1
|
Archer Goode E, Wang N, Munkley J. Prostate cancer bone metastases biology and clinical management (Review). Oncol Lett 2023; 25:163. [PMID: 36960185 PMCID: PMC10028493 DOI: 10.3892/ol.2023.13749] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/09/2023] [Indexed: 03/25/2023] Open
Abstract
Prostate cancer (PCa) is one of the most prominent causes of cancer-related mortality in the male population. A highly impactful prognostic factor for patients diagnosed with PCa is the presence or absence of bone metastases. The formation of secondary tumours at the bone is the most commonly observed site for the establishment of PCa metastases and is associated with reduced survival of patients in addition to a cohort of life-debilitating symptoms, including mobility issues and chronic pain. Despite the prevalence of this disease presentation and the high medical relevance of bone metastases, the mechanisms underlying the formation of metastases to the bone and the understanding of what drives the osteotropism exhibited by prostate tumours remain to be fully elucidated. This lack of in-depth understanding manifests in limited effective treatment options for patients with advanced metastatic PCa and culminates in the low rate of survival observed for this sub-set of patients. The present review aims to summarise the most recent promising advances in the understanding of how and why prostate tumours metastasise to the bone, with the ultimate aim of highlighting novel treatment and prognostic targets, which may provide the opportunity to improve the diagnosis and treatment of patients with PCa with bone metastases.
Collapse
Affiliation(s)
- Emily Archer Goode
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, International Centre for Life, Newcastle NE1 3BZ, UK
| | - Ning Wang
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, Sheffield S10 2RX, UK
| | - Jennifer Munkley
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, International Centre for Life, Newcastle NE1 3BZ, UK
| |
Collapse
|
2
|
Chauhan N, Manojkumar A, Jaggi M, Chauhan SC, Yallapu MM. microRNA-205 in prostate cancer: Overview to clinical translation. Biochim Biophys Acta Rev Cancer 2022; 1877:188809. [PMID: 36191828 PMCID: PMC9996811 DOI: 10.1016/j.bbcan.2022.188809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/29/2022]
Abstract
Prostate cancer (PrCa) is the most common type of cancer among men in the United States. The metastatic and advanced PrCa develops drug resistance to current regimens which accounts for the poor management. microRNAs (miRNAs) have been well-documented for their diagnostic, prognostic, and therapeutic roles in various human cancers. Recent literature confirmed that microRNA-205 (miR-205) has been established as one of the tumor suppressors in PrCa. miR-205 regulates number of cellular functions, such as proliferation, invasion, migration/metastasis, and apoptosis. It is also evident that miR-205 can serve as a key biomarker in diagnostic, prognostic, and therapy of PrCa. Therefore, in this review, we will provide an overview of tumor suppressive role of miR-205 in PrCa. This work also outlines miR-205's specific role in targeted mechanisms for chemosensitization and radiosensitization in PrCa. A facile approach of delivery paths for successful clinical translation is documented. Together, all these studies provide a novel insight of miR-205 as an adjuvant agent for reducing the widening gaps in clinical outcome of PrCa patients.
Collapse
Affiliation(s)
- Neeraj Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Anjali Manojkumar
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA.
