1
|
Guan M, Han X, Liao B, Han W, Chen L, Zhang B, Peng X, Tian Y, Xiao G, Li X, Kuang L, Zhu Y, Bai D. LIPUS Promotes Calcium Oscillation and Enhances Calcium Dependent Autophagy of Chondrocytes to Alleviate Osteoarthritis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413930. [PMID: 40013941 PMCID: PMC12021083 DOI: 10.1002/advs.202413930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/02/2025] [Indexed: 02/28/2025]
Abstract
Osteoarthritis (OA) is a degenerative disease which places an enormous burden on society, effective treatments are still limited. As a non-invasive and safe physical therapy, low-intensity pulsed ultrasound (LIPUS) can alleviate OA progression, but the underlying mechanism is not fully understood, especially the mechanical transduction between LIPUS and the organism. In this pioneering study, the biomechanical effects of LIPUS on living mice chondrocytes and living body zebrafish are investigate by using fluorescence imaging technology, to dynamically "visualize" its invisible mechanical stimuli in the form of calcium oscillations. It is also confirmed that LIPUS maintains cartilage homeostasis by promoting chondrocyte autophagy in a calcium-dependent manner. In addition, chondrocyte ion channels are screened by scRNA-seq and confirm that the mechanosensitive ion channel transient receptor potential vanilloid 4 (TRPV4) mediated the biological effects of LIPUS on chondrocytes. Finally, it is found that a combination of pharmacologically induced and LIPUS-induced Ca2+ influx in chondrocytes enhances the cartilage-protective effect of LIPUS, which may provide new insights for optimizing LIPUS in the treatment of OA.
Collapse
Affiliation(s)
- Mengtong Guan
- Department of Rehabilitation MedicineKey Laboratory of Physical Medicine and Precision Rehabilitation of Chongqing Municipal Health CommissionThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Xiaoyu Han
- Department of Rehabilitation MedicineKey Laboratory of Physical Medicine and Precision Rehabilitation of Chongqing Municipal Health CommissionThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
- State Key Laboratory of Ultrasound in Medicine and EngineeringChongqing Medical UniversityChongqing400016China
| | - Bo Liao
- Department of Rehabilitation MedicineKey Laboratory of Physical Medicine and Precision Rehabilitation of Chongqing Municipal Health CommissionThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Wang Han
- Department of Rehabilitation MedicineKey Laboratory of Physical Medicine and Precision Rehabilitation of Chongqing Municipal Health CommissionThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Lin Chen
- Center of Bone Metabolism and repair laboratory for Prevention and rehabilitation of Training injuries State Key laboratory of Trauma Burns and combined injury Trauma centerResearch Institute of Surgery Daping Hospital Army Medical University (Third Military Medical University)Chongqing400000China
| | - Bin Zhang
- Center of Bone Metabolism and repair laboratory for Prevention and rehabilitation of Training injuries State Key laboratory of Trauma Burns and combined injury Trauma centerResearch Institute of Surgery Daping Hospital Army Medical University (Third Military Medical University)Chongqing400000China
| | - Xiuqin Peng
- Center of Bone Metabolism and repair laboratory for Prevention and rehabilitation of Training injuries State Key laboratory of Trauma Burns and combined injury Trauma centerResearch Institute of Surgery Daping Hospital Army Medical University (Third Military Medical University)Chongqing400000China
| | - Yu Tian
- Center of Bone Metabolism and repair laboratory for Prevention and rehabilitation of Training injuries State Key laboratory of Trauma Burns and combined injury Trauma centerResearch Institute of Surgery Daping Hospital Army Medical University (Third Military Medical University)Chongqing400000China
| | - Gongyi Xiao
- Department of OrthopedicsChonggang General HospitalChongqing400000China
| | - Xinhe Li
- Department of Rehabilitation MedicineKey Laboratory of Physical Medicine and Precision Rehabilitation of Chongqing Municipal Health CommissionThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
- State Key Laboratory of Ultrasound in Medicine and EngineeringChongqing Medical UniversityChongqing400016China
| | - Liang Kuang
- Center of Bone Metabolism and repair laboratory for Prevention and rehabilitation of Training injuries State Key laboratory of Trauma Burns and combined injury Trauma centerResearch Institute of Surgery Daping Hospital Army Medical University (Third Military Medical University)Chongqing400000China
| | - Ying Zhu
- Department of Rehabilitation MedicineKey Laboratory of Physical Medicine and Precision Rehabilitation of Chongqing Municipal Health CommissionThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Dingqun Bai
- Department of Rehabilitation MedicineKey Laboratory of Physical Medicine and Precision Rehabilitation of Chongqing Municipal Health CommissionThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
- State Key Laboratory of Ultrasound in Medicine and EngineeringChongqing Medical UniversityChongqing400016China
| |
Collapse
|
2
|
Pathrikar TV, Baby HM, Hakim B, Zhang H, Millán Cotto HA, Kondiboyina V, Zhang C, Bajpayee AG. Cartilage-targeting exosomes for delivery of receptor antagonist of interleukin-1 in osteoarthritis treatment. Osteoarthritis Cartilage 2025:S1063-4584(25)00862-3. [PMID: 40158651 DOI: 10.1016/j.joca.2025.02.785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/08/2025] [Accepted: 02/10/2025] [Indexed: 04/02/2025]
Abstract
OBJECTIVE Exosomes are nano-sized cell-secreted vesicles naturally involved in joint tissue crosstalk and hold promise as drug carriers. Their negatively charged lipid bilayer, however, results in electrostatic repulsion from the anionic cartilage matrix limiting their applications in tissue targeting and drug delivery. Here we engineer cartilage targeting exosomes by reversing their net surface charge and use them for sustained delivery of interleukin-1 receptor antagonist (IL-1RA), a disease-modifying osteoarthritis (OA) drug that suffers from rapid joint clearance and poor cartilage uptake. DESIGN Exosomes were surface modified by anchoring optimally charged cartilage targeting cationic motifs, Avidin (Av) and arginine-rich cationic peptide carrier (CPC). IL-1RA was surface anchored and encapsulated within the exosomes, creating two formulations: ExoAv-IL-1RA and ExoCPC-IL-1RA. Their penetration and retention in healthy and early OA cartilage were evaluated and compared with unmodified exosomes. The efficacy of ExoAv-IL-1RA and ExoCPC-IL-1RA in suppressing IL-1-induced tissue catabolism was tested using IL-1α challenged bovine cartilage explants over an 8-day culture period with a single dose and compared with free IL-1RA. RESULTS ExoAv-IL-1RA and ExoCPC-IL-1RA, penetrated and retained in the full-thickness of early-stage arthritic cartilage explants. Free IL-1RA failed to suppress IL-1α-induced catabolism over the culture period. In contrast, ExoCPC-IL-1RA significantly suppressed cytokine-induced glycosaminoglycan loss and nitrite release, enhancing cell metabolism and viability with only a one-time dose. CONCLUSION Cartilage targeting charge-reversed CPC anchored exosomes successfully targeted and delivered IL-1RA to early-stage arthritic cartilage. They hold promise as a cell-free intra-cartilage depot-forming carrier for sustained delivery of OA biologics.
