 markedly inhibited the liver damage and reduced IFNγ production. Neutralization of IFNγ abolished the damage with decreased hepatic Stat1 activation in Spred2-/- mice. IFNγ was mainly produced from CD4+ and CD8+ T cells, and their depletion decreased liver damage and IFNγ production. Transplantation of CD4+ and/or CD8+ T cells from Spred2-/- mice into RAG1-/- mice deficient in both T and B cells caused more severe liver damage than those from WT mice. Hepatic expression of T cell attractants, CXCL9 and CXCL10, was augmented in Spred2-/- mice as compared to WT mice. Conversely, liver damage, IFNγ production and the recruitment of CD4+ and CD8+ T cells in livers after Con A challenge were lower in Spred2 transgenic mice, and Spred2-overexpressing CD4+ and CD8+ T cells produced lower levels of IFNγ than WT cells upon stimulation with Con A in vitro. Conclusion We demonstrated, for the first time, that Spred2 functions as an endogenous regulator of T cell IFNγ production and Spred2-mediated inhibition of ERK-MAPK pathway may be an effective remedy for T cell-dependent liver damage.
Collapse
Affiliation(s)
- Cuiming Sun
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.,Department of Infectious Disease, The First Hospital of China Medical University, Liaoning, China
| | - Masayoshi Fujisawa
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Toshiaki Ohara
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Qiuying Liu
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Chen Cao
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Xu Yang
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Steven L Kunkel
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Akihiro Matsukawa
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
8
|
Oda S, Fujisawa M, Chunning L, Ito T, Yamaguchi T, Yoshimura T, Matsukawa A. Expression of Spred2 in the urothelial tumorigenesis of the urinary bladder. PLoS One 2021; 16:e0254289. [PMID: 34818323 PMCID: PMC8612556 DOI: 10.1371/journal.pone.0254289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/08/2021] [Indexed: 11/19/2022] Open
Abstract
Aberrant activation of the Ras/Raf/ERK (extracellular-signal-regulated kinase)-MAPK (mitogen-activated protein kinase) pathway is involved in the progression of cancer, including urothelial carcinoma; but the negative regulation remains unclear. In the present study, we investigated pathological expression of Spred2 (Sprouty-related EVH1 domain-containing protein 2), a negative regulator of the Ras/Raf/ERK-MAPK pathway, and the relation to ERK activation and Ki67 index in various categories of 275 urothelial tumors obtained from clinical patients. In situ hybridization demonstrated that Spred2 mRNA was highly expressed in high-grade non-invasive papillary urothelial carcinoma (HGPUC), and the expression was decreased in carcinoma in situ (CIS) and infiltrating urothelial carcinoma (IUC). Immunohistochemically, membranous Spred2 expression, important to interact with Ras/Raf, was preferentially found in HGPUC. Interestingly, membranous Spred2 expression was decreased in CIS and IUC relative to HGPUC, while ERK activation and the expression of the cell proliferation marker Ki67 index were increased. HGPUC with membranous Spred2 expression correlated significantly with lower levels of ERK activation and Ki67 index as compared to those with negative Spred2 expression. Thus, our pathological findings suggest that Spred2 counters cancer progression in non-invasive papillary carcinoma possibly through inhibiting the Ras/Raf/ERK-MAPK pathway, but this regulatory mechanism is lost in cancers with high malignancy. Spred2 appears to be a key regulator in the progression of non-invasive bladder carcinoma.