| |
Collapse
|
3
|
Constâncio V, Tavares NT, Henrique R, Jerónimo C, Lobo J. MiRNA biomarkers in cancers of the male reproductive system: are we approaching clinical application? Andrology 2022; 11:651-667. [PMID: 35930290 DOI: 10.1111/andr.13258] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Specific cancer types face specific clinical management challenges. Owing to their stability, robustness and fast, easy, and cost-effective detection, microRNAs (miRNAs) are attractive candidate biomarkers to the clinic. OBJECTIVES Based on a comprehensive review of the relevant literature in the field, we explore the potential of miRNAs as biomarkers to answer relevant clinical dilemmas inherent to cancers of the male reproductive tract (prostate (PCa), testis (TGCTs) and penis (PeCa)) and identify some of the challenges/limitations hampering their widely application. RESULTS AND DISCUSSION We conclude that the use of miRNAs as biomarkers is at different stages for these distinct cancer types. While for TGCTs, miRNA-371a-3p is universally accepted to fill in important clinicals gaps and is moving fast towards clinical implementation, for PCa almost no overlap of miRNAs exists between studies, denoting the absence of a consistent miRNA biomarker, and for PeCa the field of miRNAs has just recently started, with only a few studies attempting to explore their clinical usefulness. CONCLUSION Technological advances influencing miRNA detection and quantification will be instrumental to continue to move forward with implementation of miRNAs in the clinic as biomarkers for non-invasive diagnosis, risk stratification, treatment monitoring and follow-up. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Vera Constâncio
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Centre (Porto.CCC), R. Dr. António Bernardino de Almeida, Porto, 4200-072, Portugal.,Doctoral Programme in Biomedical Sciences, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, Porto, 4050-513, Portugal
| | - Nuno Tiago Tavares
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Centre (Porto.CCC), R. Dr. António Bernardino de Almeida, Porto, 4200-072, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Centre (Porto.CCC), R. Dr. António Bernardino de Almeida, Porto, 4200-072, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto / Porto Comprehensive Cancer Centre (Porto.CCC), R. Dr. António Bernardino de Almeida, Porto, 4200-072, Portugal.,Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, Porto, 4050-513, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Centre (Porto.CCC), R. Dr. António Bernardino de Almeida, Porto, 4200-072, Portugal.,Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, Porto, 4050-513, Portugal
| | - João Lobo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Centre (Porto.CCC), R. Dr. António Bernardino de Almeida, Porto, 4200-072, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto / Porto Comprehensive Cancer Centre (Porto.CCC), R. Dr. António Bernardino de Almeida, Porto, 4200-072, Portugal.,Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, Porto, 4050-513, Portugal
| |
Collapse
|
4
|
Li M, Li Z, Song J, Li X, Zhai P, Mu X, Qiu F, Yao L. miR-205 Reverses MDR-1 Mediated Doxorubicin Resistance via PTEN in Human Liver Cancer HepG2 Cells. CELL JOURNAL 2022; 24:112-119. [PMID: 35451580 PMCID: PMC9035231 DOI: 10.22074/cellj.2022.7231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/04/2020] [Indexed: 11/09/2022]
Abstract
Objective The aim of the recent study was to investigate the effects of miR-205 on reversing Doxorubicin (DOX) resistance, as chemotherapeutic agents through up-regulation of PTEN in human liver cancer HepG2 cells. Materials and Methods In this experimental study, the drug resistance in liver cancer cells via drug efflux inhibition and enhancing apoptosis by the regulation of PTEN and multi-drug resistance/ P-glycoprotein (MDR/P-gp) expression was revealed. Using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, effect of DOX on cell proliferation was evaluated after miR-205 transfection in HepG2 and HepG2/DOX cells. Activity of P-gp on drug efflux was measured by the Rhodamine 123 (Rho-123) assay. PTEN mRNA expression levels were measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and flow cytometry was used to measure the apoptotic ratio of HepG2/DOX cells. Results miR-205 overexpression considerably inhibited the HepG2/DOX cells viability (P<0.05). qRT-PCR results revealed that PTEN is a pivotal regulator in PI3K/Akt/P-gp axis. Overexpression miR-205 resulted in up-regulation PTEN and ultimately down-regulation of P-gp. This inhibits drug resistance, proliferation and induces apoptosis in HepG2/DOX cells (P<0.05). Whilst, treatment with 10 μM of special inhibitors, including LY294002 (PI3K) or PD098059 (MAPK), increased Rho 123-associated MFI, treatment with 10 μM of SF1670 (PTEN) almost abolished the effect of miR-205 overexpression (P<0.05). Finally, we found that miR-205 was down-regulated in HepG2/DOX cells, and its overexpression led to enhancing apoptosis with re-sensitization of HepG2/DOX cell lines to DOX through PTEN/PI3K/ Akt/MDR1 pathway. Conclusion These findings may introduce miR-205 as a predictive biomarker and a potential treatment target for liver cancer therapy during MDR.