Collapse
Affiliation(s)
| | - Helna M Baby
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA.
| | - Bill Hakim
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA.
| | - Hengli Zhang
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA.
| | | | - Vineel Kondiboyina
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA.
| | - Chenzhen Zhang
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA.
| | - Ambika G Bajpayee
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA; Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Cao ZM, Fu S, Dong C, Yang TY, Liu XK, Zhang CL, Li DZ. DSCR1-1 attenuates osteoarthritis-associated chondrocyte injury by regulating the CREB1/ALDH2/Wnt/β-catenin axis: An in vitro and in vivo study. Cell Signal 2024; 121:111287. [PMID: 38969191 DOI: 10.1016/j.cellsig.2024.111287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/27/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
The progression of osteoarthritis (OA) includes the initial inflammation, subsequent degradation of the extracellular matrix (ECM), and chondrocyte apoptosis. Down syndrome candidate region 1 (DSCR1) is a stress-responsive gene and expresses in varied types of cells, including chondrocytes. Bioinformatics analysis of GSE103416 and GSE104739 datasets showed higher DSCR1 expression in the inflamed cartilage tissues and chondrocytes of OA. DSCR1 had two major isoforms, isoform 1 (DSCR1-1) and isoform 4 (DSCR1-4). We found that DSCR1-1 had a faster (in vitro) and higher expression (in vivo) response to OA compared to DSCR1-4. IL-1β-induced apoptosis, inflammation, and ECM degradation in chondrocytes were attenuated by DSCR1-1 overexpression. DSCR1-1 triggered the phosphorylation of cAMP response element-binding 1 (CREB1) at 133 serine sites by decreasing calcineurin activity. Moreover, activated CREB1 moved into the cell nucleus and combined in the promoter regions of aldehyde dehydrogenase 2 (ALDH2), thus enhancing its gene transcription. ALDH2 could recover Wnt/β-catenin signaling transduction by enhancing phosphorylation of β-catenin at 33/37 serine sites and inhibiting the migration of β-catenin protein from the cellular matrix to the nucleus. In vivo, adenoviruses (1 × 108 PFU) overexpressing DSCR1-1 were injected into the articular cavity of C57BL/6 mice with medial meniscus surgery-induced OA, and it showed that DSCR1-1 overexpression ameliorated cartilage injury. Collectively, our study demonstrates that DSCR1-1 may be a potential therapeutic target of OA.
Collapse
Affiliation(s)
- Zheng-Ming Cao
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, China.
| | - Su Fu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, China
| | - Chao Dong
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, China
| | - Teng-Yue Yang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, China
| | - Xiao-Kang Liu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, China
| | - Chun-Lin Zhang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, China
| | - Dong-Zhe Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, China.
| |
Collapse
|
4
|
Kondiboyina V, Boyer TL, Mooney N, Bajpayee AG, Shefelbine SJ. Effect of dynamic loading on calcium signaling in In-Situ chondrocytes. J Biomech 2024; 174:112265. [PMID: 39137485 DOI: 10.1016/j.jbiomech.2024.112265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/12/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
Chondrocytes respond to mechanical stimuli by increasing their intracellular calcium concentration. The response depends on the cellular environment. Previous studies have investigated chondrocytes under slow strain rates or cells embedded in hydrogels, but the response of chondrocytes in their native environment under physiologically relevant cyclic loads and dynamic hydrostatic pressure has not been studied. This study investigated the calcium signaling response of in-situ chondrocytes under physiological cyclic compressive loads and hydrostatic pressure with varying frequency and load rates. Bovine cartilage explants were stained with a fluorescent calcium indicator dye and subjected to physiologically relevant cyclic loads using a custom-built loading device secured on a confocal/multiphoton microscope. Calcium fluorescence intensities of the cells were tracked and analyzed. Loading groups were compared using one-way ANOVA followed by a post-hoc test with Tukey correction (α = 0.05). The percentage of cells signaling increased in all compressive loading conditions compared to the no-load baseline. The percentage of cells responding under 1 Hz load was significantly greater than the slow ramp and 0.1 Hz group (p < 0.05). The number of compression cycles had no effect on the calcium signaling response (p > 0.05). The width and time between consecutive peaks were not different between different loading conditions (p > 0.05). Calcium signaling of in-situ chondrocytes did not increase under dynamic hydrostatic pressure of magnitudes up to 0.2 MPa at frequencies of 0.5 Hz and 0.05 Hz (p > 0.05). In conclusion, in-situ chondrocytes respond to physiological compressive loads in a strain rate-dependent manner with an increased number of responsive cells and unaltered temporal characteristics.