Collapse
Affiliation(s)
- Shinsuke Oda
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Masayoshi Fujisawa
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Li Chunning
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Toshihiro Ito
- Department of Immunology, Nara Medical University, Kashihara, Japan
| | - Takahiro Yamaguchi
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Akihiro Matsukawa
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- * E-mail:
| |
Collapse
|
9
|
Wang X, Lu W, Liu B, Xu Y. Thrombin aggravates hypoxia/reoxygenation injury of astrocytes by activating the autophagy pathway mediated by SPRED2. Exp Ther Med 2021; 22:1107. [PMID: 34504561 PMCID: PMC8383739 DOI: 10.3892/etm.2021.10541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 03/24/2021] [Indexed: 11/06/2022] Open
Abstract
Autophagy plays an important role in ischemia/reperfusion brain injury, however, the signaling pathways involved in cell autophagy are not fully understood. The present study aimed to investigate the roles and molecular mechanisms of thrombin and Sprouty-related EVH1 domain-2 (SPRED2) on autophagy in hypoxia/reoxygenation (H/R) induced astrocytes. Reverse transcription-quantitative PCR and western blot analyses were performed to detect the expression levels of thrombin and SPRED2. Western blot analysis was also performed to detect the protein expression levels of Beclin 1, microtubule-associated protein light chain 3 (LC3)-II and LC3-I. The MTT assay was performed to assess cell viability, while ELISA was performed to determine the supernatant levels of interleukin (IL)-1β, IL-6 and tumor necrosis factor-α. The results demonstrated that the effects of H/R induction on inflammatory factor secretion, oxidative stress, autophagy and cell viability in astrocytes were aggravated by thrombin, the effects of which were reversed following SPRED2 knockdown. Taken together, the results of the present study suggest that thrombin aggravates H/R injury in astrocytes by activating the SPRED2-mediated autophagy.
Collapse
Affiliation(s)
- Xiaoning Wang
- Department of Blood Transfusion, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Weiwei Lu
- Department of Blood Transfusion, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Bing Liu
- Department of Blood Transfusion, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yunhe Xu
- Department of Stomatology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
10
|
Yin H, Zhang X, Yang P, Zhang X, Peng Y, Li D, Yu Y, Wu Y, Wang Y, Zhang J, Ding X, Wang X, Yang A, Zhang R. RNA m6A methylation orchestrates cancer growth and metastasis via macrophage reprogramming. Nat Commun 2021; 12:1394. [PMID: 33654093 PMCID: PMC7925544 DOI: 10.1038/s41467-021-21514-8] [Citation(s) in RCA: 256] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 01/28/2021] [Indexed: 12/14/2022] Open
Abstract
N6-methyladenosine (m6A) is a reversible mRNA modification that has been shown to play important roles in various biological processes. However, the roles of m6A modification in macrophages are still unknown. Here, we discover that ablation of Mettl3 in myeloid cells promotes tumour growth and metastasis in vivo. In contrast to wild-type mice, Mettl3-deficient mice show increased M1/M2-like tumour-associated macrophage and regulatory T cell infiltration into tumours. m6A sequencing reveals that loss of METTL3 impairs the YTHDF1-mediated translation of SPRED2, which enhances the activation of NF-kB and STAT3 through the ERK pathway, leading to increased tumour growth and metastasis. Furthermore, the therapeutic efficacy of PD-1 checkpoint blockade is attenuated in Mettl3-deficient mice, identifying METTL3 as a potential therapeutic target for tumour immunotherapy.
Collapse
Affiliation(s)
- Huilong Yin
- The State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiang Zhang
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Pengyuan Yang
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Xiaofang Zhang
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yingran Peng
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Da Li
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yanping Yu
- The Second Ward of Gynecological Tumor, Shaanxi Provincial Tumor Hospital, Xi'an, Shaanxi, China
| | - Ye Wu
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yidi Wang
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jinbao Zhang
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiaochen Ding
- Department of Experimental Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiangpeng Wang
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Angang Yang
- The State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China.
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China.
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China.
| | - Rui Zhang
- The State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China.