Collapse
Affiliation(s)
- Mei Li
- Department of Minimally Invasive Intervention, Shaanxi Provincial Cancer Hospital, Xi'an, Shaanxi, China
| | - Zhubin Li
- Department of Minimally Invasive Intervention, Shaanxi Provincial Cancer Hospital, Xi'an, Shaanxi, China
| | - Juanrong Song
- Department of Minimally Invasive Intervention, Shaanxi Provincial Cancer Hospital, Xi'an, Shaanxi, China
| | - Xu Li
- Department of Oncology, Shaanxi Provincial Cancer Hospital, Xi'an, Shaanxi, China
| | - Pengtao Zhai
- Department of Minimally Invasive Intervention, Shaanxi Provincial Cancer Hospital, Xi'an, Shaanxi, China
| | - Xudong Mu
- Department of Minimally Invasive Intervention, Shaanxi Provincial Cancer Hospital, Xi'an, Shaanxi, China
| | - Fakai Qiu
- Department of Minimally Invasive Intervention, Shaanxi Provincial Cancer Hospital, Xi'an, Shaanxi, China
| | - Le Yao
- Department of Infectious Diseases, The First Hospital of Yulin, Yulin, Shaanxi, China ,Department of Infectious DiseasesThe First Hospital of YulinYulinShaanxiChina
| |
Collapse
|
5
|
Stikbakke E, Wilsgaard T, Haugnes HS, Pedersen MI, Knutsen T, Støyten M, Giovannucci E, Eggen AE, Thune I, Richardsen E. Expression of miR-24-1-5p in Tumor Tissue Influences Prostate Cancer Recurrence: The PROCA- life Study. Cancers (Basel) 2022; 14:cancers14051142. [PMID: 35267449 PMCID: PMC8909269 DOI: 10.3390/cancers14051142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 12/22/2022] Open
Abstract
The role of miR-24-1-5p and its prognostic implications associated with prostate cancer are mainly unknown. In a population-based cohort, the Prostate Cancer Study throughout life (PROCA-life), all men had a general health examination at study entry and were followed between 1994 and 2016. Patients with available tissue samples after a prostatectomy with curative intent were identified (n = 189). The tissue expression of miR-24-1-5p in prostate cancer was examined by in situ hybridization (ISH) in tissue microarray (TMA) blocks by semi-quantitative scoring by two independent investigators. Multivariable Cox regression models were used to study the associations between miR-24-1-5p expression and prostate cancer recurrence. The prostate cancer patients had a median age of 65.0 years (range 47−75 years). The Cancer of the Prostate Risk Assessment Postsurgical Score, International Society of Urological Pathology grade group, and European Association of Urology Risk group were all significant prognostic factors for five-year recurrence-free survival (p < 0.001). Prostate cancer patients with a high miR-24-1-5p expression (≥1.57) in the tissue had a doubled risk of recurrence compared to patients with low expression (HR 1.99, 95% CI 1.13−3.51). Our study suggests that a high expression of miR-24-1-5p is associated with an increased risk of recurrence of prostate cancer after radical prostatectomy, which points to the potential diagnostic and therapeutic value of detecting miR-24-1-5p in prostate cancer cases.
Collapse
Affiliation(s)
- Einar Stikbakke
- Department of Clinical Medicine, Faculty of Health Sciences, UiT, The Arctic University of Norway, 9037 Tromsø, Norway; (H.S.H.); (T.K.); (M.S.); (I.T.)
- Department of Oncology, University Hospital of North Norway, 9038 Tromsø, Norway
- Correspondence:
| | - Tom Wilsgaard
- Department of Community Medicine, Faculty of Health Sciences, UiT, The Arctic University of Norway, 9037 Tromsø, Norway; (T.W.); (A.E.E.)
| | - Hege Sagstuen Haugnes
- Department of Clinical Medicine, Faculty of Health Sciences, UiT, The Arctic University of Norway, 9037 Tromsø, Norway; (H.S.H.); (T.K.); (M.S.); (I.T.)