Collapse
Affiliation(s)
| | - Timothy L Boyer
- Dept. of Bioengineering, Northeastern University, Boston, MA, USA.
| | - Noah Mooney
- Dept. of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA.
| | | | - Sandra J Shefelbine
- Dept. of Bioengineering, Northeastern University, Boston, MA, USA; Dept. of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA.
| |
Collapse
|
5
|
Zhou R, Fu W, Vasylyev D, Waxman SG, Liu CJ. Ion channels in osteoarthritis: emerging roles and potential targets. Nat Rev Rheumatol 2024; 20:545-564. [PMID: 39122910 DOI: 10.1038/s41584-024-01146-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 08/12/2024]
Abstract
Osteoarthritis (OA) is a highly prevalent joint disease that causes substantial disability, yet effective approaches to disease prevention or to the delay of OA progression are lacking. Emerging evidence has pinpointed ion channels as pivotal mediators in OA pathogenesis and as promising targets for disease-modifying treatments. Preclinical studies have assessed the potential of a variety of ion channel modulators to modify disease pathways involved in cartilage degeneration, synovial inflammation, bone hyperplasia and pain, and to provide symptomatic relief in models of OA. Some of these modulators are currently being evaluated in clinical trials. This review explores the structures and functions of ion channels, including transient receptor potential channels, Piezo channels, voltage-gated sodium channels, voltage-dependent calcium channels, potassium channels, acid-sensing ion channels, chloride channels and the ATP-dependent P2XR channels in the osteoarthritic joint. The discussion spans channel-targeting drug discovery and potential clinical applications, emphasizing opportunities for further research, and underscoring the growing clinical impact of ion channel biology in OA.
Collapse
Affiliation(s)
- Renpeng Zhou
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | - Wenyu Fu
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | - Dmytro Vasylyev
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Chuan-Ju Liu
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
6
|
Bergantin LB. Ca 2+/cAMP ratio in age-related diseases. Brain Circ 2024; 10:281-282. [PMID: 39526107 PMCID: PMC11542762 DOI: 10.4103/bc.bc_3_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/30/2024] [Accepted: 04/04/2024] [Indexed: 08/03/2024] Open
Affiliation(s)
- Leandro Bueno Bergantin
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP, Brazil
| |
Collapse
|
7
|
Jing L, Liu K, Wang F, Su Y. Role of mechanically-sensitive cation channels Piezo1 and TRPV4 in trabecular meshwork cell mechanotransduction. Hum Cell 2024; 37:394-407. [PMID: 38316716 DOI: 10.1007/s13577-024-01035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Glaucoma is one of the leading causes of irreversible blindness in developed countries, and intraocular pressure (IOP) is primary and only treatable risk factor, suggesting that to a significant extent, glaucoma is a disease of IOP disorder and pathological mechanotransduction. IOP-lowering ways are limited to decreaseing aqueous humour (AH) production or increasing the uveoscleral outflow pathway. Still, therapeutic approaches have been lacking to control IOP by enhancing the trabecular meshwork (TM) pathway. Trabecular meshwork cells (TMCs) have endothelial and myofibroblast properties and are responsible for the renewal of the extracellular matrix (ECM). Mechanosensitive cation channels, including Piezo1 and TRPV4, are abundantly expressed in primary TMCs and trigger mechanostress-dependent ECM and cytoskeletal remodelling. However, prolonged mechanical stimulation severely affects cellular biosynthesis through TMC mechanotransduction, including signaling, gene expression, ECM remodelling, and cytoskeletal structural changes, involving outflow facilities and elevating IOP. As for the functional coupling relationship between Piezo1 and TRPV4 channels, inspired by VECs and osteoblasts, we hypothesized that Piezo1 may also act upstream of TRPV4 in glaucomatous TM tissue, mediating the activation of TRPV4 via Ca2+ inflow or Ca2+ binding to phospholipase A2(PLA2), and thus be involved in increasing TM outflow resistance and elevated IOP. Therefore, this review aims to help identify new potential targets for IOP stabilization in ocular hypertension and primary open-angle glaucoma by understanding the mechanical transduction mechanisms associated with the development of glaucoma and may provide ideas into novel treatments for preventing the progression of glaucoma by targeting mechanotransduction.
Collapse
Affiliation(s)
- Lingling Jing
- Department of Ophthalmology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Kexin Liu
- Department of Ophthalmology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Feng Wang
- Department of Ophthalmology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China.
| | - Ying Su
- Eye Hospital, The First Affiliated Hospital, Harbin Medical University, Harbin, China.
| |
Collapse
|
8
|
Fan X, Xie R, Song W, Ouyang K, Ren L. Biomimetic Hyaluronic Acid-Based Brush Polymers Modulate Chondrocyte Homeostasis via ROS/Ca 2+/TRPV4. Biomacromolecules 2023; 24:4240-4252. [PMID: 37585281 DOI: 10.1021/acs.biomac.3c00547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Bionic mimics using natural cartilage matrix molecules can modulate the corresponding metabolic activity by improving the microenvironment of chondrocytes. A bionic brush polymer, HA/PX, has been found to reverse the loss of cartilage extracellular matrix (ECM) and has promising applications in the clinical treatment of osteoarthritis (OA). However, the unknown bioremediation mechanism of HA/PX severely hinders its clinical translation. In OA, the massive loss of the ECM may be attributed to a decrease in transient receptor potential vanilloid 4 (TRPV4) activity, which affects reactive oxygen species (ROS) clearance and [Ca2+]i signaling, initiating downstream catabolic pathways. In this study, we investigated the bioremediation mechanism of HA/PX in a model of interleukin 1β (IL-1β)-induced inflammation. Through TRPV4, HA/PX reduced ROS accumulation in chondrocytes and enhanced [Ca2+]i signaling, reflecting a short-term protection capacity for chondrocytes. In addition, HA/PX balanced the metabolic homeostasis of chondrocytes via TRPV4, including promoting the secretion of type II collagen (Col-II) and aggrecan, the major components of the ECM, and reducing the expression of matrix metal-degrading enzyme (MMP-13), exerting long-term protective effects on chondrocytes. Molecular dynamics (MD) simulations showed that HA/PX could act as a TRPV4 activator. Our results suggest that HA/PX can regulate chondrocyte homeostasis via ROS/Ca2+/TRPV4, thereby improving cartilage regeneration. Because the ECM is a prevalent feature of various cell types, HA/PX holds promising potential for improving regeneration and disease modification for not only cartilage-related healthcare but many other tissues and diseases.