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
11
|
Spred2-deficiency enhances the proliferation of lung epithelial cells and alleviates pulmonary fibrosis induced by bleomycin. Sci Rep 2020; 10:16490. [PMID: 33020583 PMCID: PMC7536438 DOI: 10.1038/s41598-020-73752-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 09/08/2020] [Indexed: 11/17/2022] Open
Abstract
The mitogen-activated protein kinase (MAPK) pathways are involved in many cellular processes, including the development of fibrosis. Here, we examined the role of Sprouty-related EVH-1-domain-containing protein (Spred) 2, a negative regulator of the MAPK-ERK pathway, in the development of bleomycin (BLM)-induced pulmonary fibrosis (PF). Compared to WT mice, Spred2−/− mice developed milder PF with increased proliferation of bronchial epithelial cells. Spred2−/− lung epithelial cells or MLE-12 cells treated with spred2 siRNA proliferated faster than control cells in vitro. Spred2−/− and WT macrophages produced similar levels of TNFα and MCP-1 in response to BLM or lipopolysaccharide and myeloid cell-specific deletion of Spred2 in mice had no effect. Spred2−/− fibroblasts proliferated faster and produced similar levels of MCP-1 compared to WT fibroblasts. Spred2 mRNA was almost exclusively detected in bronchial epithelial cells of naïve WT mice and it accumulated in approximately 50% of cells with a characteristic of Clara cells, 14 days after BLM treatment. These results suggest that Spred2 is involved in the regulation of tissue repair after BLM-induced lung injury and increased proliferation of lung bronchial cells in Spred2−/− mice may contribute to faster tissue repair. Thus, Spred2 may present a new therapeutic target for the treatment of PF.
Collapse
|
12
|
Gong J, Yan Z, Liu Q. Progress in experimental research on SPRED protein family. J Int Med Res 2020; 48:300060520929170. [PMID: 32851895 PMCID: PMC7457668 DOI: 10.1177/0300060520929170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 05/01/2020] [Indexed: 12/12/2022] Open
Abstract
The Sprouty-related Ena/vasodilator-stimulated phosphoprotein homology-1 (EVH-1) domain (SPRED) family of proteins was discovered in 2001. These Sprouty-related tyrosine kinase-binding proteins negatively regulate a variety of growth factor-induced Ras/ERK signaling pathways. In recent years, SPRED proteins have been found to regulate vital activities such as cell development, movement, and proliferation, and to participate in pathophysiological processes such as tumor metastasis, hematopoietic regulation, and allergic reactions. The findings of these studies have important implications regarding the involvement of SPRED proteins in disease. Early studies of SPRED proteins focused mainly on various tumors, cardiovascular diseases, and organ development. However, in recent years, great progress has been made in elucidating the role of SPRED proteins in neuropsychiatric, inflammatory, endocrine, and ophthalmic diseases. This article provides a review of the experimental studies performed in recent years on the SPRED proteins and their role in the pathogenesis of certain diseases.
Collapse
Affiliation(s)
- Jian Gong
- School of Clinical Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, China
| | - Zhangren Yan
- Department of Dermatology, The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, China
| | - Qiao Liu
- Department of Dermatology, The Second Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, China
| |
Collapse
|
13
|
Ohkura T, Yoshimura T, Fujisawa M, Ohara T, Marutani R, Usami K, Matsukawa A. Spred2 Regulates High Fat Diet-Induced Adipose Tissue Inflammation, and Metabolic Abnormalities in Mice. Front Immunol 2019; 10:17. [PMID: 30723473 PMCID: PMC6349710 DOI: 10.3389/fimmu.2019.00017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/04/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic low-grade inflammation in visceral adipose tissues triggers the development of obesity-related insulin resistance, leading to the metabolic syndrome, a serious health condition with higher risk of cardiovascular disease, diabetes, and stroke. In the present study, we investigated whether Sprouty-related EVH1-domain-containing protein 2 (Spred2), a negative regulator of the Ras/Raf/ERK/MAPK pathway, plays a role in the development of high fat diet (HFD)-induced obesity, adipose tissue inflammation, metabolic abnormalities, and insulin resistance. Spred2 knockout (KO) mice, fed with HFD, exhibited an augmented body weight gain, which was associated with enhanced adipocyte hypertrophy in mesenteric white adipose tissue (mWAT) and deteriorated dyslipidemia, compared with wild-type (WT) controls. The number of infiltrating macrophages with a M1 phenotype, and the crown-like structures, composed of macrophages surrounding dead or dying adipocytes, were more abundant in Spred2 KO-mWAT compared to in WT-mWAT. Exacerbated adipose tissue inflammation in Spred2 KO mice led to aggravated insulin resistance and fatty liver disease. To analyze the mechanism(s) that caused adipose tissue inflammation, cytokine response in mWAT was investigated. Stromal vascular fraction that contained macrophages from Spred2 KO-mWAT showed elevated levels of tumor necrosis factor α (TNFα) and monocyte chemoattractant protein-1 (MCP-1/CCL2) compared with those from WT-mWAT. Upon stimulation with palmitate acid (PA), bone marrow-derived macrophages (BMDMs) derived from Spred2 KO mice secreted higher levels of TNFα and MCP-1 than those from WT mice with enhanced ERK activation. U0126, a MEK inhibitor, reduced the PA-induced cytokine response. Taken together, these results suggested that Spred2, in macrophages, negatively regulates high fat diet-induced obesity, adipose tissue inflammation, metabolic abnormalities, and insulin resistance by inhibiting the ERK/MAPK pathway. Thus, Spred2 represents a potential therapeutic tool for the prevention of insulin resistance and resultant metabolic syndrome.