- Department of Oncology, University Hospital of North Norway, 9038 Tromsø, Norway
| | - Mona Irene Pedersen
- Translational Cancer Research Group, Institute of Clinical Medicine, UiT, The Arctic University of Norway, 9037 Tromsø, Norway; (M.I.P.); (E.R.)
| | - Tore Knutsen
- Department of Clinical Medicine, Faculty of Health Sciences, UiT, The Arctic University of Norway, 9037 Tromsø, Norway; (H.S.H.); (T.K.); (M.S.); (I.T.)
- Department of Urology, University Hospital of North Norway, 9038 Tromsø, Norway
| | - Martin Støyten
- Department of Clinical Medicine, Faculty of Health Sciences, UiT, The Arctic University of Norway, 9037 Tromsø, Norway; (H.S.H.); (T.K.); (M.S.); (I.T.)
- Department of Oncology, University Hospital of North Norway, 9038 Tromsø, Norway
| | - Edward Giovannucci
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
- Departments of Nutrition and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Anne Elise Eggen
- Department of Community Medicine, Faculty of Health Sciences, UiT, The Arctic University of Norway, 9037 Tromsø, Norway; (T.W.); (A.E.E.)
| | - Inger Thune
- Department of Clinical Medicine, Faculty of Health Sciences, UiT, The Arctic University of Norway, 9037 Tromsø, Norway; (H.S.H.); (T.K.); (M.S.); (I.T.)
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0316 Oslo, Norway
- Department of Oncology, The Cancer Centre, Oslo University Hospital, 0424 Oslo, Norway
| | - Elin Richardsen
- Translational Cancer Research Group, Institute of Clinical Medicine, UiT, The Arctic University of Norway, 9037 Tromsø, Norway; (M.I.P.); (E.R.)
- Department of Medical Biology, Faculty of Health Sciences, UiT, The Arctic University of Norway, 9037 Tromsø, Norway
- Department of Clinical Pathology, University Hospital of North Norway, 9038 Tromsø, Norway
| |
Collapse
|
6
|
Rana S, Valbuena GN, Curry E, Bevan CL, Keun HC. MicroRNAs as biomarkers for prostate cancer prognosis: a systematic review and a systematic reanalysis of public data. Br J Cancer 2022; 126:502-513. [PMID: 35022525 PMCID: PMC8810870 DOI: 10.1038/s41416-021-01677-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/16/2021] [Accepted: 12/10/2021] [Indexed: 02/07/2023] Open
Abstract
Background Reliable prognostic biomarkers to distinguish indolent from aggressive prostate cancer (PCa) are lacking. Many studies investigated microRNAs (miRs) as PCa prognostic biomarkers, often reporting inconsistent findings. We present a systematic review of these; also systematic reanalysis of public miR-profile datasets to identify tissue-derived miRs prognostic of biochemical recurrence (BCR) in patients undergoing radical prostatectomy. Methods Independent PubMed searches were performed for relevant articles from January 2007 to December 2019. For the review, 128 studies were included. Pooled-hazard-ratios (HRs) for miRs in multiple studies were calculated using a random-effects model (REM). For the reanalysis, five studies were included and Cox proportional-hazard models, testing miR association with BCR, performed for miRs profiled in all. Results Systematic review identified 120 miRs as prognostic. Five (let-7b-5p, miR-145-5p, miR152-3p, miR-195-5p, miR-224-5p) were consistently associated with progression in multiple cohorts/studies. In the reanalysis, ten (let-7a-5p, miR-148a-3p, miR-203a-3p, miR-26b-5p, miR30a-3p, miR-30c-5p, miR-30e-3p, miR-374a-5p, miR-425-3p, miR-582-5p) were significantly prognostic of BCR. Of these, miR-148a-3p (HR = 0.80/95% CI = 0.68-0.94) and miR-582-5p (HR = 0.73/95% CI = 0.61-0.87) were also reported in prior publication(s) in the review. Conclusions Fifteen miRs were consistently associated with disease progression in multiple publications or datasets. Further research into their biological roles is warranted to support investigations into their performance as prognostic PCa biomarkers.