Collapse
Affiliation(s)
- Xiaopeng Fan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, PR China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, PR China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
- Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
| | - Renjian Xie
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China
| | - Wenjing Song
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, PR China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, PR China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
- Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
| | - Kunfu Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Li Ren
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, PR China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, PR China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
- Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, PR China
- Sino-Singapore International Joint Research Institute, Guangzhou 510555, China
| |
Collapse
|
9
|
Reyes Fernandez PC, Wright CS, Warden SJ, Hum J, Farach-Carson MC, Thompson WR. Effects of Gabapentin and Pregabalin on Calcium Homeostasis: Implications for Physical Rehabilitation of Musculoskeletal Tissues. Curr Osteoporos Rep 2022; 20:365-378. [PMID: 36149592 PMCID: PMC10108402 DOI: 10.1007/s11914-022-00750-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW In this review, we discuss the mechanism of action of gabapentinoids and the potential consequences of long-term treatment with these drugs on the musculoskeletal system. RECENT FINDINGS Gabapentinoids, such as gabapentin (GBP) and pregabalin (PGB) were designed as antiepileptic reagents and are now commonly used as first-line treatment for neuropathic pain and increasingly prescribed off-label for other pain disorders such as migraines and back pain. GBP and PGB exert their analgesic actions by selectively binding the α2δ1 auxiliary subunit of voltage-sensitive calcium channels, thereby inhibiting channel function. Numerous tissues express the α2δ1 subunit where GBP and PGB can alter calcium-mediated signaling events. In tissues such as bone, muscle, and cartilage, α2δ1 has important roles in skeletal formation, mechanosensation, and normal tissue function/repair that may be affected by chronic use of gabapentinoids. Long-term use of gabapentinoids is associated with detrimental musculoskeletal outcomes, including increased fracture risk. Therefore, understanding potential complications is essential for clinicians to guide appropriate treatments.
Collapse
Affiliation(s)
- Perla C Reyes Fernandez
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN, 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, 46202, USA
| | - Christian S Wright
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN, 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, 46202, USA
| | - Stuart J Warden
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN, 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, 46202, USA
| | - Julia Hum
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, 46202, USA
- College of Osteopathic Medicine, Marian University, Indianapolis, IN, 4622, USA
| | - Mary C Farach-Carson
- Department of Diagnostic & Biomedical Sciences, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, 77054, USA
| | - William R Thompson
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN, 46202, USA.
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, 46202, USA.
- College of Osteopathic Medicine, Marian University, Indianapolis, IN, 4622, USA.
- Department of Anatomy and Cell Biology, Indiana University, Indianapolis, IN, 46202, USA.
| |
Collapse
|
10
|
Celecoxib nanocrystal-loaded dissolving microneedles with highly efficient for osteoarthritis treatment. Int J Pharm 2022; 625:122108. [PMID: 35970280 DOI: 10.1016/j.ijpharm.2022.122108] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/27/2022] [Accepted: 08/09/2022] [Indexed: 11/20/2022]
Abstract
Osteoarthritis (OA) is a prevalent degenerative disease that has a significant impact on patients' lives. Celecoxib (CXB) is now primarily used to treat OA with oral dosing. CXB's limited water solubility, on the other hand, restricts its therapeutic application. We developed a delivery system of dissolving microneedles (DMNs) loaded with CXB-nanocrystals (CXB-NCs) for the treatment of OA. Oral administration's inefficiency and injectable administration's poor compliance might be solved using DMNs. Furthermore, carrier-free NCs may dramatically increase the dissolution of drugs with poorly water-solubility, as well as the drug load of DMNs. Antisolvent precipitation was used to make CXB-NCs. CXB-NC@DMNs were prepared by mixing CXB-NCs with hyaluronic acid (HA) that had high mechanical qualities and could permeate the skin efficiently in vitro. The therapeutic effect of oral CXB-NCs was substantially better than that of the same dose of oral CXB in an in vivo pharmacodynamic trial, demonstrating that the preparation of CXB into NCs might greatly increase CXB bioavailability. Furthermore, we discovered that DMNs loaded with low-dose CXB-NCs had similar or even better efficacy than the oral CXB-NCs group. The findings suggested that CXB-NC@DMNs may be a very efficient and promising drug delivery strategy in the treatment of OA.
Collapse
|
11
|
Gao W, Hasan H, Anderson DE, Lee W. The Role of Mechanically-Activated Ion Channels Piezo1, Piezo2, and TRPV4 in Chondrocyte Mechanotransduction and Mechano-Therapeutics for Osteoarthritis. Front Cell Dev Biol 2022; 10:885224. [PMID: 35602590 PMCID: PMC9114637 DOI: 10.3389/fcell.2022.885224] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/20/2022] [Indexed: 12/29/2022] Open
Abstract
Mechanical factors play critical roles in the pathogenesis of joint disorders like osteoarthritis (OA), a prevalent progressive degenerative joint disease that causes debilitating pain. Chondrocytes in the cartilage are responsible for extracellular matrix (ECM) turnover, and mechanical stimuli heavily influence cartilage maintenance, degeneration, and regeneration via mechanotransduction of chondrocytes. Thus, understanding the disease-associated mechanotransduction mechanisms can shed light on developing effective therapeutic strategies for OA through targeting mechanotransducers to halt progressive cartilage degeneration. Mechanosensitive Ca2+-permeating channels are robustly expressed in primary articular chondrocytes and trigger force-dependent cartilage remodeling and injury responses. This review discusses the current understanding of the roles of Piezo1, Piezo2, and TRPV4 mechanosensitive ion channels in cartilage health and disease with a highlight on the potential mechanotheraputic strategies to target these channels and prevent cartilage degeneration associated with OA.