Collapse
Affiliation(s)
- Takahiro Ohkura
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masayoshi Fujisawa
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiaki Ohara
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Rie Marutani
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kaya Usami
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Akihiro Matsukawa
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
14
|
Okada M, Yamane M, Yamamoto S, Otani S, Miyoshi K, Sugimoto S, Matsukawa A, Toyooka S, Oto T, Miyoshi S. SPRED2 deficiency may lead to lung ischemia-reperfusion injury via ERK1/2 signaling pathway activation. Surg Today 2018; 48:1089-1095. [PMID: 30022248 DOI: 10.1007/s00595-018-1696-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/01/2018] [Indexed: 01/01/2023]
Abstract
PURPOSE Inflammatory changes during lung ischemia-reperfusion injury (IRI) are related to the activation of the extracellular signal-regulated kinase (ERK)1/2 signaling pathway. Sprouty-related EVH1 (enabled/vasodilator-stimulated phosphoprotein homology 1)-domain-containing proteins (SPREDs) are known inhibitors of ERK1/2 signaling. The role of SPRED2 in lung IRI was examined in a left hilar clamp mouse model. METHODS C57BL/6 wild-type (WT) and Spred2-/- mice were used in the left hilar clamp model. Experimental groups underwent 30 min of left hilar clamping followed by 1 h of reperfusion. U0126, an ERK1/2 inhibitor, was administered to Spred2-/- mice with reperfused lungs. RESULTS The partial pressures of oxygen of the Spred2-/- mice after reperfusion were significantly worse than those of WT mice (p < 0.01). Spred2-/- mice displayed more severe injuries than WT mice with increased neutrophil infiltration observed by a histological evaluation and flow cytometry (p < 0.001). This severe inflammation was inhibited by U0126. In addition, the rate of ERK1 activation was significantly higher in the lungs of Spred2-/- mice after reperfusion than in WT mice according to a Western blot analysis (p < 0.05). CONCLUSION The activation of the ERK1/2 signaling pathway influences the severity of lung IRI, causing inflammation with neutrophil infiltration. SPRED2 may be a promising target for the suppression of lung IRI.
Collapse
Affiliation(s)
- Masanori Okada
- General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama City Kita-ku, Okayama, 700-8558, Japan
| | - Masaomi Yamane
- General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama City Kita-ku, Okayama, 700-8558, Japan.
| | - Sumiharu Yamamoto
- General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama City Kita-ku, Okayama, 700-8558, Japan
| | - Shinji Otani
- Department of Organ Transplant Center, Okayama University Hospital, Okayama, Japan
| | - Kentaroh Miyoshi
- General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama City Kita-ku, Okayama, 700-8558, Japan
| | - Seiichiro Sugimoto
- General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama City Kita-ku, Okayama, 700-8558, Japan
| | - Akihiro Matsukawa
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shinichi Toyooka
- General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama City Kita-ku, Okayama, 700-8558, Japan
| | - Takahiro Oto
- Department of Organ Transplant Center, Okayama University Hospital, Okayama, Japan
| | - Shinichiro Miyoshi
- General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama City Kita-ku, Okayama, 700-8558, Japan
| |
Collapse
|