Collapse
|
7
|
Rode MP, Silva AH, Cisilotto J, Rosolen D, Creczynski-Pasa TB. miR-425-5p as an exosomal biomarker for metastatic prostate cancer. Cell Signal 2021; 87:110113. [PMID: 34371055 DOI: 10.1016/j.cellsig.2021.110113] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/21/2022]
Abstract
Prostate cancer-related deaths are mostly caused by metastasis, which indicates the importance of identifying clinical prognostic biomarkers. In this study, we evaluated the expression profile of exosomal microRNAs (miRNAs) derived from metastatic prostate cancer (mPCa) cell lines (LNCaP and PC-3). miRNA signatures in exosomes and cells were evaluated by miRNA microarray analysis. Fourteen miRNAs were identified as candidates for specific noninvasive biomarkers. The expression of five miRNAs was validated using RT-qPCR, which confirmed that miR-205-5p, miR-148a-3p, miR-125b-5p, miR-183-5p, and miR-425-5p were differentially expressed in mPCa exosomes. Bioinformatic analyses showed that miR-425-5p was associated with residual tumor, pathologic T and N stages, and TP53 status in PCa samples. Gene ontology analysis of negatively correlated and predicted targeted genes showed enrichment of genes related to bone development pathways. The LinkedOmics database indicated that the potential target HSPB8 has a significant negative correlation with miR-425-5p. In conclusion, this study identified a panel of exosomal miRNAs with potential value as prognostic biomarkers for prostate cancer.
Collapse
Affiliation(s)
- Michele Patrícia Rode
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Adny Henrique Silva
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Júlia Cisilotto
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Daiane Rosolen
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | | |
Collapse
|
8
|
Konoshenko MY, Laktionov PP. MiRNAs and radical prostatectomy: Current data, bioinformatic analysis and utility as predictors of tumour relapse. Andrology 2021; 9:1092-1107. [PMID: 33638886 DOI: 10.1111/andr.12994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Studies of microRNAs (miRNAs) and genes have particular interest for cancer biology and medicine due to the discovery of new therapeutic targets and markers. These studies are extensively influenced by anticancer therapy, as miRNAs interfere with the therapy's efficacy in prostate cancer (PCa). OBJECTIVES In this article, we summarise the available data on the influence of radical prostatectomy (RP) and biochemical recurrence on miRNA expression. MATERIALS AND METHODS Molecular targets of these miRNAs, as well as the reciprocal relations between different miRNAs and their targets, were studied using the DIANA, STRING and TransmiR databases. Special attention was dedicated to the mechanisms of PCa development, miRNA, and associated genes as tumour development mediators. RESULTS AND DISCUSSION Combined analysis of the databases and available literature indicates that expression of four miRNAs that are associated with prostate cancer relapse and alter their expression after RP, combined with genes that closely interact with selected miRNAs, has high potential for the prediction of PCa relapse after RP. PCa tissues and biofluids, both immediately after RP for diagnostics/prognostics and in long-term (relapse) monitoring, may be used as sources of these miRNAs. CONCLUSION An overview of the usefulness of published data and bioinformatics resources looking for diagnostic markers and molecular targets is presented in this article. The selected miRNA and gene panels have good potential as prognostic and PCa relapse markers after RP and likely could also serve as markers for therapeutic efficiency on a broader scale.
Collapse
Affiliation(s)
- Maria Yu Konoshenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Pavel P Laktionov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
9
|
Downregulation of miR-205 contributes to epithelial-mesenchymal transition and invasion in triple-negative breast cancer by targeting HMGB1-RAGE signaling pathway. Anticancer Drugs 2020; 30:225-232. [PMID: 30334817 PMCID: PMC6410973 DOI: 10.1097/cad.0000000000000705] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Our aim was to study the regulatory molecule networks involved in the epithelial-to-mesenchymal transition and thus promoting the early onset of metastasis in triple-negative breast cancer (TNBC). Forty pairs of human TNBC and their adjacent normal breast tissues were analyzed by real-time PCR and immunochemistry to demonstrate the correlation between the miR-205 expression and clinicopathological characteristics. In vitro, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay, cell migration, and invasion assay were used to detect the cell growth and invasive ability of TNBC cells after upregulation or downregulation of miR-205 expression. Luciferase reporter assay was used to confirm the potential target directly influenced by miR-205. Our results showed that miR-205 abnormal expression may be involved and associated with the biological traits of TNBC. Ectopic expression of miR-205 not only inhibited cell growth, but also suppressed migration and invasion of mesenchymal-like TNBC cells. In addition, we found that overexpression of miR-205 significantly suppressed HMGB1 by binding its 3′-untranslated region, and that miR-205 was inversely correlated with the expression of HMGB1 and RAGE in cell lines and clinical samples. Our study illustrated that miR-205 was a tumor suppressor in TNBC, which attenuated the viability and the acquisition of the epithelial-to-mesenchymal transition phenotype TNBC cells at least partially exerted through targeting of HMGB1–RAGE signaling pathway.