Collapse
Affiliation(s)
- Winni Gao
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, United States
| | - Hamza Hasan
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Devon E. Anderson
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
| | - Whasil Lee
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
12
|
Bakhtiary N, Liu C, Ghorbani F. Bioactive Inks Development for Osteochondral Tissue Engineering: A Mini-Review. Gels 2021; 7:274. [PMID: 34940334 PMCID: PMC8700778 DOI: 10.3390/gels7040274] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 01/02/2023] Open
Abstract
Nowadays, a prevalent joint disease affecting both cartilage and subchondral bone is osteoarthritis. Osteochondral tissue, a complex tissue unit, exhibited limited self-renewal potential. Furthermore, its gradient properties, including mechanical property, bio-compositions, and cellular behaviors, present a challenge in repairing and regenerating damaged osteochondral tissues. Here, tissue engineering and translational medicine development using bioprinting technology provided a promising strategy for osteochondral tissue repair. In this regard, personalized stratified scaffolds, which play an influential role in osteochondral regeneration, can provide potential treatment options in early-stage osteoarthritis to delay or avoid the use of joint replacements. Accordingly, bioactive scaffolds with possible integration with surrounding tissue and controlling inflammatory responses have promising future tissue engineering perspectives. This minireview focuses on introducing biologically active inks for bioprinting the hierarchical scaffolds, containing growth factors and bioactive materials for 3D printing of regenerative osteochondral substitutes.
Collapse
Affiliation(s)
- Negar Bakhtiary
- Department of Biomaterials, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran 14115-114, Iran;
| | - Chaozong Liu
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK;
| | - Farnaz Ghorbani
- Institute of Biomaterials, Department of Material Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, 91058 Erlangen, Germany
| |
Collapse
|
13
|
Zhang M, Wu X, Du G, Chen W, Zhang Q. Substrate stiffness-dependent regulatory volume decrease and calcium signaling in chondrocytes. Acta Biochim Biophys Sin (Shanghai) 2021; 54:113-125. [PMID: 35130619 PMCID: PMC9909316 DOI: 10.3724/abbs.2021008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The pericellular matrix stiffness is strongly associated with its biochemical and structural changes during the aging and osteoarthritis progress of articular cartilage. However, how substrate stiffness modulates the chondrocyte regulatory volume decrease (RVD) and calcium signaling in chondrocytes remains unknown. This study aims to investigate the effects of substrate stiffness on the chondrocyte RVD and calcium signaling by recapitulating the physiologically relevant substrate stiffness. Our results showed that substrate stiffness induces completely different dynamical deformations between the cell swelling and recovering progresses. Chondrocytes swell faster on the soft substrate but recovers slower than the stiff substrate during the RVD response induced by the hypo-osmotic challenge. We found that stiff substrate enhances the cytosolic Ca oscillation of chondrocytes in the iso-osmotic medium. Furthermore, chondrocytes exhibit a distinctive cytosolic Ca oscillation during the RVD response. Soft substrate significantly improves the Ca oscillation in the cell swelling process whereas stiff substrate enhances the cytosolic Ca oscillation in the cell recovering process. Our work also suggests that the TRPV4 channel is involved in the chondrocyte sensing substrate stiffness by mediating Ca signaling in a stiffness-dependent manner. This helps to understand a previously unidentified relationship between substrate stiffness and RVD response under the hypo-osmotic challenge. A better understanding of substrate stiffness regulating chondrocyte volume and calcium signaling will aid the development of novel cell-instructive biomaterial to restore cellular functions.
Collapse
Affiliation(s)
- Min Zhang
- 1.College of Biomedical EngineeringTaiyuan University of TechnologyTaiyuan030024China
| | - Xiaoan Wu
- 2.Department of Physiology and BiophysicsMiller School of MedicineUniversity of MiamiMiamiFL33136USA
| | - Genlai Du
- 3.Department of Cell Biology and Medical GeneticsSchool of Basic Medical ScienceShanxi Medical UniversityTaiyuan030001China
| | - Weiyi Chen
- 1.College of Biomedical EngineeringTaiyuan University of TechnologyTaiyuan030024China,Correspondence address: +86-13700500252; E-mail: (Q.Z.) / Tel: +86-13015477101; E-mail: (W.C.)@tyut.edu.cn
| | - Quanyou Zhang
- 1.College of Biomedical EngineeringTaiyuan University of TechnologyTaiyuan030024China,4.Department of Orthopaedicsthe Second Hospital of Shanxi Medical UniversityShanxi Key Laboratory of Bone and Soft Tissue Injury RepairShanxi Medical UniversityTaiyuan030001China,Correspondence address: +86-13700500252; E-mail: (Q.Z.) / Tel: +86-13015477101; E-mail: (W.C.)@tyut.edu.cn
| |
Collapse
|
14
|
Dieterle MP, Husari A, Rolauffs B, Steinberg T, Tomakidi P. Integrins, cadherins and channels in cartilage mechanotransduction: perspectives for future regeneration strategies. Expert Rev Mol Med 2021; 23:e14. [PMID: 34702419 PMCID: PMC8724267 DOI: 10.1017/erm.2021.16] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023]
Abstract
Articular cartilage consists of hyaline cartilage, is a major constituent of the human musculoskeletal system and has critical functions in frictionless joint movement and articular homoeostasis. Osteoarthritis (OA) is an inflammatory disease of articular cartilage, which promotes joint degeneration. Although it affects millions of people, there are no satisfying therapies that address this disease at the molecular level. Therefore, tissue regeneration approaches aim at modifying chondrocyte biology to mitigate the consequences of OA. This requires appropriate biochemical and biophysical stimulation of cells. Regarding the latter, mechanotransduction of chondrocytes and their precursor cells has become increasingly important over the last few decades. Mechanotransduction is the transformation of external biophysical stimuli into intracellular biochemical signals, involving sensor molecules at the cell surface and intracellular signalling molecules, so-called mechano-sensors and -transducers. These signalling events determine cell behaviour. Mechanotransducing ion channels and gap junctions additionally govern chondrocyte physiology. It is of great scientific and medical interest to induce a specific cell behaviour by controlling these mechanotransduction pathways and to translate this knowledge into regenerative clinical therapies. This review therefore focuses on the mechanotransduction properties of integrins, cadherins and ion channels in cartilaginous tissues to provide perspectives for cartilage regeneration.
Collapse
Affiliation(s)
- Martin Philipp Dieterle
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
| | - Ayman Husari
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
- Department of Orthodontics, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
| | - Bernd Rolauffs
- Department of Orthopedics and Trauma Surgery, G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Medical Center – Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79085Freiburg im Breisgau, Germany
| | - Thorsten Steinberg
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
| | - Pascal Tomakidi
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
| |
Collapse
|
15
|
McDonough RC, Price C. Targeted Activation of GPCR-Mediated Ca 2+ Signaling Drives Enhanced Cartilage-Like Matrix Formation. Tissue Eng Part A 2021; 28:405-419. [PMID: 34693731 PMCID: PMC9271335 DOI: 10.1089/ten.tea.2021.0078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Intracellular calcium ([Ca2+]i) signaling is a critical regulator of chondrogenesis, chondrocyte differentiation, and cartilage development. Calcium (Ca2+) signaling is known to direct processes that govern chondrocyte gene expression, protein synthesis, cytoskeletal remodeling, and cell fate. Control of chondrocyte/chondroprogenitor Ca2+ signaling has been attempted through mechanical and/or pharmacological activation of endogenous Ca2+ signaling transducers; however, such approaches can lack specificity and/or precision regarding Ca2+ activation mechanisms. Synthetic signaling platforms permitting precise and selective Ca2+ signal transduction can improve dissection of the roles that [Ca2+]i signaling play in chondrocyte behavior. One such platform is the chemogenetic hM3Dq DREADD (designer receptor exclusively activated by designer drugs) that activates [Ca2+]i signaling via the Gαq-PLCβ-IP3-ER pathway upon clozapine N-oxide (CNO) administration. We previously demonstrated hM3Dq's ability to precisely and synthetically initiate robust [Ca2+]i transients and oscillatory [Ca2+]i signaling in chondrocyte-like ATDC5 cells. Here, we investigate the effects that long-term CNO stimulatory culture have on hM3Dq [Ca2+]i signaling dynamics, proliferation, and protein deposition in 2D ATDC5 cultures. Long-term culturing under repeated CNO stimulation modified the temporal dynamics of hM3Dq [Ca2+]i signaling, increased cell proliferation, and enhanced matrix production in a CNO dose- and frequency-dependent manner, and triggered the formation of cell condensations that developed aligned, anisotropic neotissue structures rich in cartilaginous proteoglycans and collagens, all in the absence of differentiation inducers. This study demonstrated Gαq-GPCR-mediated [Ca2+]i signaling involvement in chondroprogenitor proliferation and cartilage-like matrix production, and established hM3Dq as a powerful tool for elucidating the role of GPCR-mediated Ca2+ signaling in chondrogenesis and chondrocyte differentiation.
Collapse
Affiliation(s)
- Ryan C McDonough
- University of Delaware, 5972, Biomedical Engineering, 161 Colburn Lab, Newark, Delaware, United States, 19716-5600;
| | - Christopher Price
- University of Delaware, 5972, Biomedical Engineering, Newark, Delaware, United States;
| |
Collapse
|
16
|
McDonough RC, Gilbert RM, Gleghorn JP, Price C. Targeted Gq-GPCR activation drives ER-dependent calcium oscillations in chondrocytes. Cell Calcium 2021; 94:102363. [PMID: 33550208 DOI: 10.1016/j.ceca.2021.102363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/18/2021] [Accepted: 01/24/2021] [Indexed: 11/28/2022]
Abstract
The temporal dynamics of calcium signaling are critical regulators of chondrocyte homeostasis and chondrogenesis. Calcium oscillations regulate differentiation and anabolic processes in chondrocytes and their precursors. Attempts to control chondrocyte calcium signaling have been achieved through mechanical perturbations and synthetic ion channel modulators. However, such stimuli can lack both local and global specificity and precision when evoking calcium signals. Synthetic signaling platforms can more precisely and selectively activate calcium signaling, enabling improved dissection of the roles of intracellular calcium ([Ca2+]i) in chondrocyte behavior. One such platform is hM3Dq, a chemogenetic DREADD (Designer Receptors Exclusively Activated by Designer Drugs) that activates calcium signaling via the Gαq-PLCβ-IP3-ER pathway upon administration of clozapine N-oxide (CNO). We previously described the first-use of hM3Dq to precisely mediate targeted, synthetic calcium signals in chondrocyte-like ATDC5 cells. Here, we generated stably expressing hM3Dq-ATDC5 cells to investigate the dynamics of Gαq-GPCR calcium signaling in depth. CNO drove robust calcium responses in a temperature- and concentration-dependent (1 pM-100 μM) manner and elicited elevated levels of oscillatory calcium signaling above 10 nM. hM3Dq-mediated calcium oscillations in ATDC5 cells were reliant on ER calcium stores for both initiation and sustenance, and the downregulation and recovery dynamics of hM3Dq after CNO stimulation align with traditionally reported GPCR recycling kinetics. This study successfully generated a stable hM3Dq cell line to precisely drive Gαq-GPCR-mediated and ER-dependent oscillatory calcium signaling in ATDC5 cells and established a novel tool to elucidate the role that GPCR-mediated calcium signaling plays in chondrocyte biology, cartilage pathology, and cartilage tissue engineering.