Collapse
|
10
|
MicroRNAs as Guardians of the Prostate: Those Who Stand before Cancer. What Do We Really Know about the Role of microRNAs in Prostate Biology? Int J Mol Sci 2020; 21:ijms21134796. [PMID: 32645914 PMCID: PMC7370012 DOI: 10.3390/ijms21134796] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022] Open
Abstract
Prostate cancer is the second leading cause of cancer-related deaths of men in the Western world. Despite recent advancement in genomics, transcriptomics and proteomics to understand prostate cancer biology and disease progression, castration resistant metastatic prostate cancer remains a major clinical challenge and often becomes incurable. MicroRNAs (miRNAs), about 22-nucleotide-long non-coding RNAs, are a group of regulatory molecules that mainly work through post-transcriptional gene silencing via translational repression. Expression analysis studies have revealed that miRNAs are aberrantly expressed in cancers and have been recognized as regulators of prostate cancer progression. In this critical review, we provide an analysis of reported miRNA functions and conflicting studies as they relate to expression levels of specific miRNAs and prostate cancer progression; oncogenic and/or tumor suppressor roles; androgen receptor signaling; epithelial plasticity; and the current status of diagnostic and therapeutic applications. This review focuses on select miRNAs, highly expressed in normal and cancer tissue, to emphasize the current obstacles faced in utilizing miRNA data for significant impacts on prostate cancer therapeutics.
Collapse
|
11
|
Fan X, Bjerke GA, Riemondy K, Wang L, Yi R. A basal-enriched microRNA is required for prostate tumorigenesis in a Pten knockout mouse model. Mol Carcinog 2019; 58:2241-2253. [PMID: 31512783 PMCID: PMC7791532 DOI: 10.1002/mc.23112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) play important roles in prostate cancer development. However, it remains unclear how individual miRNAs contribute to the initiation and progression of prostate cancer. Here we show that a basal layer-enriched miRNA is required for prostate tumorigenesis. We identify miR-205 as the most highly expressed miRNA and enriched in the basal cells of the prostate. Although miR-205 is not required for normal prostate development and homeostasis, genetic deletion of miR-205 in a Pten null tumor model significantly compromises tumor progression and does not promote metastasis. In Pten null basal cells, loss of miR-205 attenuates pAkt levels and promotes cellular senescence. Furthermore, although overexpression of miR-205 in prostate cancer cells with luminal phenotypes inhibits cell growth in both human and mouse, miR-205 has a minimal effect on the growth of a normal human prostate cell line. Taken together, we have provided genetic evidence for a requirement of miR-205 in the progression of Pten null-induced prostate cancer.