Collapse
Affiliation(s)
- Ryan C McDonough
- Department of Biomedical Engineering, University of Delaware, United States.
| | - Rachel M Gilbert
- Department of Biomedical Engineering, University of Delaware, United States.
| | - Jason P Gleghorn
- Department of Biomedical Engineering, University of Delaware, United States.
| | - Christopher Price
- Department of Biomedical Engineering, University of Delaware, United States.
| |
Collapse
|
17
|
Carceller JM, Martínez Galán JP, Monti R, Bassan JC, Filice M, Yu J, Climent MJ, Iborra S, Corma A. Covalent Immobilization of Naringinase over Two‐Dimensional 2D Zeolites and its Applications in a Continuous Process to Produce Citrus Flavonoids and for Debittering of Juices. ChemCatChem 2020. [DOI: 10.1002/cctc.202000320] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jose Miguel Carceller
- Universitat Politècnica de València Institute of Chemical Technology (ITQ) – Valencia Avenida Los Naranjos s/n 46022 Valencia Spain
| | | | - Rubens Monti
- Department of Food and Nutrition Faculdade de Ciências Farmacêuticas UNESP – Univ Estadual Paulista CEP 14801-902 Araraquara SP Brazil
| | - Juliana Cristina Bassan
- Department of Food and Nutrition Faculdade de Ciências Farmacêuticas UNESP – Univ Estadual Paulista CEP 14801-902 Araraquara SP Brazil
| | - Marco Filice
- Department of Food and Nutrition Faculdade de Ciências Farmacêuticas UNESP – Univ Estadual Paulista CEP 14801-902 Araraquara SP Brazil
- Department of Biocatalysis Institute of Catalysis (ICP-CSIC) Marie Curie 2 Cantoblanco Campus UAM 28049 Madrid Spain
| | - Jihong Yu
- State key Laboratory of Inorganic Synthesis & Preparative Chemistry Jilin University 2699 Qianjin Street Changchun 130012 (P.R. China
| | - María J. Climent
- Universitat Politècnica de València Institute of Chemical Technology (ITQ) – Valencia Avenida Los Naranjos s/n 46022 Valencia Spain
| | - Sara Iborra
- Universitat Politècnica de València Institute of Chemical Technology (ITQ) – Valencia Avenida Los Naranjos s/n 46022 Valencia Spain
| | - Avelino Corma
- Universitat Politècnica de València Institute of Chemical Technology (ITQ) – Valencia Avenida Los Naranjos s/n 46022 Valencia Spain
| |
Collapse
|
18
|
Huang W, Nagasaka M, Furukawa KS, Ushida T. Local Strain Distribution and Increased Intracellular Ca2+ Signaling in Bovine Articular Cartilage Exposed to Compressive Strain. J Biomech Eng 2020; 142:061008. [PMID: 31891377 DOI: 10.1115/1.4045807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Indexed: 11/08/2022]
Abstract
Articular cartilage is exposed to compressive strain of approximately 10% under physiological loads in vivo, and intracellular Ca2+ signaling is one of the earliest responses in chondrocytes under this physical stimulation. However, it remains unknown whether compressive strain itself evokes intracellular Ca2+ signaling in chondrocytes located within each layer (from surface to deep) in an equal manner with physiological levels of strain. The purpose of this study, therefore, was to determine the distribution of local strain and increased intracellular Ca2+ signaling in layer-dependent cell populations in response to 10% compressive strain loading. For this purpose, the time course of strain was measured in each layer to calculate layer-specific deformation properties. In addition, layer-specific changes in chondrocyte intracellular Ca2+ signals were recorded over time using a fluorescent Ca2+ indicator, Fluo-3, to establish ratios of cells with increased Ca2+ signaling at each depth of cartilage under static conditions or exposed to compression. The results showed that the surface layer was compressed with a larger strain compared with other layers. Few cells with Ca2+ signaling were observed under static conditions. Percentages of responsive cells within compressed cartilage were higher than those within cartilage under static conditions. However, increased intracellular Ca2+ signals were observed in a prominent number of chondrocytes within the deep layer, but not the surface layer, of compressed cartilage. Our results suggest that at a physiological compression level, Ca2+ is upregulated, but the stimulation of Ca2+ signaling in articular cartilage is not simply defined by local deformation.
Collapse
Affiliation(s)
- Wenjing Huang
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Minami Nagasaka
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Katsuko S Furukawa
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takashi Ushida
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
19
|
Zhang QY, Bai JD, Wu XA, Liu XN, Zhang M, Chen WY. Microniche geometry modulates the mechanical properties and calcium signaling of chondrocytes. J Biomech 2020; 104:109729. [PMID: 32147239 DOI: 10.1016/j.jbiomech.2020.109729] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/24/2022]
Abstract
In articular cartilage, the function of chondrocytes is strongly related to their zone-specific microniche geometry defined by pericellular matrix. Microniche geometry is critical for regulating the phenotype and function of the chondrocyte in native cartilage and tissue engineering constructs. However the role of microniche geometry in the mechanical properties and calcium signaling of chondrocytes remains unknown. To recapitulate microniche geometry at single-cell level, we engineered three basic physiological-related polydimethylsiloxane (PDMS) microniches geometries fabricated using soft lithography. We cultured chondrocytes in these microniche geometries and quantified cell mechanical properties using atomic force microscopy (AFM). Fluorescent calcium indicator was used to record and quantify cytosolic Ca2+ oscillation of chondrocytes in different geometries. Our work showed that microniche geometry modulated the mechanical behavior and calcium signaling of chondrocytes. The ellipsoidal microniches significantly enhanced the mechanical properties of chondrocytes compared to spheroidal microniche. Additionally, ellipsoidal microniches can markedly improved the amplitude but weakened the frequency of cytosolic Ca2+ oscillation in chondrocytes than spheroidal microniche. Our work might reveal a novel understanding of chondrocyte mechanotransduction and therefore be useful for designing cell-instructive scaffolds for functional cartilage tissue engineering.