Collapse
Affiliation(s)
- Xiying Fan
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Boulder, Colorado
| | - Glen A Bjerke
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Boulder, Colorado
| | - Kent Riemondy
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Boulder, Colorado
| | - Li Wang
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Boulder, Colorado
| | - Rui Yi
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Boulder, Colorado
| |
Collapse
|
12
|
Guo X, Han T, Hu P, Guo X, Zhu C, Wang Y, Chang S. Five microRNAs in serum as potential biomarkers for prostate cancer risk assessment and therapeutic intervention. Int Urol Nephrol 2018; 50:2193-2200. [PMID: 30324582 PMCID: PMC6267169 DOI: 10.1007/s11255-018-2009-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/08/2018] [Indexed: 12/29/2022]
Abstract
Background Prostate cancer (PCa) is a common malignant human tumor and one of the main causes of cancer-related deaths in men. At present, prostate-specific antigen levels are widely used to diagnose PCa in the clinic, but they are not sufficient for an accurate early diagnosis or prognosis. Methods To identify potential molecular markers for PCa, we used real-time PCR to measure the expression levels of various microRNAs, including miR-1825, miR-484, miR-205, miR-141, and let-7b, in the serum of 72 PCa patients and 34 healthy controls. Results miR-1825, miR-484, miR-205, miR-141, and let-7b were shown to be highly specific for PCa, suggesting that they could be used as PCa tumor screening biomarkers. miR-205 may also be used as a biomarker for indicating bone metastasis in PCa patients, miR-1825 levels may help indicate tumor–node–metastasis classification, the evaluation of treatment effects, and determining prognosis, while let-7b levels may indicate potential tumor malignancy and the hormone resistance status and could be used as a basis to adjust individual treatments for the high-risk, early diagnosis of refractory PCa. Conclusion This study identified possible PCa tumor markers to more accurately predict the occurrence, progression, and prognosis of PCa, and which could be used in the development of tumor drug therapy. Electronic supplementary material The online version of this article (10.1007/s11255-018-2009-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaogang Guo
- Urology Department of Urology, Haici Medical Group of Qingdao, Qingdao, Shandong, China
| | - Tao Han
- Urology Department of Urology, Haici Medical Group of Qingdao, Qingdao, Shandong, China
| | - Pingping Hu
- Department of Cardiology, Jimo People's Hospital, Qingdao, Shandong, China
| | - Xiaojun Guo
- Urology Department of Urology, Haici Medical Group of Qingdao, Qingdao, Shandong, China
| | - Changming Zhu
- Urology Department of Urology, Haici Medical Group of Qingdao, Qingdao, Shandong, China
| | - Youbao Wang
- Urology Department of Urology, Haici Medical Group of Qingdao, Qingdao, Shandong, China
| | - Shaoyan Chang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China.
| |
Collapse
|
13
|
Nagesh PKB, Chowdhury P, Hatami E, Boya VKN, Kashyap VK, Khan S, Hafeez BB, Chauhan SC, Jaggi M, Yallapu MM. miRNA-205 Nanoformulation Sensitizes Prostate Cancer Cells to Chemotherapy. Cancers (Basel) 2018; 10:E289. [PMID: 30149628 PMCID: PMC6162422 DOI: 10.3390/cancers10090289] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/07/2018] [Accepted: 08/21/2018] [Indexed: 02/07/2023] Open
Abstract
The therapeutic application of microRNA(s) in the field of cancer has generated significant attention in research. Previous studies have shown that miR-205 negatively regulates prostate cancer cell proliferation, metastasis, and drug resistance. However, the delivery of miR-205 is an unmet clinical need. Thus, the development of a viable nanoparticle platform to deliver miR-205 is highly sought. A novel magnetic nanoparticle (MNP)-based nanoplatform composed of an iron oxide core with poly(ethyleneimine)-poly(ethylene glycol) layer(s) was developed. An optimized nanoplatform composition was confirmed by examining the binding profiles of MNPs with miR-205 using agarose gel and fluorescence methods. The novel formulation was applied to prostate cancer cells for evaluating cellular uptake, miR-205 delivery, and anticancer, antimetastasis, and chemosensitization potentials against docetaxel treatment. The improved uptake and efficacy of formulations were studied with confocal imaging, flow cytometry, proliferation, clonogenicity, Western blot, q-RT-PCR, and chemosensitization assays. Our findings demonstrated that the miR-205 nanoplatform induces significant apoptosis and enhancing chemotherapeutic effects in prostate cancer cells. Overall, these study results provide a strong proof-of-concept for a novel nonviral-based nanoparticle protocol for effective microRNA delivery to prostate cancer cells.
Collapse
Affiliation(s)
- Prashanth K B Nagesh
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Pallabita Chowdhury
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Elham Hatami
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Vijaya K N Boya
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Vivek K Kashyap
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Sheema Khan
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Bilal B Hafeez
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Subhash C Chauhan
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Meena Jaggi
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Murali M Yallapu
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|