Collapse
Affiliation(s)
- Quan-You Zhang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Department of Orthopaedics, the Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan 030001, China.
| | - Jia-Dong Bai
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiao-An Wu
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Xiao-Na Liu
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Min Zhang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Wei-Yi Chen
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| |
Collapse
|
20
|
McDonough RC, Shoga JS, Price C. DREADD-based synthetic control of chondrocyte calcium signaling in vitro. J Orthop Res 2019; 37:1518-1529. [PMID: 30908734 DOI: 10.1002/jor.24285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 03/08/2019] [Indexed: 02/04/2023]
Abstract
Calcium is a critical second messenger involved in chondrocyte mechanotransduction. Several distinct calcium signaling mechanisms implicated in chondrocyte mechanotransduction have been identified using mechanical perturbations or soluble signaling factors. However, these commonly used stimuli can lack specificity in the mechanisms by which they initiate calcium signaling. Synthetic tools allowing for more precise and selective regulation of calcium signaling, such as the engineered G-protein-coupled receptors known as DREADDs (Designer Receptors Exclusively Activated by Designer Drugs), may better assist in isolating the roles of intracellular calcium ([Ca2+ ]i ) and cell activation in chondrocyte biology. One DREADD, hM3Dq, is solely activated by clozapine N-oxide (CNO) and regulates calcium activation through the Gq -PLCβ-IP3 -ER pathway. Here, hM3Dq-transfected ATDC5 cells were treated with CNO (100 nM-1 μM) to establish the feasibility of using Gq -DREADDs to drive [Ca2+ ]i activation in chondrocyte-like cells. CNO administration resulted in a coordinated, dose-dependent, and transient calcium response in hM3Dq-transfected cells that resulted primarily from calcium release from the ER. Following activation via CNO administration, hM3Dq-ATDC5 cells exhibited refractory behavior and required a 4-h wash-out period to recover hM3Dq-mediated signaling. However, hM3Dq inactivation did not inhibit alternative calcium activation mechanisms in ATDC5 cells (via GSK101 or hypo-osmotic shock), nor did CNO-driven calcium signaling negatively impact ATDC5 cell health. This study established the successful use of hM3Dq for the safe, targeted, and well-controlled activation of calcium signaling in ATDC5 cells and its use as a potential tool for assessing clinically significant questions regarding calcium signaling in chondrocyte biology, cartilage pathology, and cartilage tissue engineering. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1518-1529, 2019.
Collapse
Affiliation(s)
- Ryan C McDonough
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, 19716, DE
| | - Janty S Shoga
- Department of Biomechanics and Movement Science, University of Delaware, Newark, DE
| | - Christopher Price
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, 19716, DE.,Department of Biomechanics and Movement Science, University of Delaware, Newark, DE
| |
Collapse
|
21
|
Yao B, Zhang M, Liu M, Liu Y, Hu Y, Zhao Y. Transcriptomic characterization elucidates a signaling network that controls antler growth. Genome 2018; 61:829-841. [DOI: 10.1139/gen-2017-0241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Deer antlers are amazing appendages with the fastest growth rate among mammalian organs. Antler growth is driven by the growth center through a modified endochondral ossification process. Thus, identification of signaling pathways functioning in antler growth center would help us to uncover the underlying molecular mechanism of rapid antler growth. Furthermore, exploring and dissecting the molecular mechanism that regulates antler growth is extremely important and helpful for identifying methods to enhance long bone growth and treat cartilage- and bone-related diseases. In this study, we build a comprehensive intercellular signaling network in antler growth centers from both the slow growth stage and rapid growth stage using a state-of-art RNA-Seq approach. This network includes differentially expressed genes that regulate the activation of multiple signaling pathways, including the regulation of actin cytoskeleton, calcium signaling, and adherens junction. These signaling pathways coordinately control multiple biological processes, including chondrocyte proliferation and differentiation, matrix homeostasis, mechanobiology, and aging processes, during antler growth in a comprehensive and efficient manner. Therefore, our study provides novel insights into the molecular mechanisms regulating antler growth and provides valuable and powerful insight for medical research on therapeutic strategies targeting skeletal disorders and related cartilage and bone diseases.
Collapse
Affiliation(s)
- Baojin Yao
- Chinese Medicine and Bioengineering Research and Development Center, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Mei Zhang
- Innovation Practice Center, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Meixin Liu
- Chinese Medicine and Bioengineering Research and Development Center, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yuxin Liu
- Chinese Medicine and Bioengineering Research and Development Center, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yaozhong Hu
- Chinese Medicine and Bioengineering Research and Development Center, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yu Zhao
- Chinese Medicine and Bioengineering Research and Development Center, Changchun University of Chinese Medicine, Changchun 130117, China
| |
Collapse
|
22
|
Gong X, Li G, Huang Y, Fu Z, Song X, Chen C, Yang L. Synergistically regulated spontaneous calcium signaling is attributed to cartilaginous extracellular matrix metabolism. J Cell Physiol 2018; 234:9711-9722. [PMID: 30370672 DOI: 10.1002/jcp.27657] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/02/2018] [Indexed: 12/13/2022]
Abstract
Ca2+ has been recognized as a key molecule for chondrocytes, however, the role and mechanism of spontaneous [Ca 2+ ] i signaling in cartilaginous extracellular matrix (ECM) metabolism regulation are unclear. Here we found that spontaneous Ca 2+ signal of in-situ porcine chondrocytes was [Ca 2+ ] o dependent, and mediated by [Ca 2+ ] i store release. T-type voltage-dependent calcium channel (T-VDCC) mediated [Ca 2+ ] o influx was associated with decreased cell viability and expression levels of ECM deposition genes. Further analysis revealed that chondrocytes expressed both inositol 1,4,5-trisphosphate receptor (InsP3R) and Orai isoforms. Inhibition of endoplasmic reticulum (ER) Ca 2+ release and store-operated calcium entry significantly abolished spontaneous [Ca 2+ ] i signaling of in-situ chondrocytes. Moreover, blocking ER Ca 2+ release with InsP3R inhibitors significantly upregulated ECM degradation enzymes production, and was accompanied by decreased proteoglycan and collagen type II intensity. Taken together, our data provided evidence that spontaneous [Ca 2+ ] i signaling of in-situ porcine chondrocytes was tightly regulated by [Ca 2+ ] o influx, InsP3Rs mediated [Ca 2+ ] i store release, and Orais mediated calcium release-activated calcium channels activation. Both T-VDCC mediated [Ca 2+ ] o influx and InsP3Rs mediated ER Ca 2+ release were found crucial to cartilaginous ECM metabolism through distinct regulatory mechanisms.
Collapse
Affiliation(s)
- Xiaoyuan Gong
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Gaoming Li
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yang Huang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhenlan Fu
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiongbo Song
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Cheng Chen
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Liu Yang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|